Z. D. Smith and A. Meissner, DNA methylation: Roles in mammalian development, Nat. Rev. Genet, vol.14, pp.204-220, 2013.

M. Iurlaro, F. Von-meyenn, and W. Reik, DNA methylation homeostasis in human and mouse development, Curr. Opin. Genet. Dev, vol.43, pp.101-109, 2017.

W. Reik, Stability and flexibility of epigenetic gene regulation in mammalian development, Nature, vol.447, pp.425-432, 2007.

G. Auclair, J. Borgel, L. A. Sanz, J. Vallet, S. Guibert et al., Ehmt2 directs DNA methylation for efficient gene silencing in mouse embryos, Genome Res, vol.26, pp.192-202, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02187322

R. Pathak and R. Feil, Oocyte-derived histone h3 lysine 27 methylation controls gene expression in the early embryo, Nat. Struct. Mol. Biol, vol.24, pp.685-686, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02187191

C. Dupont and J. Gribnau, Different flavors of x-chromosome inactivation in mammals, Curr. Opin. Cell Biol, vol.25, pp.314-321, 2013.

P. A. Jones, Functions of DNA methylation: Islands, start sites, gene bodies and beyond, Nat. Rev. Genet, vol.13, pp.484-492, 2012.

A. C. Ferguson-smith, Genomic imprinting: The emergence of an epigenetic paradigm, Nat. Rev. Genet, vol.12, pp.565-575, 2011.

D. Monk, D. J. Mackay, T. Eggermann, E. R. Maher, and A. Riccio, Genomic imprinting disorders: Lessons on how genome, epigenome and environment interact, Nat. Rev. Genet, vol.20, pp.235-248, 2019.

D. P. Barlow, Genomic imprinting: A mammalian epigenetic discovery model, Annu. Rev. Genet, vol.45, pp.379-403, 2011.

A. A. Khamlichi and R. Feil, Parallels between mammalian mechanisms of monoallelic gene expression, Trends Genet, vol.34, pp.954-971, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02187059

M. B. Renfree, S. Suzuki, and T. Kaneko-ishino, The origin and evolution of genomic imprinting and viviparity in mammals, Philos. Trans. R. Soc. Lond. B Biol. Sci, p.368, 2013.

J. Peters, The role of genomic imprinting in biology and disease: An expanding view, Nat. Rev. Genet, vol.15, pp.517-530, 2014.

R. N. Plasschaert and M. S. Bartolomei, Genomic imprinting in development, growth, behavior and stem cells, Development, vol.141, pp.1805-1813, 2014.

I. Sanli and R. Feil, Chromatin mechanisms in the developmental control of imprinted gene expression, Int. J. Biochem. Cell Biol, vol.67, pp.139-147, 2015.

A. P. Bird, Cpg-rich islands and the function of DNA methylation, Nature, vol.321, pp.209-213, 1986.

G. Kelsey and R. Feil, New insights into establishment and maintenance of DNA methylation imprints in mammals, Philos. Trans. R. Soc. Lond. B Biol. Sci, p.368, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02192883

S. Gigante, Q. Gouil, A. Lucattini, A. Keniry, T. Beck et al., Using long-read sequencing to detect imprinted DNA methylation, Nucl. Acids Res, vol.8, p.47, 2019.

A. Henckel, K. Chebli, S. K. Kota, P. Arnaud, and R. Feil, Transcription and histone methylation changes correlate with imprint acquisition in male germ cells, EMBO J, vol.31, pp.606-615, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01934523

H. Kobayashi, T. Sakurai, M. Imai, N. Takahashi, A. Fukuda et al., Contribution of intragenic DNA methylation in mouse gametic DNA methylomes to establish oocyte-specific heritable marks, PLoS Genet, vol.8, p.1002440, 2012.

