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Understanding the stability of ecological communities is a matter of
increasing importance in the context of global environmental change.
Yet, it has proved to be a challenging task. Different metrics are used
to assess the stability of ecological systems, and the choice of one
metric over another may result in conflicting conclusions. Although
each of the multitude of metrics is useful for answering a specific
question about stability, the relationship among metrics is poorly un-
derstood. Such lack of understanding prevents scientists from devel-
oping a unified concept of stability. Instead, by investigating these
relationships we can unveil how many ‘dimensions’ of stability there
are (i.e. in how many independent components stability metrics can
be grouped), which should help building a more comprehensive con-
cept of stability. Here, we simultaneously measured 27 stability met-
rics frequently used in ecological studies. Our approach is based
on dynamical simulations of multispecies trophic communities under
different perturbation scenarios. Mapping the relationships between
the metrics revealed that they can be lumped into three main groups
of relatively independent stability components: ‘early response to
pulse’, ‘sensitivities to press’ and ‘distance to threshold’. Selecting
metrics from each of these groups allows a more accurate and com-
prehensive quantification of the overall stability of ecological com-
munities. These results contribute to improving our understanding
and assessment of stability in ecological communities.

stability | food webs | networks | ecological community

Stability has been a core topic of research in complex sys-
tems across disciplines. From socioeconomic models of

political regimes (1, 2), to financial systems (3–5), social or-
ganizations (6, 7) or biological systems of genetic regulatory
circuits (8, 9), the study of dynamical stability keeps drawing
the attention of the scientific community. This interest has
been particularly prominent in ecology, where it has fuelled
decades of research (10–15). Yet, progress in understanding
what determines the stability of complex systems such as
ecological communities has been hampered by unclear, and
sometimes, conflicting results. One of the main reasons has
proved to be the broad definition of the concept of stability
itself (12), which has led to confusion and a lack of clear
guidelines about the practical quantification of stability in
empirical studies (14, 16). Probably one of the best examples
of this confusion is the long standing controversy of how sta-
bility varies with species diversity (17). While some studies
have shown that biodiversity can enhance stability (18–20),
others have found the opposite result (21–23), both effects
(24), or even non-monotonous relationships (25). The expla-
nation behind this apparent contradiction is that stability is a
multidimensional concept: it has several ‘facets’ and can be
described by different metrics, which do not all vary positively
with biodiversity (13, 24, 26). While the multidimensional
nature of the stability concept has been well recognized in

the literature (10–12), our understanding of it has remained
limited (14). The vast majority of studies typically include
only one metric of stability at a time, and the few studies that
have simultaneously measured multiple metrics of stability
have considered them as independent when, in fact, it has
been acknowledged that they could be interdependent (27).
This possible interdependence implies that measuring multiple
metrics may more broadly estimate stability to the extent
that these metrics quantify relatively independent components
of stability. Therefore, to advance towards a thorough and
more systematic assessment of ecological stability, we need
to understand how stability can be decomposed into different
components – also referred to as ‘dimensions’ in the literature
(27) – and if so, how many there are and how they can be best
measured.

We tackle this challenge from a theoretical perspective by
investigating the interdependence of stability metrics in trophic
ecological networks. Combining structural food-web models
(28) with bioenergetic consumer-resource models (29, 30), we
simulate the dynamics of multispecies trophic communities un-
der different perturbation scenarios. Perturbations are changes
in the biotic or abiotic environment that alter the structure
and dynamics of communities (14, 31). We consider three
main types of perturbations: pulse (32), i.e. instantaneous dis-
turbances, after which community recovery can be measured
(e.g. forest fires or floods), press (32), i.e. lasting disturbances
after which post-perturbed communities can be compared to
pre-perturbed ones (e.g. climatic changes or extinction of a
species), and environmental stochasticity (33–35), where com-
munities are constantly affected by small external changes.
We quantify the stability of our simulated communities to
these perturbations with 27 metrics frequently used in the
ecological literature (see Table 1). We then explore how these
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metrics correlate with each other. If metrics are found to be
uncorrelated, that would mean that they all inform very dif-
ferent aspects of stability of an ecological community and that
a more coherent concept of stability currently lacks empirical
support. In the opposite case, if all metrics are found to be
perfectly correlated with each other, considering only a single
metric would be enough to assess the overall stability of an
ecological community. Therefore, by studying the correlations
between stability metrics, we can evaluate whether the dif-
ferent metrics considered provide similar information about
the stability of an ecological community or whether they form
distinct groups that reflect partly independent ‘dimensions’ of
community stability.

