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In this paper, we focus on the farmer's risk income, by using commodity futures, when price and output processes are correlated random represented by jump-diffusion models. We evaluate the expected utility of the farmer's wealth and we determine, at each instant of time, the optimal consumption rate and hedge position at given the time to harvest and state variables.

We find a c losed f orm o ptimal p osition o f c onsumption a nd p osition r ate i n c ase o f CARA utility investor. This result (see table 1.5) is a generalization of Ho (1984) result who consider the particular case where price and output are diffusion models.

Introduction

Agricultural production is a risky business. Because agriculture is often carried out in the open air and always involves the management of living plants, it is particularly exposed to risk. Production risks are often the result of poor predictability in the medium or long term, weather conditions, and uncertainty about crop performance due to the impact of pests, disease or many other unpredictable factors. For several years, the countries of the world have intervened to help farmers cope with the risks associated with the production or the variation of the prices on the markets of agricultural commodities. Some national or international developments have led some governments to reorient their agricultural policies towards deregulation, and a more market-oriented approach. Much of the protection of some farmers against the uncertain future volatility of the markets has been removed. In addition, issues as risky as food security and environmental impacts are receiving increasing attention. Thus, future risk analysis and risk management in agriculture can be expected to receive increased attention (see [START_REF] Stulz | Optimal hedging policies[END_REF]- [START_REF] Stulz | Rethinking risk management[END_REF] and some references therein).

In addition, prices of agricultural inputs and outputs are often overlooked when a farmer has to decide how much input to use, or how much produce to produce, so that income risk due to market volatility or production is diminished. In addition to the price risk, it takes into account the exchange rate risk in the context of the import of inputs or the export of agricultural production. Note that, governments can be another source of institutional risk (political risk, sovereign risk, etc.) for farmers. Changes in the rules that affect agricultural production would have, as a corollary, implications for profitability. For example, changes in the income tax provisions or the availability of various incentive payments. Horticultural producers may be severely affected by new restrictions on the use of pesticides, just as owners of intensive live animal farms may be affected by the introduction of restrictions on the use of drugs for the prevention and control of pesticides. the treatment of diseases. One can also cite the contractual risks, that is to say the risks inherent in the relations between the trading partners. For example, the unexpected breakdown of agreements among participants in supply chains is a significant source of risk in modern agribusiness.

Many people or organizations who need to concern themselves with risk in agriculture include: farmers, farm advisers, commercial firms selling to or buying from farmers, agricultural research workers, and policy makers and planners. Policymakers and planners of public or private agricultural policies also need to consider risks and farmers' responses to risks. Thus, models that include risk could provide better predictions of farmer behavior than those that do not. It should be noted that agricultural policy development and planning are themselves risky activities. It is also necessary for farmers to plan the risks they face. The well-being of the farmer, as well as the survival of the farm business, may depend on how agricultural risks are managed. Occurrence of extreme risks could jeopardize the survival of an agricultural activity. The ambition of many farmers to return the farm to a flourishing condition in the coming years may be frustrated if risk management is neglected. Farmers must also recognize that risk and risk aversion influence their production decisions or more generally management. Mention should also be made of the risks associated with innovation. Farmers must not neglect the risks inherent in moving from an existing production system to another system that is supposed to be "superior". It should be mentioned that the adoption of untested "improved" technology may involve a high degree of risk to the farmer, especially if the adoption of the technology requires a substantial capital investment. This risk may be higher if the farmer has no direct experience of the new method.

Similarly, agricultural traders who buy from farmers may well consider the farmers' willingness to reduce market risks. Thus, some of them will be willing to accept a lower price for their production, if the buyer is willing to offer a futures contract at a guaranteed price. The buyer and the seller may benefit from such an arrangement. The purchase or sale of derivatives may be useful in reducing price risk for both future and future products. The most important examples are the futures market hedging of commodities or the purchase or sale of call or put options (see [START_REF] Sakong | Hedging production risk with options[END_REF]), depending on the farmer's need for hedging (see [START_REF] Anderson | Hedging and joint production: Theory and illustrations[END_REF] and [START_REF] Anderson | The time pattern of hedging and the volatility of futures prices[END_REF]). The hedging on the futures market is quite similar to the forward contract sale but with a number of differences. One important difference is that futures contracts are standardized and largely traded contracts, so that prices are determined more competitively than for a specific contract between a single farmer and a single trader. Thus, the farmer can get a better deal by hedging on the futures market than by contract sales. In fact, the seller of a futures contract undertakes to deliver a quantity fixed in the contract, of a defined category of the product traded at a given date. The buyer undertakes to receive the delivery of this quantity of product on this date at the price fixed in the contract. In practice, the delivery of the goods often does not take place. For example, a farmer may hedge to reduce future price risk by selling a futures contract for a product that is as close as possible to the product the farmer expects to have. For more details concerning Futures Hedging under price or production risks see [START_REF] Moschini | Uncertainty, risk aversion, and risk management for agricultural producers[END_REF], Harvey [START_REF] Harvey Lapan | Production, hedging, and speculative decisions with options and futures markets[END_REF], [START_REF] Lapan | Futures hedging under price, basis, and production risk[END_REF] and Lioui and[START_REF] Lioui | Optimal hedging in a dynamic futures market with a nonnegativity constraint on wealth[END_REF][START_REF] Lioui | General equilibrium pricing of nonredundant forward contracts[END_REF]. The cocoa producer plans to sell the cocoa in September. In May the producer decides to hedge on the futures market and so sells a futures contract for an amount of cocoa approximately equal to total production. For convenience, assuming that the October futures price at that moment is 500 euros/ton. By selling such a contract the farmer is agreeing to supply the specified quantity of cocoa of the specified quality in October at the contract price.