S. A. Smallwood, S. Tomizawa, F. Krueger, N. Ruf, N. Carli et al., Dynamic cpg island methylation landscape in oocytes and preimplantation embryos, Nat. Genet, vol.43, pp.811-814, 2011.

S. K. Kota and R. Feil, Epigenetic transitions in germ cell development and meiosis, Dev. Cell, vol.19, pp.675-686, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02193612

M. Kaneda, M. Okano, K. Hata, T. Sado, N. Tsujimoto et al., Essential role for de novo DNA methyltransferase dnmt3a in paternal and maternal imprinting, Nature, vol.429, pp.900-903, 2004.

Y. Kato, M. Kaneda, K. Hata, K. Kumaki, M. Hisano et al., Role of the dnmt3 family in de novo methylation of imprinted and repetitive sequences during male germ cell development in the mouse, Hum. Mol. Genet, vol.16, pp.2272-2280, 2007.

D. Bourc'his, G. L. Xu, C. S. Lin, B. Bollman, and T. H. Bestor, Dnmt3l and the establishment of maternal genomic imprints, Science, vol.294, pp.2536-2539, 2001.

D. N. Ciccone, H. Su, S. Hevi, F. Gay, H. Lei et al., Kdm1b is a histone h3k4 demethylase required to establish maternal genomic imprints, Nature, vol.461, pp.415-418, 2009.

S. K. Ooi, C. Qiu, E. Bernstein, K. Li, D. Jia et al., Dnmt3l connects unmethylated lysine 4 of histone h3 to de novo methylation of DNA, Nature, vol.448, pp.714-717, 2007.

K. R. Stewart, L. Veselovska, J. Kim, J. Huang, H. Saadeh et al., Dynamic changes in histone modifications precede de novo DNA methylation in oocytes, Genes Dev, vol.29, pp.2449-2462, 2015.

A. Dhayalan, A. Rajavelu, P. Rathert, R. Tamas, R. Z. Jurkowska et al., The dnmt3a pwwp domain reads histone 3 lysine 36 trimethylation and guides DNA methylation, J. Biol. Chem, vol.285, pp.26114-26120, 2010.

K. R. Stewart, L. Veselovska, and G. Kelsey, Establishment and functions of DNA methylation in the germline, Epigenomics, vol.8, pp.1399-1413, 2016.

Z. D. Smith, M. M. Chan, T. S. Mikkelsen, H. C. Gu, A. Gnirke et al., A unique regulatory phase of DNA methylation in the early mammalian embryo, Nature, vol.484, pp.339-374, 2012.

R. Hirasawa, H. Chiba, M. Kaneda, S. Tajima, E. Li et al., Maternal and zygotic dnmt1 are necessary and sufficient for the maintenance of DNA methylation imprints during preimplantation development, Genes Dev, vol.22, pp.1607-1616, 2008.

R. Pathak and R. Feil, Environmental effects on chromatin repression at imprinted genes and endogenous retroviruses, Curr. Opin. Chem. Biol, vol.45, pp.139-147, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02187064

T. P. Chen, Y. Ueda, J. E. Dodge, Z. J. Wang, and E. Li, Establishment and maintenance of genomic methylation patterns in mouse embryonic stem cells by dnmt3a and dnmt3b, Mol. Cell Biol, vol.23, pp.5594-5605, 2003.

J. Sharif, M. Muto, S. Takebayashi, I. Suetake, A. Iwamatsu et al., The sra protein np95 mediates epigenetic inheritance by recruiting dnmt1 to methylated DNA, Nature, vol.450, pp.908-912, 2007.

K. J. Reese, S. Lin, R. I. Verona, R. M. Schultz, and M. S. Bartolomei, Maintenance of paternal methylation and repression of the imprinted h19 gene requires mbd3, PLoS Genet, 2007.

X. Li, M. Ito, F. Zhou, N. Youngson, X. Zuo et al., A maternal-zygotic effect gene, zfp57, maintains both maternal and paternal imprints, Dev. Cell, vol.15, pp.547-557, 2008.