Results and Discussion

Community size and stability metrics’ correlations. Commu-73

nity size (i.e. the number of species) has been shown to play
a fundamental role in the stability of ecological networks, al-
though it is not entirely clear if it promotes their stability,
hinders it, (13) or both (24, 25). For example, a food web
simulation study showed that persistence (i.e. the fraction
of surviving species) and population variability were either
negatively or positively correlated depending on the species
richness of the community (25). We therefore start by investi-
gating if the pairwise correlations between the stability metrics
are affected by community size in our simulated trophic com-
munities. Overall, many pairwise correlations (~44% out of
the 351 correlation pairs) are not highly affected by commu-
nity size (Fig 1A). Some pairwise correlations (~32%) become
weaker as community size grows (Fig. 1B), while others (~20%)
become stronger (Fig. 1C). In a few cases (~3%), the correla-
tion between two metrics can switch sign as community size
changes (Fig. 1D). The dependence of pairwise correlations on
community size is especially present in communities with less
than 50 species. In contrast, most correlations (~94%) remain
largely constant in species-rich communities (> 50 species;
SI Appendix Fig. S1). Given the dependence of pairwise
correlations on community size, we next study stability metric
correlations across three levels of species richness: small (5
to 15 species), medium-sized (45 to 55 species), and large
communities (85 to 95 species). In what follows, we present
the results for medium-sized communities, while the results for
small and large communities can be found in the SI Appendix.

Three groups of stability metrics. To explore if there is any101

structure in the way metrics are correlated with each other,
we build a network of stability metrics in which nodes repre-
sent the metrics and links their weighted (unsigned) pairwise
correlations (see Materials and Methods). Using a community
detection algorithm based on maximizing modularity (see Ma-
terials and Methods), we find that metrics form three distinct
groups such that metrics that belong to the same group are
more strongly correlated with each other than with metrics
outside of their group (Fig. 2A and SI Appendix Fig. S3).

The ‘early response to pulse’ group (light green in Fig. 2A)
contains measures of the initial and short-term deviations of a
community from its reference state after a pulse perturbation.
The ‘sensitivities to press’ group (green in Fig. 2A) includes
metrics that quantify changes in total and individual species’
biomass between post- and pre-perturbed communities after a
press perturbation. The ‘distance to threshold’ group (blue in
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Fig. 1. https://www.overleaf.com/project/5c361f3e4b0f20641e21ee84 Spearman’s ρ
pairwise correlation coefficient between stability metrics as a function of community
size (i.e. number of species at steady state). A) Some pairwise correlations are
not affected by community size, e.g. correlation between two metrics of tolerance
to increased mortality at a global (i.e. community) and local (i.e. species) scale
(resp. TMG and < TML >). B) Some metrics are only strongly correlated in
small communities, e.g. correlation between ‘stochastic invariability’ (Is) and ‘time to
maximum amplification’ (tmax). C) Other metrics are only strongly correlated in large
communities, e.g. correlation between resilience’ (Rinf ) and the average strength
of the sensitivity matrix (< sij >). D) Some pairwise correlations change sign with
community size, e.g. correlation between the resistance of total biomass (RMG)
and the sensitivity of species biomass to a global increase in mortality (SMG). See
Table 1 and Materials and Methods for metrics definitions.

Fig. 2A) consists of metrics that measure how easily a system
crosses thresholds to new dynamical states, for example the
amount of external pressure before a community experiences an
abrupt change, the closeness of the rarest species to extinction,
the population variability, and secondary extinctions caused
by random extinctions.

Three metrics (in gray in Fig. 2A) were not clearly assigned
to any of the three groups (see SI, section 2). These metrics
include measures of the initial and transient responses of the
most abundant species to pulse perturbations. Because of
their idiosyncratic correlations with the rest of the metrics,
we kept them apart from the other metrics.