It is also important to take into account the risk aversion of the farmers (see [START_REF] Morgenstern | Theory of games and economic behavior[END_REF] and [START_REF] Hardaker | Whole-farm planning under uncertainty: impacts of subsidy scheme and utility function on portfolio choice in norwegian agriculture[END_REF] for more details). The function of absolute risk aversion to risk can be categorized according to its evolution in relation to the increase in wealth, such as the increase in absolute risk aversion (IARA), the absolute risk aversion ( CARA) or decreasing absolute risk aversion (DARA). As a result, relative risk aversion can be categorized as increasing, constant or decreasing with wealth (IRRA, CRRA and DRRA, respectively). Constant risk aversion (CARA) means that preferences are unchanged if a constant sum is added or subtracted from all payments. Constant relative risk aversion (CRRA) means that preferences among at-risk perspectives are unchanged if all gains are multiplied by a positive constant. A more general and flexible utility function that characterize risk aversion is proposed in [START_REF] Aït-Sahalia | Portfolio choice with jumps: A closedform solution[END_REF]. In this paper, we consider as in [START_REF] Ho | Intertemporal commodity futures hedging and the production decision[END_REF], that the farmer has an aversion to the constant risk of CARA type.

Risk hedging can be thought of as the process of simultaneously selecting the futures position and the underlying asset positions to build a portfolio of assets. The futures markets on commodities are these organized markets with a clearing which eliminates counterparty risk, liquidity risk and allows hedge against adverse exchange rate movements. To do this the agent must establish a strategy for risk management. What strategy should he choose ? Considering the approach of [START_REF] Morgenstern | Theory of games and economic behavior[END_REF] who demonstrated in that the maximization of expected utility is a criterion for rational decision. The optimum consumption and portfolio rules in a continuous-time model has been introduced in [START_REF] Merton | Optimum consumption and portfolio-rules in a continuous-time framework[END_REF]. In the same spirit, [START_REF] Ho | Intertemporal commodity futures hedging and the production decision[END_REF] maximizes the consumption and wealth utility function of a farmer in the context of agricultural commodities . The latter paper use a model of consumption and investment in continuous time to determine the optimal behavior to have in the markets by a US wheat producer subject to the risks of prices and quantities through the monthly data for the period 1977 -1980. [START_REF] Anderson | The time pattern of hedging and the volatility of futures prices[END_REF], [START_REF] Marcus | Futures markets and production decisions[END_REF], [START_REF] Ho | Intertemporal commodity futures hedging and the production decision[END_REF] and [START_REF] Hey | The dynamic competitive firm under spot price uncertainty[END_REF] first develop dynamic Hedging models which assumes that producers can revise their hedge position during the growing season. [START_REF] Ho | Intertemporal commodity futures hedging and the production decision[END_REF] allowed for hedge positions to be continuously adjusted over time. [START_REF] Karp | Dynamic hedging with uncertain production[END_REF] extended the Anderson and Danthine's models by adding stochastic production. [START_REF] Karp | Methods for selecting the optimal dynamic hedge when production is stochastic[END_REF] has developed a continuous model similar to [START_REF] Ho | Intertemporal commodity futures hedging and the production decision[END_REF]. Unfortunately, paper [START_REF] Ho | Intertemporal commodity futures hedging and the production decision[END_REF] assumes that the evolution of commodity prices follows a Brownian-type continuous diffusion process. Indeed, the Brownian-type processes do not really take into account, the occurrence of jumps or strong turbulence in the evolution of the price of convenience. It should be noted that jumps diffusion process are among the stochastic processes, that are most often used in financial econometrics, to model the dynamics of asset prices. Discontinuities in these random processes are modeled with jumps. In addition, asset prices sometimes have breaks in their evolution, especially during periods of turbulence, such as the occurrence of bubbles or financial crises. In our paper extends Ho's model by assuming that the evolution of price follows a stochastic process with Levy jump, and that the logarithmic variation of the quantity produced by the farmer follows a normal distribution. Fore more details on jumps diffusion processes (see for instance [START_REF] Aït-Sahalia | Portfolio choice with jumps: A closedform solution[END_REF], [START_REF] Cont | Financial modelling with jump processes, chapman & hall/crc financ[END_REF], [START_REF] Hanson | Applied stochastic processes and control for Jump-diffusions: modeling, analysis, and computation[END_REF] and some references therein).

