T. Avidor-reiss, A. Ha, and M. L. Basiri, Transition zone migration: a mechanism for cytoplasmic ciliogenesis and postaxonemal centriole elongation, Cold Spring Harbor Perspectives in Biology, vol.9, p.28142, 2017.

J. L. Badano, N. Mitsuma, P. L. Beales, and N. Katsanis, The ciliopathies: an emerging class of human genetic disorders, Annual Review of Genomics and Human Genetics, vol.7, pp.125-148, 2006.

J. D. Baker, S. Adhikarakunnathu, and M. J. Kernan, Mechanosensory-defective, male-sterile unc mutants identify anovel basal body protein required for ciliogenesis in Drosophila, Development, vol.131, pp.3411-3422, 2004.

K. Baker and P. L. Beales, Making sense of cilia in disease: the human ciliopathies, American Journal of Medical Genetics Part C: Seminars in Medical Genetics, vol.151, pp.281-295, 2009.

M. L. Basiri, A. Ha, A. Chadha, N. M. Clark, A. Polyanovsky et al., A migrating ciliary gate compartmentalizes the site of axoneme assembly in Drosophila spermatids, Current Biology, vol.24, pp.2622-2631, 2014.

R. Basto, J. Lau, T. Vinogradova, A. Gardiol, C. G. Woods et al., Flies without centrioles, Cell, vol.125, pp.1375-1386, 2006.

S. Blachon, X. Cai, K. A. Roberts, K. Yang, A. Polyanovsky et al., A proximal centriole-like structure is present in Drosophila spermatids and can serve as a model to study centriole duplication, Genetics, vol.182, pp.133-144, 2009.

D. K. Breslow, S. Hoogendoorn, A. R. Kopp, D. W. Morgens, B. K. Vu et al., A comprehensive portrait of cilia and ciliopathies from a CRISPR-based screen for hedgehog signaling, 2017.

D. K. Breslow, S. Hoogendoorn, A. R. Kopp, D. W. Morgens, B. K. Vu et al., A CRISPR-based screen for hedgehog signaling provides insights into ciliary function and ciliopathies, Nature Genetics, vol.50, pp.460-471, 2018.

J. M. Brown and G. B. Witman, Cilia and diseases, BioScience, vol.64, pp.1126-1137, 2014.

M. C. Burke, F. Q. Li, B. Cyge, T. Arashiro, H. M. Brechbuhl et al., Chibby promotes ciliary vesicle formation and basal body docking during airway cell differentiation, The Journal of Cell Biology, vol.207, pp.123-137, 2014.

J. Chang, S. G. Seo, K. H. Lee, K. Nagashima, J. K. Bang et al., Essential role of Cenexin1, but not Odf2, in ciliogenesis, Cell Cycle, vol.12, pp.655-662, 2013.

B. Chih, P. Liu, Y. Chinn, C. Chalouni, L. G. Komuves et al., A ciliopathy complex at the transition zone protects the cilia as a privileged membrane domain, Nature Cell Biology, vol.14, pp.61-72, 2012.

B. Craige, C. C. Tsao, D. R. Diener, Y. Hou, K. F. Lechtreck et al., CEP290 tethers flagellar transition zone microtubules to the membrane and regulates flagellar protein content, The Journal of Cell Biology, vol.190, pp.927-940, 2010.

P. G. Czarnecki and J. V. Shah, The ciliary transition zone: from morphology and molecules to medicine, Trends in Cell Biology, vol.22, pp.201-210, 2012.

N. Delgehyr, H. Rangone, J. Fu, G. Mao, B. Tom et al., Klp10A, a microtubule-depolymerizing kinesin-13, cooperates with CP110 to control Drosophila centriole length, Current Biology, vol.22, pp.502-509, 2012.

C. Enjolras, J. Thomas, B. Chhin, E. Cortier, J. L. Duteyrat et al., Drosophila chibby is required for basal body formation and ciliogenesis but not for wg signaling, The Journal of Cell Biology, vol.197, pp.313-325, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00709925

L. Fabian and J. A. Brill, Drosophila spermiogenesis: big things come from little packages, Spermatogenesis, vol.2, pp.197-212, 2012.

A. Franz, H. Roque, S. Saurya, J. Dobbelaere, and J. W. Raff, CP110 exhibits novel regulatory activities during centriole assembly in Drosophila, The Journal of Cell Biology, vol.203, pp.785-799, 2013.

