P. Mali, L. Yang, K. M. Esvelt, J. Aach, M. Guell et al., RNA-Guided Human Genome Engineering via Cas9, Science, vol.339, pp.823-826, 2013.

L. Cong, F. A. Ran, D. Cox, S. Lin, R. Barretto et al., Multiplex Genome Engineering Using CRISPR/Cas Systems, Science, vol.339, pp.819-823, 2013.

M. Jinek, A. East, A. Cheng, S. Lin, E. Ma et al., RNA-programmed genome editing in human cells. eLife. eLife Sciences Publications Limited, 2013.

R. Chari, P. Mali, M. Moosburner, and G. M. Church, Unraveling CRISPR-Cas9 genome engineering parameters via a library-on-library approach, Nat Meth, vol.12, pp.823-826, 2015.

M. A. Moreno-mateos, C. E. Vejnar, J. Beaudoin, J. P. Fernandez, E. K. Mis et al., CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo, Nat Meth, vol.12, pp.982-988, 2015.

X. Liu, A. Homma, J. Sayadi, S. Yang, J. Ohashi et al., Sequence features associated with the cleavage efficiency of CRISPR/Cas9 system. Sci Rep, vol.6, 2016.

M. A. Horlbeck, L. B. Witkowsky, B. Guglielmi, J. M. Replogle, L. A. Gilbert et al., Nucleosomes impede Cas9 access to DNA in vivo and in vitro. eLife. eLife Sciences Publications Limited, vol.5, 2016.

J. M. Hinz, M. F. Laughery, and J. J. Wyrick, Nucleosomes Inhibit Cas9 Endonuclease Activity in Vitro, Biochemistry, vol.54, pp.7063-7066, 2015.

S. C. Knight, L. Xie, W. Deng, B. Guglielmi, L. B. Witkowsky et al., Dynamics of CRISPR-Cas9 genome interrogation in living cells, Science. American Association for the Advancement of Science, vol.350, pp.823-826, 2015.

X. Wu, D. A. Scott, A. J. Kriz, A. C. Chiu, P. D. Hsu et al., Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells, Nat Biotechnol, vol.32, pp.670-676, 2014.

R. S. Isaac, F. Jiang, J. A. Doudna, W. A. Lim, G. J. Narlikar et al., Nucleosome breathing and remodeling constrain CRISPR-Cas9 function. eLife. eLife Sciences Publications Limited, vol.5, p.13450, 2016.

X. Chen, M. Rinsma, J. M. Janssen, J. Liu, I. Maggio et al., Probing the impact of chromatin conformation on genome editing tools, Nucleic Acids Research, 2016.

R. M. Daer, J. P. Cutts, D. A. Brafman, and K. A. Haynes, The Impact of Chromatin Dynamics on Cas9-Mediated Genome Editing in Human Cells, ACS Synth Biol, vol.6, pp.428-438, 2017.

T. Fujita, M. Yuno, and H. Fujii, Allele-specific locus binding and genome editing by CRISPR at the p16INK4a locus. Sci Rep, Nature Publishing Group, vol.6, p.30485, 2016.

R. M. Yarrington, S. Verma, S. Schwartz, J. K. Trautman, and D. Carroll, Nucleosomes inhibit target cleavage by CRISPR-Cas9 in vivo, National Academy of Sciences, vol.115, pp.9351-9358, 2018.

A. A. Barkal, S. Srinivasan, T. Hashimoto, D. K. Gifford, and R. I. Sherwood, Cas9 Functionally Opens Chromatin, PLoS ONE. Public Library of Science, vol.11, p.152683, 2016.

L. R. Polstein, P. Perez-pinera, D. D. Kocak, C. M. Vockley, P. Bledsoe et al., Genome-wide specificity of DNA binding, gene regulation, and chromatin remodeling by TALE-and CRISPR/Cas9-based transcriptional activators, Genome Research. Cold Spring Harbor Lab, vol.25, pp.1158-1169, 2015.

T. Clouaire and G. Legube, DNA double strand break repair pathway choice: a chromatin based decision?, Nucleus, vol.6, pp.107-113, 2015.

A. A. Goodarzi, P. Jeggo, and . Lö, The influence of heterochromatin on DNA double strand break repair: Getting the strong, silent type to relax, DNA Repair, vol.9, pp.1273-1282, 2010.

F. Aymard, B. Bugler, C. K. Schmidt, E. Guillou, P. Caron et al., Transcriptionally active chromatin recruits homologous recombination at DNA double-strand breaks, Nat Struct Mol Biol, vol.21, pp.366-374, 2014.