In this paper, we study a normative model of optimal hedging strategy of the farmer coupled with its consumption behavior in a continuous time jumps-diffusion framework. Some papers such as [START_REF] Rolfo | Optimal hedging under price and quantity uncertainty: The case of a cocoa producer[END_REF] has analyzed the farmer's hedging strategies in a one-period context. However, as mentioned in [START_REF] Ho | Intertemporal commodity futures hedging and the production decision[END_REF], in a one-period model some rather restrictive conditions are imposed on the individual's behavior. The one-period model assumes that the farmer ignores all past information. As a result, the farmer does not adjust over time its consumption and its hedging strategy against the risk of price and production through future contracts. These conditions can be relaxed in a continuous-time jump-diffusion framework. In an intertemporal framework, the farmer's hedging problem may be based on the assumptions that follows. We assume that the farm income (at harvest) depends on both the spot price and the output (in bushels), the farmer is subject to both price and output uncertainties during the production period. The farmer can hedge in commodity futures market, but he cannot eliminate both the price and production uncertainties by any hedging strategy. Other papers have also looked at intertemporal setups. In a discrete-time framework, [START_REF] Neuberger | Hedging long-term exposures with multiple short-term futures contracts[END_REF] examines hedging long-term commodity supply commitment with multiple short term futures contracts. [START_REF] Stanton | Pricing continuously resettled contingent claims[END_REF] price continuously resettled contingent claims, which bear some similarities with continuoustime instantaneous forward contracts, as the current market value of such claims is always zero. [START_REF] Smith | The determinants of firms' hedging policies[END_REF] classify rationales for hedging into two categories: costs and risk aversion. They devote entire section IV in their paper to hedging motivated by risk aversion of managers. Mathematically, manager maximizes an objective function (expected utility) which is already concave. In that case individual preferences result directly in hedging behavior.

Our contribution is to revisit the work of Thomas Ho in the same context, taking into account jumps in price trends. Under our new assumptions regarding the stochastic evolution of price and quantity, added to that of [START_REF] Ho | Intertemporal commodity futures hedging and the production decision[END_REF], we obtain a coverage ratio (see the last line of Table 1.5), which is quite different from that found in Ho's paper. This article is divided into four sections. This article is divided into four sections. The first section entitled "Modeling" study the optimal portfolio and determine the design pf its optimal decisions, and the last section presents the final conclusion and remarks and possible some possible orientations of Farm Risk management. The first section of the appendix entitled "jump-diffusion process" introduces the preliminaries concepts of stochastic calculus for jumpdiffusion model, and the section of the appendix entitled "Stochastic Dynamic Programming" provides tools for dynamic programming process jump-diffusion.

Modeling

Assumptions

A-1

• The farmer's optimal behavior is determined in a continuous-time, finite horizon framework. The harvest time T is assumed to be known.

• At the beginning of the period (the planting season), the farmer makes his production decision on the quantity of crops, Q bushels, to be produced. At the end of the period (the harvest time), he sells all the crops at the prevailing spot price P (per bushel), and hence, his farm income is given by PQ.

A-2 • During the production period (time between the planting and harvest seasons) the farm income is subject to two sources of uncertainty:

1. the price at which the crop will be sold (Price risk), P 2. the quantity of the crop which will be sold (output risk)Q.

• At each time t, the farmer forms expectations of the spot price P t and output Q t at harvest, and then at the next instant, with more information, the farmer revises the expectations:

• P t and Q t are Itô-Lévy processes.

dQ t = σ Q Q t dZ t (1)
dP t P t - = σ P dω t + (e J -1)dN t -λ E(e J -1)dt (2)
dZ t dω t = ρdt (3) 
σ Q and σ P are the constant instantaneous standard deviation of the anticipated output and anticipated spot price, respectively, ρ is the instantaneous correlation coefficient, dZ t and dω t are standardized Wiener processes and dN t is a Poisson process with arbitrary distributed jump amplitude J. The symbol E in front of (e J -1) stands for the expectation under physical measure and the constant variable λ is the jump intensity of the Poisson process.The two stochastic processes N t , ω t and J are mutually independent. For more details see [START_REF] Zhang | Equilibrium asset and option pricing under jump diffusion[END_REF][START_REF] Ho | Intertemporal commodity futures hedging and the production decision[END_REF].

A-3 There are frictions in the real sector.

i) During the production period, the farmer cannot affect the output level by committing further investment ( buy more acreage) or disinvestment (land abandonment or selling off portions of the business).

ii) Significant agency costs prohibit the farmer from shifting the uncertainty of farm income to the market through issuance of shares.

A-4

• The futures market is assumed to be perfect: * mark-to-market settlements occur continuously through time, so that the net value of the contract always remains zero.

*
• Each contract calls for a delivery of one bushel.Those holding long positions promise to take delivery of the underlying crop and make payment at the futures price of the contract; those holding short positions promise to make delivery of the underlying com-modity and receive payment at maturity at the futures price of the contract.

• Let F t denote the equilibrium settlement price on the contract at time t. F t is stochastic, and it is characterized by F t = P t for more details see [START_REF] Mahul | Hedging crop risk with yield insurance futures and options[END_REF]. Thus dF t = dP t .

A-5 The farmer has a cash account:W t Wt that may be positive (negative) on which a constant rate of interest r is received (paid).Any net cash flow resulting from either position in futures contracts or from consumption is deposited or withdrawn from this cash account. Therefore, the borrowing rate equals the lending rate.