B. J. Galletta, K. C. Jacobs, C. J. Fagerstrom, and N. M. Rusan, Asterless is required for centriole length control and sperm development, The Journal of Cell Biology, vol.213, pp.435-450, 2016.

G. Garcia and J. F. Reiter, A primer on the mouse basal body, Cilia, vol.5, pp.1-9, 2016.

F. R. Garcia-gonzalo, K. C. Corbit, M. S. Sirerol-piquer, G. Ramaswami, E. A. Otto et al., A transition zone complex regulates mammalian ciliogenesis and ciliary membrane composition, Nature Genetics, vol.43, pp.776-784, 2011.

A. M. Glazer, A. W. Wilkinson, C. B. Backer, S. W. Lapan, J. H. Gutzman et al., The zn finger protein Iguana impacts hedgehog signaling by promoting ciliogenesis, Developmental Biology, vol.337, pp.148-156, 2010.

D. Gogendeau and R. Basto, Centrioles in flies: the exception to the rule?, Seminars in Cell & Developmental Biology, vol.21, pp.163-173, 2010.

J. Gonç-alves and L. Pelletier, The ciliary transition zone: finding the pieces and assembling the gate, Molecules and Cells, vol.40, pp.243-253, 2017.

M. Gottardo, G. Callaini, and M. G. Riparbelli, The cilium-like region of the Drosophila spermatocyte: an emerging flagellum, Journal of Cell Science, vol.126, pp.5441-5452, 2013.

M. Gottardo, G. Pollarolo, S. Llamazares, R. J. Riparbelli, M. G. Callaini et al., Loss of centrobin enables daughter centrioles to form sensory cilia in Drosophila, Current Biology, vol.25, pp.2319-2324, 2015.

M. Gottardo, V. Persico, G. Callaini, and M. G. Riparbelli, The "transition zone" of the cilium-like regions in the Drosophila spermatocytes and the role of the C-tubule in axoneme assembly, Experimental Cell Research, vol.371, pp.262-268, 2018.

S. J. Gratz, C. D. Rubinstein, M. M. Harrison, J. Wildonger, O. et al., CRISPR-Cas9 genome editing in Drosophila, Current Protocols in Molecular Biology, vol.111, pp.1-20, 2015.

G. D. Gupta, É. Coyaud, J. Gonç-alves, B. A. Mojarad, Y. Liu et al., A dynamic protein interaction landscape of the human Centrosome-Cilium interface, Cell, vol.163, pp.1484-1499, 2015.

A. Gupta, L. Fabian, and J. A. Brill, Phosphatidylinositol 4,5-bisphosphate regulates cilium transition zone maturation in Drosophila Melanogaster, Journal of Cell Science, vol.131, p.218297, 2018.

J. Huang, W. Zhou, A. M. Watson, Y. N. Jan, and Y. Hong, Efficient ends-out gene targeting in Drosophila, Genetics, vol.180, pp.703-707, 2008.

S. C. Jana, M. Bettencourt-dias, B. Durand, and T. L. Megraw, Drosophila Melanogaster as a model for basal body research, Cilia, vol.5, p.22, 2016.

S. C. Jana, S. Mendonç-a, P. Machado, S. Werner, J. Rocha et al., Differential regulation of transition zone and centriole proteins contributes to ciliary base diversity, Nature Cell Biology, vol.20, pp.928-941, 2018.

L. C. Keller, S. Geimer, E. Romijn, J. Yates, I. Zamora et al., Molecular architecture of the centriole proteome: the conserved WD40 domain protein POC1 is required for centriole duplication and length control, Molecular Biology of the Cell, vol.20, pp.1150-1166, 2009.

J. E. Klebba, D. W. Buster, A. L. Nguyen, S. Swatkoski, M. Gucek et al., Polo-like kinase 4 autodestructs by generating its Slimb-binding phosphodegron, Current Biology, vol.23, pp.2255-2261, 2013.

S. Kondo and R. Ueda, Highly improved gene targeting by germline-specific Cas9 expression in Drosophila, Genetics, vol.195, pp.715-721, 2013.

Y. L. Lee, J. Santé, C. J. Comerci, B. Cyge, L. F. Menezes et al., Cby1 promotes Ahi1 recruitment to a ring-shaped domain at the centriole-cilium interface and facilitates proper cilium formation and function, Molecular Biology of the Cell, vol.25, pp.2919-2933, 2014.