D. J. Mackay, J. L. Callaway, S. M. Marks, H. E. White, C. L. Acerini et al., Hypomethylation of multiple imprinted loci in individuals with transient neonatal diabetes is associated with mutations in zfp57, Nat. Genet, vol.40, pp.949-951, 2008.

N. Takahashi, A. Coluccio, C. W. Thorball, E. Planet, H. Shi et al., Znf445 is a primary regulator of genomic imprinting, Genes Dev, vol.33, pp.49-54, 2019.

F. Bohne, D. Langer, U. Martine, C. S. Eider, R. Cencic et al., Kaiso mediates human icr1 methylation maintenance and h19 transcriptional fine regulation, Clin. Epigenet, vol.8, p.47, 2016.

S. M. Yang, B. J. Kim, L. Norwood-toro, and A. I. Skoultchi, H1 linker histone promotes epigenetic silencing by regulating both DNA methylation and histone h3 methylation, Proc. Natl. Acad. Sci, vol.110, pp.1708-1713, 2013.

M. Girardot, R. Hirasawa, S. Kacem, L. Fritsch, J. Pontis et al., Prmt5-mediated histone h4 arginine-3 symmetrical dimethylation marks chromatin at g + c-rich regions of the mouse genome, Nucl. Acids Res, vol.42, pp.235-248, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02181362

D. Leung, T. Du, U. Wagner, W. Xie, A. Y. Lee et al., Regulation of DNA methylation turnover at ltr retrotransposons and imprinted loci by the histone methyltransferase setdb1, Proc. Natl. Acad. Sci, vol.111, pp.6690-6695, 2014.

T. Nakamura, Y. Arai, H. Umehara, M. Masuhara, T. Kimura et al., Pgc7/stella protects against DNA demethylation in early embryogenesis, Nat. Cell Biol, vol.9, pp.64-71, 2007.

T. Nakamura, Y. J. Liu, H. Nakashima, H. Umehara, K. Inoue et al., Pgc7 binds histone h3k9me2 to protect against conversion of 5mc to 5hmc in early embryos, Nature, vol.486, pp.415-419, 2012.

D. M. Messerschmidt, W. De-vries, M. Ito, D. Solter, A. Ferguson-smith et al., Trim28 is required for epigenetic stability during mouse oocyte to embryo transition, Science, vol.335, pp.1499-1502, 2012.

H. P. Voon, J. R. Hughes, C. Rode, I. A. De-la-rosa-velazquez, T. Jenuwein et al., Atrx plays a key role in maintaining silencing at interstitial heterochromatic loci and imprinted genes, Cell Rep, vol.11, pp.405-418, 2015.

C. C. Lee, S. H. Peng, L. Shen, C. F. Lee, T. H. Du et al., The role of n-alpha-acetyltransferase 10 protein in DNA methylation and genomic imprinting, Mol. Cell, p.89, 2017.

E. Meyer, D. Lim, S. Pasha, L. J. Tee, F. Rahman et al., Germline mutation in nlrp2 (nalp2) in a familial imprinting disorder (beckwith-wiedemann syndrome), PLoS Genet, vol.5, p.1000423, 2009.

L. E. Docherty, F. I. Rezwan, R. L. Poole, C. L. Turner, E. Kivuva et al., Mutations in nlrp5 are associated with reproductive wastage and multilocus imprinting disorders in humans, Nat. Commun, vol.6, p.8086, 2015.

P. Ma, S. Lin, M. S. Bartolomei, and R. M. Schultz, Metastasis tumor antigen 2 (mta2) is involved in proper imprinted expression of h19 and peg3 during mouse preimplantation development, Biol. Reprod, vol.83, pp.1027-1035, 2010.

M. Y. Wu, T. F. Tsai, and A. L. Beaudet, Deficiency of rbbp1/arid4a and rbbp1l1/arid4b alters epigenetic modifications and suppresses an imprinting defect in the pws/as domain, Genes Dev, vol.20, pp.2859-2870, 2006.