Interestingly, the three emergent groups split metrics in
terms of both the temporal scale of the response and the type
of perturbation. Indeed, the ‘early response to pulse’ group
only contains metrics describing transient behavior, while
the ‘sensitivities to press’ and ‘distance to threshold’ groups
contain metrics describing long-term (asymptotic) dynamics.
Furthermore, the ‘early response to pulse’ and ‘sensitivities
to press’ form two contrasting groups containing metrics that
respectively refer to pulse and press perturbations, while met-
rics in the ‘distance to threshold’ group refer to both types
of perturbations. The weak correlations between the three
groups of metrics (with an average correlation of ~0.13 ; SI
Appendix Fig. S2 and section 3) suggests that the metrics
within a group can be considered as relatively independent
from metrics in other groups. Therefore, these three groups
reflect major components that constitute different dimensions
of the stability of trophic communities (27) that should be mea-
sured in an ecological community to comprehensively assess
its overall stability.

Further studying the degree of (dis)similarity between the
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Fig. 2. A) Network of stability metrics for
medium-sized communities (45 to 55 species).
Nodes represent stability metrics and the thick-
ness of links their unsigned pairwise Spear-
man’s ρ correlation coefficients. Node col-
ors distinguish the three groups identified by
the modularity algorithm, with a modularity of
Q=0.177: ‘early response to pulse’ group in
light green, ‘distance to threshold’ group in
blue, and ‘sensitivities to press’ group in darker
green. In grey are metrics that the modular-
ity algorithm was not able to unambiguously
place in any group. B) Hierarchical cluster-
ing applied to the network of stability metrics.
Correlations are used to compute a distance
between all pairs of metrics, which are repre-
sented here by a dendrogram. The key to inter-
preting such a dendrogram is to focus on the
first ‘branch’ at which any two metrics are joined
together; the further away two metrics are from
this ‘common ancestor’, the less similar they
are. The goodness-of-fit of distances based on
the dendrogram to the distances in the original
data (pairwise correlations) is quantified by the
Cophenetic Coefficient (c =0.85). Metrics are
clustered similarly as by the modularity parti-
tioning, except for the ‘resistance to extinction’
metric, (< RE >) represented with a stripped
pattern, which is therefore considered to not
clearly belong to one of the groups in upcoming
analyses. See Table 1 for metrics’ definitions.

different stability metrics with a hierarchical clustering analysis
(36, 37) (see Materials and Methods) confirms the partitioning
found by the modularity algorithm, except for one outlier
metric (striped in Fig. 2B), which was not attributed to
the same group by both analyses (see SI, section 4) and is
therefore not considered to clearly belong to one of the three
groups for subsequent analyses. The generated dendogram
allows to visualize a more detailed structure, with subgroups
of highly similar metrics within the three groups identified by
the modularity algorithm (See SI, section 4). Practically, this
implies that for these sets of highly similar metrics, only one
of the metrics could be selected interchangeably. Moreover,
some of these close similarities could also be of theoretical
interest. For example, in the ‘Distance to threshold’ group, we
find five strongly connected metrics of very different nature:
resilience (a metric of dynamical stability, Rinf ), tolerance
metrics (which assess structural stability; TMG, TML

min), and
sensitivity metrics (which are based on the inverse Jacobian;
S, < sij >). Some of these connections have been previously
reported (38, 39), but we still lack a complete theoretical map
of most metrics’ relationships.

The sign of the correlations between stability metrics. The171

sign of the correlations between metrics is important because
negative correlations between metrics would suggest trade-
offs: promoting stability according to one of the metric would
happen at the expense of stability according to another metric.
In our simulated trophic communities, however, we only find a
few negative correlations (see SI Appendix section 5 and Fig.
S4). Most of the negative correlations are identified in small
communities (below 20 species) between metrics of ‘resistance’
(i.e. total change in aggregated community biomass before
and after a press perturbation) and ‘sensitivity’ (total change
in species’ populations after a press perturbation; Table 1).
In fact, in communities of more than 20 species, there is only

one relatively strong negative correlation (ρ ∼ −0.4) between
‘reactivity’ (R0) and ‘time to maximum amplification’ (tmax).
The relationship between these two metrics has been previously
studied and found to be complex (40). Our results here suggest
that communities whose abundant species initially deviate fast
from their original state (i.e. high R0), are also those that
tend to start recovering early (i.e. low tmax); conversely,
communities with abundant species that are less reactive tend
to take longer before they start their recovery.