A-6 During the period, at each instant t, the farmer has to determine optimal consumption rate c * t : optimal consumption rate and x * t the futures position : such that the expected additive utility of consumption is maximized

max c,x E[ T 0 U(c,t)dt + B(Y T , T )] with Y T = P T Q T +W T
where ∀t ≥ 0 Y t the total wealth at time t, P t Q t is the crop at time t, W t : the cash account value at time t, B(., T ) is the terminal utility of wealth and is assumed to be a concave function and U(c,t) an instantaneous utility function for consumption such that :

   ∂U ∂ c > 0 ∂ 2 U ∂ c 2 < 0.

Objective function and the Optimal Decisions

• Let x t denote the number of contracts held by the farmer at time t in a short position

• Let dF t : variation due to an increase in the settlement price of the futures • x t dF t : denote the amount, in cash, to pay at the clearing corporation by the farmer.

• the change in the farmers cash account is the sum of three cash flows:

-The interest earned from the cash account: rW t dt -The consumption : -c t dt

the mark-to-market settlement of his futures position

• This is summarized by the following budget constraint equation

dW t = (rW t -c t )dt -x t dF t (4) 
• To derive optimal decisions, x * t and c * t , we utilize the Bellman stochastic dynamic programming technique. The objective function

J T (W, F, Q,t) = max c t ,x t ,t<T E t [ T t U(c, s)ds + B(Y T , T )] (5) 
where E t is an expectation operator, conditional on W (t) = W, F(t) = F, Q(t) = Q and c s > 0.

• Substituting the minimization operator by maximization one into (75) J T is the solution of Hamilton-Jacobi-Bellmann equation

J T t + max c,x [H (y,t)] = 0 (6)
this can also be written as follows

max c,x [dJ T +U(c,t)dt] = 0 (7)
satisfying the boundary condition

J T (W, F, Q, T ) = B(F T Q T +W T , T ). (8) 
• The boundary condition impose that the optimized derived utility equal to, (at time T), the terminal utility of wealth, since the consumption equal to zero when the wealth equal to zero to. This is the initial value to our dynamic programming. Thus, this problem is a time backwardation problem. See [START_REF] Beckmann | Non-linearities in the relationship of agricultural futures prices[END_REF] 

dQ t = σ Q Q t dZ t (10) dZdω = ρdt (11) 
Substituting dF t into (4), we obtain

dW t = (rW t -c t )dt -x t dF t (12) = (rW t -c t )dt -x t F t -σ F dω t + x t F t -[λ E(e J -1)dt -(e J -1)dN t ] (13) 
Thus

dW t = [rW t -c t + x t λ F t -E(e J -1)]dt -x t F t -σ F dω t -x t F t -(e J -1)dN t (14)
Let us evaluate a dynamic dY t of the wealth farmer Y t . Since

Y t = P t Q t +W t = F t Q t +W t , (15) 
then

dY t = dF t Q t + dW t (16) 
Applying ( 57) to dF t Q t , such that ( 16) takes the form

dY t = F t dQ t + Q t dF t + d[F t , Q t ] + dW t (17) Applying (62) to d[F t , Q t ],
such that (17) takes the form

dY t = F t dQ t + Q t dF t + d < F t , Q t > c +∆F s ∆Q s + dW t (18) Since d < F t , Q t > c = ρσ F σ Q F t-Q t dt
and ∆Q s = 0, then (17) takes the form:

dY t = [(rW t -c t ) -λ (Q t -x t )E(e J -1)F t-+ ρσ F σ Q F t-Q t ]dt + σ F (Q t -x t )F t-dω t + σ Q F t-Q t dZ t + (Q t -x t )F t-(e J -1)dN t (19)
Let (ω 1 , ω 2 ) be two independent standard Wiener Processes satisfying : ω t = ω 1 t and Z t = ρω 1 t + 1ρ 2 ω 2 t . Thus (19) takes the form:

dY t = [(rW t -c t ) -λ (Q t -x t )E(e J -1)F t + (ρσ F σ Q F t Q t )] α 1 dt + [(Q t -x t )F t σ F + ρσ Q F t Q t ] α 2 dω 1 t + σ Q F t Q t 1 -ρ 2 α 3 dω 2 t + (Q t -x t )F t (e J -1)dN t (20) Let us evaluate dJ T . Applying (71) to J T (Y t ,t) = max c t ,x t E t [ T t U(c, s)ds + B(Y T , T )],
we obtain:

dJ T = J T t dt + J T Y α 1 dt + 1 2 J T Y 2 (α 2 2 dt + α 2 3 dt) + λ dt [J T (Y t + (Q t -x t )F t (e J -1)z,t) -J T (Y t ,t)]ν(dz) (21) as E t (dω i t ) = 0 for i = 1; 2.
End this paragraph by the dynamic programming equation. Substituting (21) into max c,x [dJ T +U(c,t)dt] = 0, we obtain this following result:

max c t ,x t J T t + J T Y [(rW t -c t ) -λ (Q t -x t )E(e J -1)F t + (ρσ F σ QF t Q t )] + 1 2 J T Y 2 t F 2 t [(Q t -x t ) 2 σ 2 F + 2ρ(Q t -x t )σ F σ Q Q t + σ 2 Q Q 2 t ] + λ [J T (Y t + (Q t -x t )F t (e J -1)z,t) -J T (Y t ,t)]ν(dz) +U(c t ) = 0. ( 22 
)
As equation ( 22) exist, the optimal decisions (c * , x * ) satisfy the first order conditions.