B. Burman, Z. Z. Zhang, G. Pegoraro, J. D. Lieb, and T. Misteli, Histone modifications predispose genome regions to breakage and translocation, Genes & Development. Cold Spring Harbor Lab, vol.29, pp.1393-1402, 2015.

C. Lemaître, A. Grabarz, K. Tsouroula, L. Andronov, A. Furst et al., Nuclear position dictates DNA repair pathway choice, Genes & Development. Cold Spring Harbor Lab, vol.28, pp.2450-2463, 2014.

A. Bothmer, T. Phadke, L. A. Barrera, C. M. Margulies, C. S. Lee et al., Characterization of the interplay between DNA repair and CRISPR/Cas9-induced DNA lesions at an endogenous locus, Nat Comms, vol.8, p.13905, 2017.

M. Van-overbeek, D. Capurso, M. M. Carter, M. S. Thompson, E. Frias et al., DNA Repair Profiling Reveals Nonrandom Outcomes at Cas9-Mediated Breaks, Molecular Cell, vol.63, pp.633-646, 2016.

G. Kelsey and R. Feil, New insights into establishment and maintenance of DNA methylation imprints in mammals, Philos Trans R Soc Lond, B, Biol Sci. The Royal Society, vol.368, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02192883

K. Regha, M. A. Sloane, R. Huang, F. M. Pauler, K. E. Warczok et al., Active and repressive chromatin are interspersed without spreading in an imprinted gene cluster in the mammalian genome, Molecular Cell, vol.27, pp.353-366, 2007.

A. T. Hark, C. J. Schoenherr, D. J. Katz, R. S. Ingram, J. M. Levorse et al., CTCF mediates methylationsensitive enhancer-blocking activity at the H19/Igf2 locus, Nature, vol.405, pp.486-489, 2000.

A. Murrell, S. Heeson, and W. Reik, Interaction between differentially methylated regions partitions the imprinted genes Igf2 and H19 into parent-specific chromatin loops, Nat Genet, vol.36, pp.889-893, 2004.

A. J. Wood, R. Schulz, K. Woodfine, K. Koltowska, C. V. Beechey et al., Regulation of alternative polyadenylation by genomic imprinting, Genes & Development, vol.22, pp.1141-1146, 2008.

F. Sleutels, R. Zwart, and D. P. Barlow, The non-coding Air RNA is required for silencing autosomal imprinted genes, Nature, vol.415, pp.810-813, 2002.

F. Ac, Genomic imprinting: the emergence of an epigenetic paradigm, Nat Rev Genet, vol.12, pp.565-575, 2011.

T. Takada, T. Ebata, H. Noguchi, T. M. Keane, D. J. Adams et al., The ancestor of extant Japanese fancy mice contributed to the mosaic genomes of classical inbred strains, Genome Research. Cold Spring Harbor Lab, vol.23, pp.1329-1338, 2013.

J. Choi, A. J. Huebner, K. Clement, R. M. Walsh, A. Savol et al., Prolonged Mek1/2 suppression impairs the developmental potential of embryonic stem cells, Nature, vol.548, pp.219-223, 2017.

M. Yagi, S. Kishigami, A. Tanaka, K. Semi, E. Mizutani et al., Derivation of ground-state female ES cells maintaining gamete-derived DNA methylation. Nature, vol.548, pp.224-227, 2017.

F. A. Ran, P. D. Hsu, J. Wright, V. Agarwala, D. A. Scott et al., Genome engineering using the CRISPR-Cas9 system, Nat Protoc, vol.8, pp.2281-2308, 2013.

B. Sun, M. Ito, S. Mendjan, Y. Ito, I. Brons et al., Status of genomic imprinting in epigenetically distinct pluripotent stem cells, Stem Cells. Wiley-Blackwell, vol.30, pp.161-168, 2012.

M. Walter, A. Teissandier, R. Pérez-palacios, and D. Bourc'his, An epigenetic switch ensures transposon repression upon dynamic loss of DNA methylation in embryonic stem cells. eLife. eLife Sciences Publications Limited, vol.5, 2016.

D. L. Jones, P. Leroy, C. Unoson, D. Fange, V. Lawson et al., Kinetics of dCas9 target search in Escherichia coli, Science. American Association for the Advancement of Science, vol.357, pp.1420-1424, 2017.

C. D. Richardson, G. J. Ray, M. A. Dewitt, G. L. Curie, and J. E. Corn, Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA, Nat Biotechnol, vol.34, pp.339-344, 2016.