The vast majority of positive correlations (from ~86% of all
351 pairs in small communities to ~93% in large communities)
found here is in line with recent experimental findings, where
multiple positive correlations between stability metrics were
found in communities of similar size as our simulated com-
munities (24, 27). For example, we find a positive correlation
(ρ =0.54) between invariability (Is) and resistance to small
press perturbations (S) in agreement with (24). We also find
a positive correlation (ρ =0.57) between invariability (Is) and
the number of secondary extinctions (< CE >), in communi-
ties of similar sizes as those studied by (27). In light of this,
stability trade-offs seem to be a rare exception in complex
trophic communities.

Mapping the stability metrics. Past reviews of stability in ecol-
ogy have highlighted the multidimensional nature of stability
and have attempted at grouping metrics in a few stability
‘facets’ based on the similarity in their definition (10–13). Here,
three relatively independent groups of metrics emerged from
the analysis of the correlations between metrics, and we argue
that these groups can be interpreted as different ‘dimensions’
of stability. In what follows, we map all metrics according
to their stability group (or ‘dimension’), perturbation type,
and stability facet in an attempt to better understand the
relationships between these different categories (Fig. 3).

This mapping reveals that the stability facets and the
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Fig. 3. Classification of the stability metrics according to three axes: the perturbation
type (pulse, press or environmental stochasticity), the stability group (‘early response
to pulse’, ‘distance to threshold’, and ‘sensitivities to press’) and the stability facets
typically describing stability properties in the literature. There is currently no consen-
sus on the names of these facets; we here refer to them as ‘resistance’ in purple
(how much the system changes under a press perturbation), ‘attractor’ in green (the
type and number of attractors of the system), ‘constancy’ in yellow (how variable
the system is), and ‘recovery’ in red (if and how the system recovers from a pulse
perturbation) (15). Colors of the groups of stability metrics are the same as in Fig. 2.
Metrics not clearly associated to one of the three groups in Fig. 2 (i.e. the metrics in
grey and < RE >) were not included here. See Table 1 for metrics’ definitions.

stability groups don’t map one-to-one. For example, resistance
metrics can belong to all three stability groups, while metrics
from the four stability facets can be highly correlated with
each other and belong to the same stability group (e.g. the
‘distance to threshold’ group). More strikingly, our mapping
shows that it is not possible to simultaneously capture the
three stability ‘dimensions’ with an experiment that would
involve only one type of perturbation. Early response to pulse,
i.e. transient responses (Fig. 3 left), can only be studied
in communities that experience a pulse perturbation, while
all ‘resistance’ and ‘sensitivity’ of biomass metrics are, by
definition, the results of a press perturbation. The fact that
knowledge about stability to a given type of perturbation does
not extend to another type of perturbation confirms that we
cannot get away from specifying the stability ‘of what’ and
‘to what’ (14, 16).

Conclusion. Perhaps the most important finding of our analy-234

sis is that the multiplicity of stability metrics can essentially be
mapped into three relatively independent groups that reflect
three different components, or ‘dimensions’, of stability. This
suggests that the dimensionality of the stability of trophic
ecological communities is much lower than the number of met-
rics used to quantify it, and that stability could therefore be
assessed using a small number of metrics.