C. Li, V. L. Jensen, K. Park, J. Kennedy, F. R. Garcia-gonzalo et al., MKS5 and CEP290 dependent assembly pathway of the ciliary transition zone, PLOS Biology, vol.14, p.1002416, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01408619

F. Q. Li, X. Chen, C. Fisher, S. S. Siller, K. Zelikman et al., BAR Domain-Containing FAM92 proteins interact with Chibby1 to facilitate ciliogenesis, Molecular and Cellular Biology, vol.36, pp.2668-2680, 2016.

L. Ma and A. P. Jarman, Dilatory is a Drosophila protein related to AZI1 (CEP131) that is located at the ciliary base and required for cilium formation, Journal of Cell Science, vol.124, pp.2622-2630, 2011.

T. A. Mclamarrah, D. W. Buster, B. J. Galletta, C. J. Boese, J. M. Ryniawec et al., An ordered pattern of Ana2 phosphorylation by Plk4 is required for centriole assembly, The Journal of Cell Biology, vol.217, pp.1217-1231, 2018.

M. V. Nachury, Tandem affinity purification of the BBSome, a critical regulator of Rab8 in ciliogenesis, Methods in Enzymology, vol.439, pp.501-513, 2008.

J. H. Pasmans and A. Tates, Cytodifferentiation During Spermatogenesis in Drosophila Melanogaster: An Electron Microscope Study, 1971.

M. B. Pratt, J. S. Titlow, I. Davis, A. R. Barker, H. R. Dawe et al., Drosophila sensory cilia lacking MKS proteins exhibit striking defects in development but only subtle defects in adults, Journal of Cell Science, vol.129, pp.3732-3743, 2016.

R. A. Rachel, E. A. Yamamoto, M. K. Dewanjee, H. L. May-simera, Y. V. Sergeev et al., CEP290 alleles in mice disrupt tissue-specific cilia biogenesis and recapitulate features of syndromic ciliopathies, Human Molecular Genetics, vol.24, pp.3775-3791, 2015.

J. Reina, M. Gottardo, M. G. Riparbelli, S. Llamazares, G. Callaini et al., Centrobin is essential for C-tubule assembly and flagellum development in Drosophila Melanogaster spermatogenesis, The Journal of Cell Biology, vol.217, pp.2365-2372, 2018.

J. F. Reiter, O. E. Blacque, and M. R. Leroux, The base of the cilium: roles for transition fibres and the transition zone in ciliary formation, maintenance and compartmentalization, EMBO Reports, vol.13, pp.608-618, 2012.

M. G. Riparbelli, G. Callaini, and T. L. Megraw, Assembly and persistence of primary cilia in dividing Drosophila spermatocytes, Developmental Cell, vol.23, pp.425-432, 2012.

M. G. Riparbelli, O. A. Cabrera, G. Callaini, and T. L. Megraw, Unique properties of Drosophila spermatocyte primary cilia, Biology Open, vol.2, pp.1137-1147, 2013.

M. G. Riparbelli, V. Persico, and G. Callaini, A transient microtubule-based structure uncovers a new intrinsic asymmetry between the mother centrioles in the early Drosophila spermatocytes, Cytoskeleton, vol.75, pp.472-480, 2018.

H. Roque, S. Saurya, M. B. Pratt, J. E. Raff, and J. W. , Drosophila PLP assembles pericentriolar clouds that promote centriole stability, cohesion and MT nucleation, PLOS Genetics, vol.14, p.1007198, 2018.

L. Sang, J. J. Miller, K. C. Corbit, R. H. Giles, M. J. Brauer et al., Mapping the NPHP-JBTS-MKS protein network reveals ciliopathy disease genes and pathways, Cell, vol.145, pp.513-528, 2011.

M. Sarov, C. Barz, H. Jambor, M. Y. Hein, C. Schmied et al., A genome-wide resource for the analysis of protein localisation in Drosophila, vol.5, p.12068, 2016.

I. Schrauwen, A. P. Giese, A. Aziz, D. T. Lafont, I. Chakchouk et al., FAM92A underlies nonsyndromic postaxial polydactyly in humans and an abnormal limb and digit skeletal phenotype in mice, Journal of Bone and Mineral Research, vol.34, pp.375-386, 2019.