Evaluation of c * t and x * t

Let us evaluate c * t . The first order condition is obtained by deriving the terms into maximization operator with respect to c. We obtain:

-J T Y +U c (c,t) = 0 (23)
thus, t The optimal consumption rate is determined such that the marginal utility of consumption equates the marginal derived utility in wealth. we obtain:

U c (c * ,t) = J T Y (Y,t) (24) 
. This result was obtained by [START_REF] Ho | Intertemporal commodity futures hedging and the production decision[END_REF] in case of no jump into dynamic processes. Hence c * is determined independently of the hedging decisions:

c * = [ ∂U ∂ c ] -1 [ ∂ J T (Y,t) ∂Y ]. (25) 
Let us evaluate x * t .

Let us write the second condition of first order and derive the optimal position x * t . To do this, we utilize an utility functions defined by: U(c,t) = e -βt V (c) and G(Y,t) = e -βt L(Y ) where V is the utility function of consumption, L is the utility function of wealth. The choice of U and G (as product of two functions with separable variables) is motivated by the fact that the consumption and wealth processes are Markov processes. More, we suppose that these two utility functions are exponential utility function type: V (c) = -1 q exp(-qc) and L(y) = -K q exp(-rqy) where q > 0 and K a positive constant. Let us evaluate c * t in this case.

since ∂ L(y) ∂ y = rK exp(-rqy) = -rqL(y) and ∂ 2 L(y) ∂ y 2 = r 2 q 2 L(y), thus (25) takes the form:

c * = rY - 1 q log(rK). ( 26 
)
Substituting these two functions into (22), we obtain:

0 = max c t ,x t V (c t ) -β L(Y t ) -rqL(Y t )[(rW t -c t ) + ρσ F σ Q F t Q t -λ (Q t -x t )E(e J -1)F t ] + 1 2 r 2 q 2 L(Y t )[(Q t -x t ) 2 σ 2 F F 2 t + 2ρ(Q t -x t )σ F σ Q F 2 t Q t + σ 2 Q F 2 t Q 2 t ] + λ [e -rq[(Q t -x t )F t (e J -1)z] L(Y t ) -L(Y t )]ν(dz) . ( 27 
)
We divide this term by rqL(Y t ). since qL(Y t ) < 0, thus the max is replaced by the min ( 27) takes the form:

0 = min c t ,x t V (c t ) rqL(Y t ) - β rq -[(rW t -c t ) + ρσ F σ Q F t Q t -λ (Q t -x t )E(e J -1)F t ] + 1 2 rq[(Q t -x t ) 2 σ 2 F F 2 t + 2ρ(Q t -x t )σ F σ Q F 2 t Q t + σ 2 Q F 2 t Q 2 t ] + λ rq [e -rq[(Q t -x t )F t (e J -1)z] -1]ν(dz) . ( 28 
)
Let us evaluate K : We deduce its value by replacing (c t , x t ) by (c * t , x * t ) into ( 28). So we obtain:

K = 1 r exp 1 - β r -q[(rW t -rqY ) + ρσ F σ Q F t Q t -λ (Q t -x t )E(e J -1)F t ] + 1 2 rq 2 [(Q t -x t ) 2 σ 2 F F 2 t + 2ρ(Q t -x t )σ F σ Q F 2 t Q t + σ 2 Q F 2 t Q 2 t ] + λ r [e -rq[(Q t -x t )F t (e J -1)z] -1]ν(dz) . ( 29 
)
To evaluate x * t , we distinguish two case: λ = 0 and λ = 0.

First case: λ = 0, i.e, the dynamic of price is pure diffusive process . The condition of first order, i.e, the derivative of second term of equation ( 28) with respect to x is zero, applying it to (28) we obtain:

rq[(Q -x)σ 2 F F 2 + ρσ Q σ F F 2 Q] = 0 (30) ainsi x * t,P = (1 + ρ σ Q σ F )Q. (31) 
Remark: 3.1. The optimal hedge ratio

x * t,P Q = (1 + ρ σ Q σ F
) depend to the correlation ρ between the two uncertainties, the price P and the quantity Q. If the correlation is negative, the farmer'revenue is less uncertain, thus the farmer would not hedge his entire position in futures market.