Each of the many stability metrics allows addressing spe-
cific questions by quantifying a given aspect of stability. At
the same time, however, the grouping of many metrics in just
a few components raises the question of which specific metrics

to choose if one wants to assess the overall stability of an eco-
logical system. An intuitive guess is that combining metrics
from each of the three groups could be a way of decreasing
the amount of metrics used, while still accurately estimating
the multiple ‘dimensions’ of the stability of an ecological com-
munity. Preliminary analyses suggest that using only three
metrics – those with the highest explained variance in each of
the groups – explains respectively 54%, 52% and 59% of the
original variance in small, medium and large communities (see
SI, section 6 for more details). Moreover, analyses of the vol-
ume of the covariance ellipsoid confirm that selecting metrics
from the three different groups , rather than the same number
of metrics from the same group, best describes the different
stability ‘dimensions’ (see SI, section 7 and Fig. S7). However,
due to the high correlations between metrics within a group,
it is difficult to propose a single best way of selecting metric(s)
in each of the groups. Although the choice of the metrics
will always depend on the system studied and on practical
constraints, hierarchical analyses (Fig. 2B and SI Appendix
Fig. S3) and explained variance analyses (SI Appendix section
6) can help making informed choices.

Interestingly, our analysis confirms previously known re-
lationships between metrics, but it also reveals unexpected
dependencies, which could either be due to mathematical rela-
tionships yet to be investigated or because the metrics actually
expose latent dimensions of stability. Although, our approach
does not elucidate the causes for the metrics’ correlations, it
does point towards future areas of research. In that sense, our
results are of interest to both theoreticians – because they
hint towards yet unknown mechanisms underlying correlations
between stability metrics –, as well as to experimentalists, who
can use the patterns of correlations to choose which metrics
to evaluate in their experiments.

Finally, although our study focuses on the stability of
food webs, the relationships found here could be of interest
to understand the stability of other types of networks, in
ecology as well as in other disciplines. In fact, even if the
exact number of identified groups of metrics could be altered
in other systems or by the incorporation of additional stability
metrics, the framework we propose is flexible enough to
accommodate to different conditions and opens a way towards
simplifying the study of overall stability in different types
of complex dynamical system. After all, directed networks
of many kinds describe transport of matter, information,
or capital in a similar way as food webs describe fluxes of
biomass from primary producers to apex predators.

Materials and Methods

Stability metrics. We review the ecological literature to identify the
most frequently used metrics for assessing community stability.
Specifically, we consider metrics that quantify stability in commu-
nities that yield stable (fixed equilibrium) dynamics. We do not
consider measures of community invasibility. For metrics that can
be quantified in multiple ways, we only retain a single way of mea-
suring that metric. With these criteria, we obtain 27 metrics that
are described in Table 1, specifying their temporal scale (below the
name) and the type of perturbation they are associated to (in bold
letters in the description). Metrics include analytical responses to
small pulse perturbations - i.e. instantaneous disturbances causing
a sudden change in species abundances - obtained from the com-
munity matrix (or Jacobian) covering initial (reactivity), transient
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Table 1. Stability metrics’ names, characteristic time scales, defi-
nitions, and, when relevant, reference to the equation in the SI Ap-
pendix, section 10 (See Material and Methods for a guide to the met-
rics acronyms)

Name Acronym Description

(time scale)
[equation in
SI Appendix
section 10]

Reactivity
(initial)

R0 [6] ........
..................
MR0 [11]

Max. instantaneous rate at which perturbations
can be amplified. Measures the velocity of the
system when initially going away from the equilib-
rium after a pulse perturbation. Driven by the
most abundant species. Median Reactivity over
all species (MR0) represents the whole commu-
nity.

Max. ....
amplification
(transient)

Amax [9]
... ..............
MAmax[12]

Factor by which the perturbation that grows the
largest is amplified after a pulse perturbation.
The factor by which the median displacement
over all species deviates (MAmax) represents the
whole community.

Time to max.
amplification
(transient)

tmax
........ ........
Mtmax

Time to achieve the max. amplification, and time
to achieve the maximum amplification of the me-
dian displacement after a pulse perturbation
(Mtmax).

Resilience
(long-term)

Rinf [10]
... ........
MRinf [13]
..

Asymptotic (i.e. long-term) return rate to the ref-
erence state after a pulse perturbation. Metric
driven by the least abundant species. The median
resilience over all species (MRinf ) represents the
whole community.

Stochastic
invariability
(long-term)

Is ..... [14]

Measures if the environmental noise (assumed
to be white noise) is amplified i.e. if the fluc-
tuations in species’ biomass are larger than the
environmental noise.

