F. Achard, R. Beuchle, P. Mayaux, H. Stibig, C. Bodart et al., , p.330

A. Lupi, R. Ra?i, R. Seliger, and D. Simonetti, Determination of tropical deforestation rates and related carbon losses from, Glob. Change Biol, vol.20, issue.8, pp.2540-2554, 1990.

G. P. Asner and J. Mascaro, Mapping tropical forest carbon: Calibrating plot estimates to a simple LiDAR metric, Remote Sens. Environ, vol.140, pp.614-624, 2014.

G. P. Asner, G. V. Powell, J. Mascaro, D. E. Knapp, J. K. Clark et al., , p.335

G. Acosta, E. Victoria, L. Secada, M. Valqui, and R. F. Hughes, High-resolution forest carbon stocks and emissions in the Amazon, Proc. Natl. Acad. Sci, vol.107, pp.16738-16742, 2010.

G. P. Asner, J. Mascaro, H. C. Muller-landau, G. Vieilledent, R. Vaudry et al., A universal airborne LiDAR approach for tropical forest carbon mapping, Oecologia, vol.168, issue.4, pp.1147-1160, 2012.

G. L. Baskerville, Use of Logarithmic Regression in the Estimation of Plant Biomass, 1972.

D. K. Bolton, N. C. Coops, and M. A. Wulder, Characterizing residual structure and forest recovery following high-severity fire in the western boreal of Canada using Landsat time-series and airborne lidar data, Remote Sens. Environ, vol.163, pp.48-60, 2015.

W. Y. Brockelman, A. Nathalang, and G. A. Gale, The Mo Singto forest dynamics plot, p.345

, Nat. Hist. Bull. Siam Soc, vol.57, pp.35-56, 2011.

. Preprint, , p.31, 2019.

W. Y. Brockelman, A. Nathalang, and J. F. Maxwell, Mo Singto Plot: Flora and Ecology, National Science and Technology Development Agency, and Department of National Parks, Wildlife and Plant Conservation, 2017.

S. Brown and A. E. Lugo, Tropical secondary forests, J. Trop. Ecol, vol.6, issue.1, pp.1-32, 1990.

L. Cao, N. C. Coops, J. L. Innes, J. Dai, H. Ruan et al., Tree species classification in subtropical forests using small-350 footprint full-waveform LiDAR data, Int. J. Appl. Earth Obs. Geoinformation, vol.49, pp.39-51, 2016.

F. Y. Chai, Above-Ground biomass estimation of a secondary forest in Sarawak, J. Trop. For. Sci, vol.10, 1997.

W. Chanthorn, Y. Ratanapongsai, W. Y. Brockelman, M. A. Allen, C. Favier et al., Viewing tropical forest succession as a three-dimensional dynamical system, Theor. Ecol, vol.9, issue.2, pp.163-172, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01969974

W. Chanthorn, F. Hartig, and W. Y. Brockelman, Structure and community composition in a tropical forest suggest a change 355 of ecological processes during stand development, For. Ecol. Manag, vol.404, pp.100-107, 2017.

J. Chave, D. Coomes, S. Jansen, S. L. Lewis, N. G. Swenson et al., Towards a worldwide wood economics spectrum, Ecol. Lett, vol.12, issue.4, pp.351-366, 2009.

J. Chave, M. Réjou-méchain, A. Búrquez, E. Chidumayo, M. S. Colgan et al.,

W. Ngomanda, A. Nogueira, E. M. Ortiz-malavassi, E. Pélissier, R. Ploton et al., Improved allometric models to estimate the aboveground biomass of tropical trees, Glob. Change Biol, vol.20, issue.10, pp.3177-3190, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02063299

J. Chave, C. Piponiot, I. Maréchaux, H. De-foresta, D. Larpin et al., Slow rate of secondary forest carbon accumulation in the Guianas compared with the 3 rest of the Neotropics, Ecol. Appl, 2019.

R. L. Chazdon, Second Growth: The Promise of Tropical Forest Regeneration in an Age of Deforestation, 2014.

R. L. Chazdon, S. G. Letcher, M. Van-breugel, M. Martínez-ramos, F. Bongers et al., Rates of change in tree communities of secondary Neotropical forests following major disturbances, Philos. Trans. R. Soc. B Biol. Sci, vol.362, pp.273-289, 1478.

R. L. Chazdon, E. N. Broadbent, D. M. Rozendaal, F. Bongers, A. M. Zambrano et al., , p.375

P. Meave, J. A. Mesquita, R. Mora, F. Muñoz, R. Muscarella et al., Area-based vs tree-centric approaches to mapping forest carbon in Southeast Asian forests from 385 airborne laser scanning data, Sci. Adv, vol.2, issue.5, pp.77-88, 2017.

R. O. Dubayah, S. L. Sheldon, D. B. Clark, M. A. Hofton, J. B. Blair et al., Estimation of tropical forest height and biomass dynamics using lidar remote sensing at La Selva, Costa Rica, J. Geophys. Res. Biogeosciences, vol.115, issue.G2, 2010.

T. R. Feldpausch, C. Prates-clark, C. Da, E. C. Fernandes, and S. J. Riha, Secondary forest growth deviation from 390 chronosequence predictions in central Amazonia, Glob. Change Biol, vol.13, issue.5, pp.967-979, 2007.

T. R. Feldpausch, L. Banin, O. L. Phillips, T. R. Baker, S. L. Lewis et al., , p.395

A. R. Kassim, M. Keller, J. Kemp, D. A. King, J. C. Lovett et al., Height-diameter allometry of tropical forest trees, Biogeosciences, vol.8, issue.5, pp.1081-1106, 2011.