Second case: λ = 0. Like [START_REF] Aït-Sahalia | Portfolio choice with jumps: A closedform solution[END_REF], we choose a Levy measure to obtain a closed form. Consider the Levy measure defined by: ν(dz) = β e -ηz 1I {z≥0} dz where β and η are strictly positive constant. This measure satisfies IR min(1, |z|)ν(dz) < ∞ The calculation of integral term into (28) gives:

λ rq [e -rq(Q t -x t )F t (e J -1)z -1]ν(dz) = λ rq +∞ 0 [e -rq(Q t -x t )F t (e J -1)z -1]ce -ηz dz (32) = λ β rq +∞ 0 [e -[rq(Q t -x t )F t (e J -1)+η]z -e -ηz ]dz (33) = λ β rq 1 rq(Q t -x t )F t (e J -1) + η - 1 η . (34) 
The second condition of first order applying to (28) give us:

-λ E(e J -1)F t -rq(Q t -x t )σ 2 F F 2 t -rqρσ F σ Q F 2 t Q t + λ β F t (e J -1) (rq(Q t -x t )F t (e J -1) + η) 2 = 0. (35) (35) it is an implicit form of cubic equation in (Q t -x t ) contains x t . Otherwise x t is solution of (35). Setting S = (Q t -x t ), (35) takes the form aS 3 + bS 2 + cS + d = 0 and setting X = S + b/a
3 , the equation takes the form X 3 + pX + q = 0. The discriminant is ∆ = p 3 27 + q 2 4 . We solve in case where ∆ < 0 (this implies that p < 0). The equation has three real solutions. Since we minimize in the objective function , we consider the smallest solution defined by:

(Q t -x * t ) = - b/a 3 + -4p 3 cos( 1 3 arccos(-q -27 4p 3 - 2π 3 )) (36) 
By replacing p and q by its values we obtain: 

x * t = (1 + 1 3 ρ σ Q σ F )Q + 2η 3rqF + λ E(e J -1) rqσ 2 F F (e J -1) + + 4 9 ρ 2 σ 2 Q Q 2 σ 2 F + 8 3 2 3 (e J -1)-1 ηλ E(e J -1) r 2 q 2 σ 2 F F 2 - 8ηρσ Q Q 3rqσ F F + 16 3 - 4 (e J -1) η 2 3r 2 q 2 F 2 + 16ρσ Q Qη 9σ F rqF + 8λ ρσ Q QE(e J -1) 9rqσ 3 F F (e J -1)+ 4λ 2 E 2 (e J -1) 9r 2 q 2 σ 4 F F 2 (e J -1) 3 1 2 cos 1 3 arccos - 2 27 ρ 3 σ 3 F Q 3 σ 3 F - 16η 3 27r 3 q 3 F 3 - 2λ 3 E 3 (e J -1) 27r 3 q 3 σ 3 F F 3 (e J -1) 3 - λ E(e J -1) r 3 q 3 (e J -1)σ 2 F F 3 + λ c r 2 qσ 2 F F 3 - η 2 ρσ Q Q r 2 q 2 σ 2 F F 2 (e J -1) - 2λ E(e J -1)(e J -1) 9rqσ 2 F F ρ 2 σ 2 Q Q 2 σ 2 F + 4η 2 r 2 q 2 F 2 - 2ρσ Q Q 9σ F λ 2 E 2 (e J -1)(e J -1) 2 r 2 q 2 σ 4 F F 2 + 4η 2 r 2 q 2 F 2 - 4η 9rqF 
λ 2 E 2 (e J -1)(e J -1) 2 r 2 q 2 σ 4 F F 2 + ρ 2 σ 2 Q Q 2 σ 2 F - 2λ 2 E 2 (e J -1)(e J -1) 2 9r 2 q 2 σ 4 F F 2 ρσ Q Q σ F + 2η rqF - 8λ ηE(e J -1)(e J -1)ρσ Q Q r 2 q 2 σ 3 F F 2 + 4ηρσ Q Q 3rqσ F F + 4ηE(e J -1)λ 3r 2 q 2 σ 2 F F 2 + 2η 2 3r 2 q 2 (e J -1)F 2 × 3 √ 3 2 + 1 3 ρ 2 σ 2 Q Q 2 σ 2 F +2 2 3 (e J -1)-1 ηλ E(e J -1) r 2 q 2 σ 2 F F 2 - 2ηρσ Q Q rqσ F F + 4 3 - 1 (e J -1) η 2 r 2 q 2 F 2 + 4ρσ Q Qη 3σ F rqF + 2λ ρσ Q QE(e J -1) 3rqσ 3 F F (e J -1) + λ 2 E 2 (e J -1) 3r 2 q 2 σ 4 F F 2 (e J -1) 3 -3 2 - 2π 3 . (37) 

Comparative tabular

c * = [ ∂U ∂ c ] -1 [ ∂ J T (Y,t) ∂Y ] c * = [ ∂U ∂ c ] -1 [ ∂ J T (Y,t) ∂Y ]
Optimal position:

x * P = (1 + ρ σ Q σ F )Q x * t = (1 + 1 3 ρ σ Q σ F )Q + 2η 3rqF + λ E(e J
-1)

rqσ 2 F F (e J - 1) + + 4 9 ρ 2 σ 2 Q Q 2 σ 2 F + 8 3 2 3 (e J - 1) - 1 ηλ E(e J -1) r 2 q 2 σ 2 F F 2 - 8ηρσ Q Q 3rqσ F F + 16 3 - 4 (e J
-1)

η 2 3r 2 q 2 F 2 + 16ρσ Q Qη 9σ F rqF + 8λ ρσ Q QE(e J
-1)

9rqσ 3 F F (e J - 1) + 4λ 2 E 2 (e J -1) 9r 2 q 2 σ 4 F F 2 (e J - 1) 3 1 2 cos( 1 3 arccos(-q -27 4p - 2π 
3 ))

Conclusion

This work proposes an investment-consumption model, in continuous-time, which determine the optimal instantaneous consumption and optimal hedging position using futures by the farmer in managing income risk (price risk and production uncertainty). In our model we assume that the price process is a jump-diffusion process and it generalizes [START_REF] Ho | Intertemporal commodity futures hedging and the production decision[END_REF] who assumed that this price process is a diffusion process. We justify that the optimal instantaneous consumption is unchanged in both models. Assuming the farmer preferences for consumption and wealth are represented by exponential utility functions, determine a closed formula of the optimal hedge ratio. Our principal result is the last line of the precede table 1.5 (see also the remark 1.1)

An open question is the implementation of the theoretical results with real data from Cameroonian cocoa market, to provide a hedging policy to stakeholder.