S. S. Siller, H. Sharma, S. Li, J. Yang, Y. Zhang et al., Conditional knockout mice for the distal appendage protein CEP164 reveal its essential roles in airway multiciliated cell differentiation, PLOS Genetics, vol.13, p.1007128, 2017.

F. Soulavie, D. Piepenbrock, J. Thomas, J. Vieillard, J. L. Duteyrat et al., Hemingway is required for sperm flagella assembly and ciliary motility in Drosophila, Molecular Biology of the Cell, vol.25, pp.1276-1286, 2014.

A. Spektor, W. Y. Tsang, D. Khoo, and B. D. Dynlacht, Cep97 and CP110 suppress a cilia assembly program, Cell, vol.130, pp.678-690, 2007.

N. Steere, C. V. Burke, M. Li, F. Q. Takemaru, K. Kuriyama et al., A wnt/beta-catenin pathway antagonist chibby binds cenexin at the distal end of mother centrioles and functions in primary cilia formation, PLOS ONE, vol.7, 2012.

S. Y. Tay, X. Yu, K. N. Wong, P. Panse, C. P. Ng et al., The Iguana/DZIP1 protein is a novel component of the ciliogenic pathway essential for axonemal biogenesis, Developmental Dynamics, vol.239, pp.527-534, 2010.

J. Z. Torres, J. J. Miller, and P. K. Jackson, High-throughput generation of tagged stable cell lines for proteomic analysis, Proteomics, vol.9, pp.2888-2891, 2009.

J. Vieillard, J. L. Duteyrat, E. Cortier, and B. Durand, Imaging cilia in Drosophila Melanogaster, Methods in Cell Biology, vol.127, pp.279-302, 2015.

J. Vieillard, M. Paschaki, J. L. Duteyrat, C. Augiè-re, E. Cortier et al., Transition zone assembly and its contribution to axoneme formation in Drosophila male germ cells, The Journal of Cell Biology, vol.214, pp.875-889, 2016.

V. A. Voronina, K. Takemaru, P. Treuting, D. Love, B. R. Grubb et al., Inactivation of chibby affects function of motile airway cilia, The Journal of Cell Biology, vol.185, pp.225-233, 2009.

C. Wang, W. C. Low, A. Liu, and B. Wang, Centrosomal protein DZIP1 regulates hedgehog signaling by promoting cytoplasmic retention of transcription factor GLI3 and affecting ciliogenesis, Journal of Biological Chemistry, vol.288, pp.29518-29529, 2013.

C. Wang, J. Li, K. I. Takemaru, X. Jiang, G. Xu et al., Centrosomal protein Dzip1l binds cby, promotes ciliary bud formation, and acts redundantly with bromi to regulate ciliogenesis in the mouse, Development, vol.145, p.164236, 2018.

S. D. Weatherbee, L. A. Niswander, and K. V. Anderson, A mouse model for Meckel syndrome reveals Mks1 is required for ciliogenesis and hedgehog signaling, Human Molecular Genetics, vol.18, pp.4565-4575, 2009.

H. C. Wei, J. Rollins, L. Fabian, M. Hayes, G. Polevoy et al., Depletion of plasma membrane PtdIns (4,5)P2 reveals essential roles for phosphoinositides in Flagellar biogenesis, Journal of Cell Science, vol.121, pp.1076-1084, 2008.

Q. Wei, K. Ling, and J. Hu, The essential roles of transition fibers in the context of cilia, Current Opinion in Cell Biology, vol.35, pp.98-105, 2015.

C. L. Williams, C. Li, K. Kida, P. N. Inglis, S. Mohan et al., MKS and NPHP modules cooperate to establish basal body/transition zone membrane associations and ciliary gate function during ciliogenesis, The Journal of Cell Biology, vol.192, pp.1023-1041, 2011.

C. Wolff, S. Roy, K. E. Lewis, H. Schauerte, G. Joerg-rauch et al., Iguana encodes a novel zinc-finger protein with coiled-coil domains essential for hedgehog signal transduction in the zebrafish embryo, Genes & Development, vol.18, pp.1565-1576, 2004.

X. Ye, H. Zeng, G. Ning, J. F. Reiter, and A. Liu, C2cd3 is critical for centriolar distal appendage assembly and ciliary vesicle docking in mammals, PNAS, vol.111, pp.2164-2169, 2014.