Sensitivity
matrix ..
(long-term)

< sij > [16]
.. .............
S .. [15]

Average change in the biomass of species i after
a press perturbation is applied to species j (as-
suming that post- and pre-perturbed systems are
at nearby fixed-point steady state and that pertur-
bations are sufficiently small). The accumulated
change over all species (S) represents the whole
community.

Tolerance (long-term)

to
mortality

T MG [17]
Min. GLOBAL increase in mortality (press per-
turbation applied on all species) that leads to at
least one extinction.

< T ML >
........
T ML

min

Min. LOCAL increase in mortality (press per-
turbation applied on one species) that leads to
at least one extinction. Each species is attacked
in turn. The average (over all species) and the
min. increases that caused an extinction are mea-
sured.

to
extinctions

< T E >

Measured as ‘robustness’, i.e. the number of
actively performed (random) extinctions (press
perturbation) required to reduce the number of
surviving species to 50% of the original number.

Resistance of total biomass (long-term)

to
mortality

RMG [18]
Relative change in total biomass before and af-
ter a GLOBAL increment of 10% mortality (press
perturbation applied on all species).

< RML >
........
RML

max

Relative change in total biomass before and after
a LOCAL increment of 10% mortality (press per-
turbation applied to one species). Each species is
attacked in turn. The average and max. changes
in total biomass are measured.

to
extinctions

< RE >[20]
........
REmax

Relative change in total biomass before and after
each of the species goes extinct (and subsequent
secondary extinctions have taken place) (press
perturbation). The average and max. changes
in total biomass (over all extinction events) are
measured.

Cascading
extinctions
(long-term)

< CE >
...... ........
CEmax

Average number of secondary extinctions follow-
ing one extinction (press perturbation). Each
species is removed in turn. The average and max.
number of secondary extinctions over all extinc-
tion events are measured.

Sensitivity of species’ biomass (long-term)

to
mortality

SMG [19]

Total accumulated change in species’ biomass
before and after a GLOBAL increment of 10%
mortality (press perturbation applied to all
species).

< SML >
.. .......
SML

max

Total accumulated change in specie’ biomass be-
fore and after an LOCAL increment of 10%
mortality (press perturbation applied to one
species). Each species is attacked in turn. The
average and max. accumulated changes (over all
events) are measured.

to
extinctions

< SE >[21]
........
SEmax

Total accumulated change in individual biomass
before and after each of the species goes extinct
(and subsequent secondary extinctions take place)
(press perturbation). Each species is attacked
in turn. The average and max. accumulated
changes (over all extinction events) are measured.

(maximum amplification and time to maximum amplification), and
asymptotic (resilience) temporal regimes, both quantified at the
individual species level and at the community level (21, 40, 41).
Responses to environmental noise is assessed with the stochastic
invariability metric (34). Analytical responses to small press per-
turbations - i.e. lasting disturbances causing the abundance of
species to be permanently changed - are measured by means of the
sensitivity matrix (inverse of the Jacobian matrix) (32, 38, 42). We
also apply two different types of more intense press perturbations
empirically: an increase in mortality both at the local (i.e. only
on one individual species at a time) and at the global (i.e. on 318

all species of the community simultaneously) scales, and random 319

extinctions of species. Structural stability (43, 44) to these two 320

types of press perturbations is assessed with the tolerance metrics 321

(Table 1). Tolerance to mortality is measured as in previous studies 322

(45, 46), and tolerance to extinctions is measured with robustness 323

(47). We also include metrics of community resistance to random 324

extinctions (48) as cascading extinctions. Empirical measures of 325

resistance to both types of press perturbations, named resistance of 326

total biomass and sensitivity of species’ biomass, are also quantified 327

in a similar fashion as in previous studies (49). All the metrics 328

are defined in such a way that an increase in their value means an 329

increase in community stability. Definitions of metrics can be found 330

in SI, section 10, and the dataset of stability metrics in SI Dataset 331

S1. 332

The acronyms of the metrics that quantify responses to empirical 333

press perturbations are encoded as follows: the first letter represents 334

if they are a measure of tolerance (T) resistance (R), or sensitiv-
ity (S), followed by the initial letter of the perturbation, which is
either mortality (M) or random extinctions (E). The superscript
differentiates, when needed, if the perturbation is global (G) (i.e
applied on all species of the communities as the same time) or local
(L) (i.e. applied on one species at a time). When nothing is indi-  

cated, the perturbation is assumed to be local. In the case of local  

perturbations, the subscripts min and max indicate whether the 
metric is the extreme (resp. minimum or maximum) value observed,
while the brackets <> indicate that the metric is the average of all
observed values.