A. Jump-diffusion process

A.1. Counting measure of jumps

Definition A.1. Let be t ≥ 0, A ∈ B(IR d \ {0}) and the random quantity

N(t, A) = #{0 ≤ s ≤ t; ∆X s ∈ A} = ∑ 0≤s≤t 1I A (∆X s ). (38) 
For all ω, the function of sets A → N(t, A)(ω) is a counting measure on B(

IR d \ {0}). So A → E[N(t, A)] (39) 
is a Borel measure on B(IR d \ {0}). 0ne denote µ(.) = E[N(1, .)] is called intensity measure of process X .

For all t ≥ 0 and A lower bounded , we define a compensated random jump measure Ñ by :

Ñ(t, A) = N(t, A) -tµ(A). (40) 
Remark: A.1. N(t, A) is a shorthand measure notation for the measure set N([0,t] × A).

A.2. Space-time Poisson process

Also called general compound Poisson processes, marked Poisson point processes. The spacetime Poisson process is a generalization of Poisson process denoted by

N (dt, dq) = N (]t,t + dt], ]q, q + dq]) (41) 
Poisson mark space Q :

Q N (dt, dq) = dN(t; Q) (42) then the quadratic covariation [X 1 , X 2 ] is equal to [X 1 , X 2 ] t = t 0 φ 1 s φ 2 s ds + t 0 IR d ψ 1 (s, y)ψ 2 (s, y)N(ds, dy). (59) or [X 1 , X 2 ] t = t 0 φ 1 s φ 2 s ds + ∑ 0≤s≤t ∆X 1 s ∆X 2 s . (60) 
Under differential form :

d[X 1 , X 2 ] t = φ 1 t φ 2 t dt + IR d ψ 1 (t, y)ψ 2 (t, y)N(dt, dy). ( 61 
) or d[X 1 , X 2 ] t = φ 1 t φ 2 t dt + ∆X 1 t ∆X 2 t . (62) 

B. Stochastic Dynamic Programming

In this section the essential is provided by [START_REF] Hanson | Applied stochastic processes and control for Jump-diffusions: modeling, analysis, and computation[END_REF] 

B.1. Model and principle of optimality

The general jump-diffusion SDE ( 45) is reformulated with an additional process, the control process U(t) on U , thus the dynamic'state is defined by : dX(t) = f (X(t),U(t),t)dt + g(X(t),U(t),t)dω(t)

+ Q h(X(t),U(t),t, q)N (dt, dq; X(t),U(t),t) (63) 
where ω(t) is a wiener process or diffusion process, N(t; Q, X(t),U(t),t) is a Poisson process or jump process with jump amplitude mark random variable Q, and N (dt, dq; X(t),U(t),t) is the Poisson random measure.

The objective function has a control formulation which is the combination of a final cost at time t f and cumulative instantaneous costs, given the initial data (t, x(t)). That is

V [X,U,t f ](x,t) = t f t C(X(s),U(s), s)ds + S(X(t f ),t f ). (64) 
It is a functional of the processes X(t) and U(t), where C(x, u,t) is the scalar instantaneous or running cost function on the time horizon ]t,t f ] given the state at t and S(x,t) is the final cost function; both are assumed continuous. This is the Bolza form of the objective.

Let us end this section with the Principle of optimality

The expected cost for (64) is:

E (ω,N)]t,t f ] t f t C(X(s),U(s), s)ds + S(X(t f ),t f ) (65) 
Hence, the optimal expected cost for ( 64) is :

min u E (ω,N)]t,t f ] t f t C(X(s),U(s), s)ds + S(X(t f ),t f ) (66) 
the optimal expected cost (66) can be decomposed as follows:

Proposition B.1. Under the hypothesis of decomposition rule and properties of jump-difffusion processes,

v * (x,t) = min U]t,t+δt] E (ω,N)]t,t+δt] t+δt t C(X(s),U(s), s)ds + v * (X(t + δt),t + δt) X(t) = x,U(t) = u (67) 
Thus, we have formally derived the fundamental recursive formula of stochastic dynamic programming : Proof: 

v * (x,t) = min U]t,t+δt] E (ω,N)]t,t+δt]