A. V. Gendrel, Y. A. Tang, M. Suzuki, J. Godwin, T. B. Nesterova et al., Epigenetic functions of smchd1 repress gene clusters on the inactive x chromosome and on autosomes, Mol. Cell Biol, vol.33, pp.3150-3165, 2013.

M. Sanchez-delgado, A. Riccio, T. Eggermann, E. R. Maher, P. Lapunzina et al., Causes and consequences of multi-locus imprinting disturbances in humans, Trends Genet, vol.32, pp.444-455, 2016.

K. D. Rasmussen and K. Helin, Role of tet enzymes in DNA methylation, development, and cancer, Genes Dev, vol.30, pp.733-750, 2016.

F. Guo, X. L. Li, D. Liang, T. Li, P. Zhu et al., Active and passive demethylation of male and female pronuclear DNA in the mammalian zygote, Cell Stem Cell, vol.15, pp.447-458, 2014.

H. Okae, H. Chiba, H. Hiura, H. Hamada, A. Sato et al., Genome-wide analysis of DNA methylation dynamics during early human development, PLoS Genet, vol.10, p.12, 2014.

J. M. Sanmiguel and M. S. Bartolomei, DNA methylation dynamics of genomic imprinting in mouse development, Biol. Reprod, vol.99, pp.252-262, 2018.

C. Proudhon, R. Duffie, S. Ajjan, M. Cowley, J. Iranzo et al., Protection against de novo methylation is instrumental in maintaining parent-oforigin methylation inherited from the gametes, Mol. Cell, vol.47, pp.909-920, 2012.

R. Duffie, S. Ajjan, M. V. Greenberg, N. Zamudio, M. E. Del-arenal et al., Bourc'his, D. The gpr1/zdbf2 locus provides new paradigms for transient and dynamic genomic imprinting in mammals, Genes Dev, vol.28, pp.463-478, 2014.

M. V. Greenberg, J. Glaser, M. Borsos, F. El-marjou, M. Walter et al., Bourc'his, D. Transient transcription in the early embryo sets an epigenetic state that programs postnatal growth, Nat. Genet, vol.49, pp.110-118, 2017.

M. Sanchez-delgado, F. Court, E. Vidal, J. Medrano, A. Monteagudo-sanchez et al., Human oocyte-derived methylation differences persist in the placenta revealing widespread transient imprinting, PLoS Genet, vol.12, p.1006427, 2016.

R. Strogantsev, F. Krueger, K. Yamazawa, H. Shi, P. Gould et al., Allele-specific binding of zfp57 in the epigenetic regulation of imprinted and non-imprinted monoallelic expression, Genome Biol, p.112, 2015.

C. W. Hanna, M. S. Penaherrera, H. Saadeh, S. Andrews, D. E. Mcfadden et al., Pervasive polymorphic imprinted methylation in the human placenta, Genome Res, vol.26, pp.756-767, 2016.

S. Barbaux, G. Gascoin-lachambre, C. Buffat, P. Monnier, F. Mondon et al., A genome-wide approach reveals novel imprinted genes expressed in the human placenta, Epigenetics, vol.7, pp.1079-1090, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01000763

H. Hamada, H. Okae, H. Toh, H. Chiba, H. Hiura et al., Allele-specific methylome and transcriptome analysis reveals widespread imprinting in the human placenta, Am. J. Hum. Genet, vol.99, pp.1045-1058, 2016.

F. Court, C. Tayama, V. Romanelli, A. Martin-trujillo, I. Iglesias-platas et al., Genome-wide parent-of-origin DNA methylation analysis reveals the intricacies of human imprinting and suggests a germline methylation-independent mechanism of establishment, Genome Res, vol.24, pp.554-569, 2014.