Generating communities and model simulations. We use the niche
model (28) to construct food-web communities. We then use the
produced community structure to simulate the biomass of each
species using a bioenergetic consumer-resource model with allometric
constraints (30):
dBi

dt
= riGiBi +Bi

∑
j∈prey

e0jFij −
∑

k∈pred

BkFki −xiBi −diBi [1]

where the interaction term Fij is defined as:

Fij =
wiaijB

1+q
j

mi(1 + wi

∑
k∈prey

aikhikB
1+q
k

)
[2] 353

During the simulations, species biomass adjust dynamically and
some extinctions may occur before a steady state is achieved. Thus,
the species that comprise the final dynamical trophic networks are
selected by structural constraints and energetic processes among the
species. We fix the parameter of the functional response to q = 0.3
and the predator/prey body-mass ratio to Z = 1.5. Values for all
the other scaling parameters are averages of values presented in
(50). We generate networks with an initial species richness ranging
from 5 to 115 species and a fixed connectance of c = 0.15. During
the simulations, if species biomass crossed the extinction threshold
(1E−6mi), we consider that species extinct. If more than 10% of the
initial number of species goes extinct, we discard this community.
Following this procedure, we simulate more than 10000 different
dynamical trophic communities with species richness ranging from
5 to 105 species. For more details, see SI, sections 8 and 9.

Pairwise correlations and networks of stability metrics. For each com-
munity size, ranging from 5 to 100 species (with a step of 1), we
sample 100 trophic communities of each size (SI Dataset S2) and
compute the pairwise correlations among all stability metrics using
Spearman’s correlation rank, ρ. We consider that pairwise correla-
tions remain unchanged throughout a gradient of species richness if
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the variation in the correlation between the initial and final com-375

munity sizes (∆ρ) is below 0.1. We use the pairwise correlations376

to build a network of stability metrics. In this network, each node377

is a metric and the links are the pairwise correlations between the378

metrics. The links are weighted (i.e the stronger the correlation the379

thicker the link) and unsigned (i.e. we consider absolute correlations380

and ignore if two metrics are negatively or positively correlated).381

We assemble in this way networks of stability metrics for different382

classes of community sizes: small (5-15 species), medium (45-55383

species), and large (85-95 species) communities by considering the384

average value of correlations (i.e. average ρ) within these size ranges.385

Grouping stability metrics. We search for groups of metrics386

in the stability network such that pairs of metrics are more387

strongly correlated to other metrics of the same group than to388

metrics in other groups. Modularity quantifies the quality of a389

particular partition of a network into such ‘clusters’ (i.e. groups390

of nodes) (51). The modularity algorithm detects clusters391

by searching over many possible partitions of a network and392

finding the one that maximizes modularity (52). We apply such393

a community detection algorithm on our pairwise-correlation394

weighted networks using Gephi (53). We repeat the computa-395

tions 10 times for each network, and we select the partition in396

clusters that renders the highest value of modularity (i.e. Q=0.177).397

398

Stability metric (dis)similarity. We use hierarchical clustering (36)399

to aggregate stability metrics according to their similarity (based on400

correlation). Starting with the closest pair of metrics, subsequent401

metrics are joined together in a hierarchical fashion from the closest402

(i.e most similar) to the furthest apart (most different) until all403

metrics are included. The distance between a pair of metrics is404

defined as d = (1 − ρ) where ρ is the Spearman’s rank correlation.405

We constructed the dendrogram with the hierarchical agglomerative406

clustering (HAC) algorithm in Python (54). We selected the linkage407

method (‘average’) that rendered distances in the dendrogram closest408

to the original pairwise correlation (goodness-of-fit based on the409

cophenetic correlation coefficient c=0.85). The closer c is to 1, the410

better the correspondence.411
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