A. Janssen, G. A. Breuer, E. K. Brinkman, A. I. Van-der-meulen, S. V. Borden et al., A single double-strand break system reveals repair dynamics and mechanisms in heterochromatin and euchromatin, Genes & Development. Cold Spring Harbor Lab, vol.30, pp.1645-1657, 2016.

B. R. Cairns, The logic of chromatin architecture and remodelling at promoters, Nature, vol.461, pp.193-198, 2009.

D. Branzei and M. Foiani, Regulation of DNA repair throughout the cell cycle, Nat Rev Mol Cell Biol. Nature Publishing Group, vol.9, pp.297-308, 2008.

P. Cameron, C. K. Fuller, P. D. Donohoue, B. N. Jones, M. S. Thompson et al., Mapping the genomic landscape of CRISPR-Cas9 cleavage, Nat Meth, vol.14, pp.600-606, 2017.

J. Tang, N. W. Cho, G. Cui, E. M. Manion, N. M. Shanbhag et al., Acetylation limits 53BP1 association with damaged chromatin to promote homologous recombination, Nat Struct Mol Biol. Nature Publishing Group, vol.20, pp.317-325, 2013.

E. K. Brinkman, T. Chen, M. De-haas, H. A. Holland, W. Akhtar et al., Kinetics and Fidelity of the Repair of Cas9-Induced Double-Strand DNA Breaks, Molecular Cell, vol.70, pp.801-813, 2018.

R. Bhargava, M. Sandhu, S. Muk, G. Lee, N. Vaidehi et al., C-NHEJ without indels is robust and requires synergistic function of distinct XLF domains. Nat Comms, Nature Publishing Group, vol.9, p.29950655, 2018.

J. C. Miller, S. Tan, G. Qiao, K. A. Barlow, J. Wang et al., A TALE nuclease architecture for efficient genome editing, Nat Biotechnol, vol.29, pp.143-148, 2011.

A. E. Trevino and F. Zhang, Genome editing using Cas9 nickases, Meth Enzymol, vol.546, pp.161-174, 2014.

A. C. Komor, Y. B. Kim, M. S. Packer, J. A. Zuris, and D. R. Liu, Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage, Nature, vol.533, pp.420-424, 2016.

K. Nishida, T. Arazoe, N. Yachie, S. Banno, M. Kakimoto et al., Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems, Science. American Association for the Advancement of Science, vol.353, p.8729, 2016.

N. M. Gaudelli, A. C. Komor, H. A. Rees, M. S. Packer, A. H. Badran et al., Programmable base editing of A?T to G?C in genomic DNA without DNA cleavage. Nature, vol.551, pp.464-471, 2017.

K. Tsouroula, A. Furst, M. Rogier, V. Heyer, A. Maglott-roth et al., Temporal and Spatial Uncoupling of DNA Double Strand Break Repair Pathways within Mammalian Heterochromatin. Molecular Cell, vol.63, pp.293-305, 2016.

I. Sanli, S. Lalevee, M. Cammisa, A. Perrin, F. Rage et al., Meg3 Non-coding RNA Expression Controls Imprinting by Preventing Transcriptional Upregulation in cis, Cell Reports, vol.23, pp.337-348, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02343524

R. Schulz, K. Woodfine, T. R. Menheniott, D. Bourc'his, T. Bestor et al., WAMIDEX: a web atlas of murine genomic imprinting and differential expression, Epigenetics, vol.3, pp.89-96, 2008.

Y. Nakagawa, T. Sakuma, T. Sakamoto, M. Ohmuraya, N. Nakagata et al., Production of knockout mice by DNA microinjection of various CRISPR/Cas9 vectors into freeze-thawed fertilized oocytes, BMC Biotechnol. BioMed Central, vol.15, p.25997509, 2015.

M. Mcarthur, S. Gerum, and G. Stamatoyannopoulos, Quantification of DNaseI-sensitivity by real-time PCR: quantitative analysis of DNaseI-hypersensitivity of the mouse beta-globin LCR, J Mol Biol, vol.313, pp.27-34, 2001.

H. Xu, X. Luo, J. Qian, X. Pang, J. Song et al., FastUniq: a fast de novo duplicates removal tool for paired short reads, PLoS ONE. Public Library of Science, vol.7, 2012.

H. Li and R. Durbin, Fast and accurate long-read alignment with Burrows-Wheeler transform, Bioinformatics, vol.26, pp.589-595, 2010.

F. Krueger and S. R. Andrews, Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications, Bioinformatics, vol.27, pp.1571-1572, 2011.

B. Langmead and S. L. Salzberg, Fast gapped-read alignment with Bowtie 2. Nat Meth, Nature Publishing Group, vol.9, pp.357-359, 2012.