A. Wagschal and R. Feil, Genomic imprinting in the placenta, Cytogenet. Genome Res, vol.113, pp.90-98, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02262474

S. T. Da-rocha, C. A. Edwards, M. Ito, T. Ogata, and A. C. Ferguson-smith, Genomic imprinting at the mammalian dlk1-dio3 domain, Trends Genet, vol.24, pp.306-316, 2008.

I. Sanli, S. Lalevee, M. Cammisa, A. Perrin, F. Rage et al., Meg3 noncoding rna expression controls imprinting by preventing transcriptional upregulation in cis, Cell Rep, vol.23, pp.337-348, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02343524

S. R. Ferron, M. Charalambous, E. Radford, K. Mcewen, H. Wildner et al., Postnatal loss of dlk1 imprinting in stem cells and niche astrocytes regulates neurogenesis, Nature, vol.475, pp.381-385, 2011.

B. Hutter, V. Helms, and M. Paulsen, Tandem repeats in the cpg islands of imprinted genes, Genomics, vol.88, pp.323-332, 2006.

T. Saito, S. Hara, T. Kato, M. Tamano, A. Muramatsu et al., A tandem repeat array in ig-dmr is essential for imprinting of paternal allele at the dlk1-dio3 domain during embryonic development, Hum. Mol. Genet, vol.27, pp.3283-3292, 2018.

A. Lewis, K. Mitsuyaj, M. Constancia, and W. Reik, Tandem repeat hypothesis in imprinting: Deletion of a conserved direct repeat element upstream of h19 has no effect on imprinting in the igf2-h19 region, Mol. Cell Biol, vol.24, pp.5650-5656, 2004.

M. L. Soares, C. A. Edwards, F. L. Dearden, S. R. Ferron, S. Curran et al., Targeted deletion of a 170-kb cluster of line-1 repeats and implications for regional control, Genome Res, vol.28, pp.345-356, 2018.

C. J. Bian and X. C. Yu, Pgc7 suppresses tet3 for protecting DNA methylation, Nucl. Acids Res, vol.42, pp.2893-2905, 2014.

W. K. Yeung, J. Brind'amour, Y. Hatano, K. Yamagata, R. Feil et al., Histone h3k9 methyltransferase g9a in oocytes is essential for preimplantation development but dispensable for cg methylation protection, Cell Rep, p.282, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02414218

A. Wagschal, H. G. Sutherland, K. Woodfine, A. Henckel, K. Chebli et al., G9a histone methyltransferase contributes to imprinting in the mouse placenta, Mol. Cell Biol, vol.28, pp.1104-1113, 2008.

G. Ecco, M. Imbeault, and D. Trono, Krab zinc finger proteins, vol.144, pp.2719-2729, 2017.

A. M. Juan and M. S. Bartolomei, Evolving imprinting control regions: Krab zinc fingers hold the key, Genes Dev, vol.33, pp.1-3, 2019.

V. Riso, M. Cammisa, H. Kukreja, Z. Anvar, G. Verde et al., Zfp57 maintains the parent-of-origin-specific expression of the imprinted genes and differentially affects non-imprinted targets in mouse embryonic stem cells, Nucl. Acids Res, vol.44, pp.8165-8178, 2016.

Z. Anvar, M. Cammisa, V. Riso, I. Baglivo, H. Kukreja et al., Zfp57 recognizes multiple and closely spaced sequence motif variants to maintain repressive epigenetic marks in mouse embryonic stem cells, Nucl. Acids Res, vol.44, pp.1118-1132, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02187321

M. Pannetier, E. Julien, G. Schotta, M. Tardat, C. Sardet et al., Pr-set7 and suv4-20h regulate h4 lysine-20 methylation at imprinting control regions in the mouse, EMBO Rep, vol.9, pp.998-1005, 2008.