Programming

Using the Principle of Optimality (67) and by taking the limit of small δt, replacing δt by dt, we can systematically derive the partial differential equation of stochastic dynamic programming, also called the stochastic Hamilton-Jacobi-Bellman (HJB) equation, for the general, multi-dimensional Markov dynamics case. From the increment form of the state differential dX(t) = X(t + dt) -X(t),

we consider the expansion of the state argument X(t + dt) = X(t) + dX(t) (70) about X(t) for small dX(t) and about the explicit time argument t + dt about t in the limit of small time increments dt, using an extension of Taylor approximations extended to include discontinuous (i. v * (x + ĥ(x, u,t, q),t)v * (x,t)N (dt, dq, ; x, u,t)

Recall that dN(t; x, u,t) = Q N (dt, dq; x, u,t) where the first t argument of dN is the time implicit to the Poisson process, while the second t argument is an explicit time corresponding to the implicit state and control parametric dependence and ĥ(x, u,t, q) is jump amplitude with a corresponding multiplicative factoring of the Poisson random measure. The next step is to take a conditional expectation over the isolated differential Wiener and Poisson processes by considering these expectations: (dt, dq; x, u,t)] = λ (t; x, u,t)dtΦ Q (dq; x, u,t) = λ (t; x, u,t)Φ Q (q; x, u,t)dqdt. We note that the v * (x,t) value on both sides of the equation cancel and then the remaining common multiplicative factors of dt also cancel. The Hamiltonian (technically, a pseudo-Hamiltonian) functional is given by: H (x, u,t) ≡C(x, u,t) + ∂ x v * (x,t). f (x, u,t) + 1 2 g 2 (x, u,t)∂ xx v * (x,t) + λ (t; x, u,t) Q v * x + ĥ(x, u,t, q),tv * (x,t) .φ Q (q; x, u,t)dq,

     E[dω(t)] = 0 E[dω(t)dω(t)] = dt E[N

  Participants can trade costlessly and continuously * The futures contracts are perfectly divisible. * The contracts have the settlement date at the time of harvest.

  s),U(s), s)ds+ S(X(t f ),t f )|X(t + δt),U(t + δt) X(t) = x,U(t) = u s),U(s), s)ds + v * (X(t + δt),t + δt) X(t) = x,U(t) = u .

  ), (71) is transformed as follows v * (x,t) =v

for further details 3. Solution 3.1. Evaluation of dynamics dW

  t , dY t and dJ T

	Let us evaluate dW t . since   dF t = dP t	then	
	 F t = P t ,		
		dF t F t -	= σ F dω t + (e J -1)dN t -λ E(e J -1)dt	(9)

  e, Poisson) v * (x,t) = dt min u E (dω,dN)(t) C(x, u,t)dt + v * (x,t) + v * t (x,t)dt + ∂ x v * (x,t). f (x, u,t)dt + g(x, u,t)dω(t)

	+	1 2	∂ xx v * (x,t).dω(t)g(x, u,t) g(x, u,t)dω(t)

Q

.

Example: if Q = {1}, the number of jumps in ]t,t + dt] is deduced from:

Q N (dt, dq) = N (dt, {1}) = N(dt) = dN(t; 1) = dN(t) = dN t (44)

A.3. Jump-diffusion and conditional infinitesimal moments

The Poisson and Wiener processes provide stochastic differential equations (SDE) in continuous time for simple jump-diffusion state process X(t),

Where X(0) = x 0 , with a set of continuous function { f , g, h} taken as coefficients and eventually non linear.

N, a random Poisson measure with intensity dt dµ on IR + × (IR d \ {0}).

Ito processes are jump-diffusion processes. Levy processes are essentially jump-diffusion processes, but extended to processes with infinite rate of jump. Jump-diffusion processes with constants coefficients are Levy processes.

Assuming Poisson and Wiener processes are independents. The conditional moments are determined as follows:

and

The jump in state process is given by

where

The infinitesimal moment and jump properties are very useful for modeling approximations of real applications, by providing a basis for estimating the coefficient functions f , g, and h, as well as some of the process parameters, at least in the first approximation, through comparison to the empirical values of the basic probability corresponding of the stochastic integral equation.

A.4. Stochastic Jump-Diffusion Chain Rule

The state process is decomposed into continuous changes,

and discontinuous or jump changes,

such that

Thus, the change of a composite function of the state process X(t), dF(X(t),t), can be decomposed into the sum of continuous and discontinuous changes. The function F(x,t) is assumed to be at least twice continuously differentiable in x and once in t. This leads to

For continuous composite and to

for jump composite.

Combining the continuous and discontinues changes, we derive:

A.5. Quadratic covariation

where [X,Y ] is the quadratic covariation.

If N is a random Poisson measure on [0, T ] × IR and (ω t ) t∈[0,T ] , a Wiener process, both are independent. If

Also, with sufficiently small dt, U]t,t + dt] has been replaced by the conditioned control vector u at t. Theorem B.1. Hamilton-Jacobi-Bellman Equation (HJBE) for Stochastic Dynamic Programming (SDP) If v * (x,t) is twice differentiable in x and once differentiable in t, while the operator decomposition rules are valid, then

The optimal control, if it exists, is given by

subject to any control constraints.

(75) is not an ordinary PDE.

The equation ( 75) is the Hamilton-Jacobi-Bellman equation, is also called simply the Bellman equation, or the stochastic dynamic programming equation or the PDE of stochastic dynamic programming, or in particular, the PIDE of stochastic dynamic programming where PIDE denotes a partial integral differential equation.