J. Brustel, N. Kirstein, F. Izard, C. Grimaud, P. Prorok et al., Histone h4k20 tri-methylation at late-firing origins ensures timely heterochromatin replication, vol.36, pp.2726-2741, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02154100

K. D. Kernohan, D. Vernimmen, G. B. Gloor, and N. G. Berube, Analysis of neonatal brain lacking atrx or mecp2 reveals changes in nucleosome density, ctcf binding and chromatin looping, Nucl. Acids Res, vol.42, pp.8356-8368, 2014.

C. F. Lee, D. S. Ou, S. B. Lee, L. H. Chang, R. K. Lin et al., Hnaa10p contributes to tumorigenesis by facilitating dnmt1-mediated tumor suppressor gene silencing, J. Clin. Invest, vol.120, pp.2920-2930, 2010.

M. J. Dorfel and G. J. Lyon, The biological functions of naa10-from amino-terminal acetylation to human disease, Gene, vol.567, pp.103-131, 2015.

L. M. Myklebust, P. Van-damme, S. I. Stove, M. J. Dorfel, A. Abboud et al., Biochemical and cellular analysis of ogden syndrome reveals downstream nt-acetylation defects, Hum. Mol. Genet, vol.24, pp.1956-1976, 2015.

P. B. Singh, V. V. Shloma, and S. N. Belyakin, Maternal regulation of chromosomal imprinting in animals, Chromosoma, vol.128, pp.69-80, 2019.

D. P. Barlow, Methylation and imprinting: From host defense to gene regulation? Science, vol.260, pp.309-310, 1993.

M. Cowley and R. J. Oakey, Retrotransposition and genomic imprinting, Brief Funct. Genomics, vol.9, pp.340-346, 2010.

H. Shi, R. Strogantsev, N. Takahashi, A. Kazachenka, M. C. Lorincz et al., Zfp57 regulation of transposable elements and gene expression within and beyond imprinted domains, Epigenet. Chromatin, vol.12, p.1, 2019.

S. Maupetit-mehouas, B. Montibus, D. Nury, C. Tayama, M. Wassef et al., Imprinting control regions (icrs) are marked by mono-allelic bivalent chromatin when transcriptionally inactive, Nucl. Acids Res, vol.44, pp.621-635, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02187334

L. A. Sanz, S. Chamberlain, J. C. Sabourin, A. Henckel, T. Magnuson et al., A mono-allelic bivalent chromatin domain controls tissue-specific imprinting at grb10, EMBO J, vol.27, pp.2523-2532, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00349502

C. Fournier, Y. Goto, E. Ballestar, K. Delaval, A. M. Hever et al., Allele-specific histone lysine methylation marks regulatory regions at imprinted mouse genes, EMBO J, vol.21, pp.6560-6570, 2002.
URL : https://hal.archives-ouvertes.fr/hal-02197494

B. E. Bernstein, T. S. Mikkelsen, X. Xie, M. Kamal, D. J. Huebert et al., A bivalent chromatin structure marks key developmental genes in embryonic stem cells, Cell, vol.125, pp.315-326, 2006.

J. D. Kim, H. Kim, M. B. Ekram, S. Yu, C. Faulk et al., Rex1/zfp42 as an epigenetic regulator for genomic imprinting, Hum. Mol. Genet, vol.20, pp.1353-1362, 2011.

A. Habib, W. Azzi, S. Brioude, F. Steunou, V. Thibaud et al., Extensive investigation of the igf2/h19 imprinting control region reveals novel oct4/sox2 binding site defects associated with specific methylation patterns in beckwithwiedemann syndrome, Hum. Mol. Genet, vol.23, pp.5763-5773, 2014.

N. Hori, M. Yamane, K. Kouno, and K. Sato, Induction of DNA demethylation depending on two sets of sox2 and adjacent oct3/4 binding sites (sox-oct motifs) within the mouse h19/insulin-like growth factor 2 (igf2) imprinted control region, J. Biol. Chem, vol.287, pp.44006-44016, 2012.

M. M. Franco, A. R. Prickett, and R. J. Oakey, The role of ccctc-binding factor (ctcf) in genomic imprinting, development, and reproduction, Biol. Reprod, p.125, 2014.

N. Engel, J. L. Thorvaldsen, and M. S. Bartolomei, Ctcf binding sites promote transcription initiation and prevent DNA methylation on the maternal allele at the imprinted h19/igf2 locus, Hum. Mol. Genet, vol.15, pp.2945-2954, 2006.

C. J. Schoenherr, J. M. Levorse, and S. M. Tilghman, Ctcf maintains differential methylation at the igf2/h19 locus, Nat. Genet, vol.33, pp.66-69, 2003.

Z. Luo, C. Lin, A. R. Woodfin, E. T. Bartom, X. Gao et al., Regulation of the imprinted dlk1-dio3 locus by allele-specific enhancer activity, Genes Dev, vol.30, pp.92-101, 2016.

Y. Wang, Y. Shen, Q. Dai, Q. Yang, Y. Zhang et al., A permissive chromatin state regulated by zfp281-aff3 in controlling the imprinted meg3 polycistron, Nucl. Acids Res, vol.45, pp.1177-1185, 2017.

T. Ishiuchi, H. Ohishi, T. Sato, S. Kamimura, M. Yorino et al., Zfp281 shapes the transcriptome of trophoblast stem cells and is essential for placental development, Cell Rep, p.1742, 2019.

N. Okashita, Y. Kumaki, K. Ebi, M. Nishi, Y. Okamoto et al., Prdm14 promotes active DNA demethylation through the ten-eleven translocation (tet)-mediated base excision repair pathway in embryonic stem cells, Development, vol.141, pp.269-280, 2014.

N. Okashita, N. Sakashita, K. Ito, A. Mitsuya, Y. Suwa et al., Prdm14 maintains pluripotency of embryonic stem cells through tet-mediated active DNA demethylation, Biochem. Biophys. Res. Co, vol.466, pp.138-145, 2015.

M. Yamaji, Y. Seki, K. Kurimoto, Y. Yabuta, M. Yuasa et al., Critical function of prdm14 for the establishment of the germ cell lineage in mice, Nat. Genet, vol.40, pp.1016-1022, 2008.

H. Matsuzaki, E. Okamura, M. Shimotsuma, A. Fukamizu, and K. Tanimoto, A randomly integrated transgenic h19 imprinting control region acquires methylation imprinting independently of its establishment in germ cells, Mol. Cell Biol, vol.29, pp.4595-4603, 2009.

H. Matsuzaki, E. Okamura, D. Kuramochi, A. Ushiki, K. Hirakawa et al., Synthetic DNA fragments bearing icr cis elements become differentially methylated and recapitulate genomic imprinting in transgenic mice, Epigenet. Chromatin, p.36, 2018.

N. Puget, R. Hirasawa, N. S. Hu, N. Laviolette-malirat, R. Feil et al., Insertion of an imprinted insulator into the igh locus reveals developmentally regulated, transcription-dependent control of v(d)j recombination, Mol. Cell Biol, vol.35, pp.529-543, 2015.

P. Arnaud, K. Hata, M. Kaneda, E. Li, H. Sasaki et al., Stochastic imprinting in the progeny of dnmt3l-/-females, Hum. Mol. Genet, vol.15, pp.589-598, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01934553

A. Henckel, K. Nakabayashi, L. A. Sanz, R. Feil, K. Hata et al., Histone methylation is mechanistically linked to DNA methylation at imprinting control regions in mammals, Hum. Mol. Genet, vol.18, pp.3375-3383, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02194100

Y. Kaufman, M. Heled, J. Perk, A. Razin, and R. Shemer, Protein-binding elements establish in the oocyte the primary imprint of the prader-willi/angelman syndromes domain, Proc. Natl. Acad. Sci, vol.106, pp.10242-10247, 2009.

A. Inoue, L. Jiang, F. Lu, T. Suzuki, and Y. Zhang, Maternal h3k27me3 controls DNA methylationindependent imprinting, Nature, vol.547, pp.419-424, 2017.

H. Zheng, B. Huang, B. J. Zhang, Y. L. Xiang, Z. H. Du et al., Resetting epigenetic memory by reprogramming of histone modifications in mammals, Mol. Cell, vol.63, pp.1066-1079, 2016.

A. Inoue, L. Jiang, F. Lu, and Y. Zhang, Genomic imprinting of xist by maternal h3k27me3, Genes Dev, vol.31, pp.1927-1932, 2017.

C. W. Hanna, R. Perez-palacios, L. Gahurova, M. Schubert, F. Krueger et al., Endogenous retroviral insertions drive non-canonical imprinting in extra-embryonic tissues, Genome Biol, p.225, 1920.

W. Zhang, Z. Chen, Q. Yin, D. Zhang, C. Racowsky et al., Maternal-biased h3k27me3 correlates with paternal-specific gene expression in the human morula, Genes Dev, vol.33, pp.382-387, 2019.

C. W. Hanna, H. Demond, and G. Kelsey, Epigenetic regulation in development: Is the mouse a good model for the human?, Hum. Reprod, vol.24, pp.556-576, 2018.

M. Bak, S. E. Boonen, C. Dahl, J. M. Hahnemann, D. J. Mackay et al., Genome-wide DNA methylation analysis of transient neonatal diabetes type 1 patients with mutations in zfp57, BMC Med. Genet, vol.17, p.29, 2016.

A. Varrault, C. Gueydan, A. Delalbre, A. Bellmann, S. Houssami et al., Zac1 regulates an imprinted gene network critically involved in the control of embryonic growth, Dev. Cell, vol.11, pp.711-722, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00158399

M. M. Patten, M. Cowley, R. J. Oakey, and R. Feil, Regulatory links between imprinted genes: Evolutionary predictions and consequences, Proc. Biol. Sci, vol.283, p.1824, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02187337

A. Gabory, M. A. Ripoche, A. Le-digarcher, F. Watrin, A. Ziyyat et al., H19 acts as a trans regulator of the imprinted gene network controlling growth in mice, vol.136, pp.3413-3421, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02194081

Y. Stelzer, I. Sagi, O. Yanuka, R. Eiges, and N. Benvenisty, The noncoding rna ipw regulates the imprinted dlk1-dio3 locus in an induced pluripotent stem cell model of prader-willi syndrome, Nat. Genet, vol.46, pp.551-557, 2014.

A. Varrault, C. Dantec, A. Le-digarcher, L. Chotard, B. Bilanges et al., Identification of plagl1/zac1 binding sites and target genes establishes its role in the regulation of extracellular matrix genes and the imprinted gene network, Nucl. Acids Res, vol.45, pp.10466-10480, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01788661

M. Begemann, F. I. Rezwan, J. Beygo, L. E. Docherty, J. Kolarova et al., Maternal variants in nlrp and other maternal effect proteins are associated with multilocus imprinting disturbance in offspring, J. Med. Genet, vol.55, p.497, 2018.

R. Feil and M. F. Fraga, Epigenetics and the environment: Emerging patterns and implications, Nat. Rev. Genet, vol.13, pp.97-109, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02193314

E. A. Rhon-calderon, L. A. Vrooman, L. Riesche, and M. S. Bartolomei, The effects of assisted reproductive technologies on genomic imprinting in the placenta, Placenta, vol.84, pp.37-43, 2019.

S. Morita, H. Noguchi, T. Horii, K. Nakabayashi, M. Kimura et al., Targeted DNA demethylation in vivo using dcas9-peptide repeat and scfv-tet1 catalytic domain fusions, Nat. Biotechnol, vol.34, pp.1060-1065, 2016.