T. R. Feldpausch, J. Lloyd, S. L. Lewis, R. J. Brienen, M. Gloor et al., , p.405

W. F. Lovett, J. C. Malhi, Y. Marimon, B. S. Marimon-junior, B. H. Lenza et al., , p.410

L. Willcock, S. Woell, H. Phillips, and O. L. , Tree height integrated into pantropical forest biomass estimates, Biogeosciences, vol.9, issue.8, pp.3381-3403, 2012.

A. Ferraz, S. Saatchi, L. Xu, S. Hagen, J. Chave et al., Carbon storage potential in degraded forests of Kalimantan, vol.13, p.95001, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02403113

H. K. Gibbs, S. Brown, J. O. Niles, and J. A. Foley, Monitoring and estimating tropical forest carbon stocks: making REDD a reality, Environ. Res. Lett, vol.2, issue.4, p.45023, 2007.

S. J. Goetz, A. Baccini, N. T. Laporte, T. Johns, W. Walker et al., Mapping and monitoring carbon stocks with satellite observations: a comparison of methods, Carbon Balance Manag, vol.4, issue.1, p.420, 2009.

M. C. Hansen, P. V. Potapov, R. Moore, M. Hancher, S. A. Turubanova et al., High-Resolution Global Maps of 21st-Century Forest Cover Change, Science, vol.342, issue.6160, pp.850-853, 2013.

. Preprint, , p.31, 2019.

, Baseline Map of Carbon Emissions from Deforestation in Tropical Regions, Science, vol.336, issue.6088, pp.1573-1576, 2012.

E. H. Helmer, M. A. Lefsky, and D. A. Roberts, Biomass accumulation rates of Amazonian secondary forest and biomass of old-growth forests from Landsat time series and the Geoscience Laser Altimeter System, J. Appl. Remote Sens, vol.3, issue.033505, pp.1-31, 2009.

M. R. Jepsen, Above-ground carbon stocks in tropical fallows, For. Ecol. Manag, vol.225, issue.1, pp.287-295, 2006.

T. Jucker, G. P. Asner, M. Dalponte, P. Brodrick, N. Vaughn et al., A regional model for estimating the aboveground carbon density of Borneo's tropical forests from airborne 435 laser scanning, p.72, 2017.

T. Jucker, G. P. Asner, M. Dalponte, P. G. Brodrick, C. D. Philipson et al., Estimating aboveground carbon density and its uncertainty in Borneo, p.440

, Biogeosciences, vol.15, issue.12, pp.3811-3830, 2018.

V. Junttila, T. Kauranne, A. O. Finley, and J. B. Bradford, Linear Models for Airborne-Laser-Scanning-Based Operational Forest Inventory With Small Field Sample Size and Highly Correlated LiDAR Data, IEEE Trans. Geosci. Remote Sens, vol.53, issue.10, pp.5600-5612, 2015.

D. K. Kennard, K. Gould, F. E. Putz, T. S. Fredericksen, and F. Morales, Effect of disturbance intensity on regeneration 445 mechanisms in a tropical dry forest, For. Ecol. Manag, vol.162, issue.2, pp.197-208, 2002.

S. Kitamura, T. Yumoto, P. Poonswad, P. Chuailua, and K. Plongmai, Characteristics of hornbill-dispersed fruits in a tropical seasonal forest in Thailand, Bird Conserv. Int, vol.14, issue.S1, pp.81-88, 2004.

K. Kronseder, U. Ballhorn, V. Böhm, and F. Siegert, Above ground biomass estimation across forest types at different degradation levels in Central Kalimantan using LiDAR data, Int. J. Appl. Earth Obs. Geoinformation, vol.18, pp.37-48, 2012.

N. Labriere, S. Tao, J. Chave, K. Scipal, T. L. Toan et al., Situ Reference Datasets From the TropiSAR and AfriSAR Campaigns in Support of Upcoming Spaceborne Biomass Missions
URL : https://hal.archives-ouvertes.fr/hal-01932955

, Earth Obs. Remote Sens, vol.11, issue.10, pp.3617-3627, 2018.

S. G. Letcher and R. L. Chazdon, Rapid Recovery of Biomass, Species Richness, and Species Composition in a Forest Chronosequence in Northeastern Costa Rica -Letcher -2009 -Biotropica -Wiley Online Library, vol.20, 2009.

A. Liaw and M. Wiener, Classification and Regression by randomForest, 2002.

M. Lohbeck, L. Poorter, M. Martínez-ramos, and F. Bongers, Biomass is the main driver of changes in ecosystem process rates during tropical forest succession, Ecology, vol.96, issue.5, pp.1242-1252, 2015.

. Preprint, , p.31, 2019.

E. C. Losos and E. G. Leigh, Tropical forest diversity and dynamism, vol.20, 2004.

D. Lu, The potential and challenge of remote sensing-based biomass estimation, Int. J. Remote Sens, vol.27, issue.7, pp.1297-1328, 2006.

A. E. Lugo and S. Brown, Tropical forests as sinks of atmospheric carbon, For. Ecol. Manag, vol.54, issue.1-4, pp.239-255, 1992.

M. Maltamo, P. Packalén, X. Yu, K. Eerikäinen, J. Hyyppä et al., Identifying and quantifying structural characteristics of heterogeneous boreal forests using laser scanner data, For. Ecol. Manag, vol.216, issue.1, pp.41-50, 2005.

J. G. Masek and G. J. Collatz, Estimating forest carbon fluxes in a disturbed southeastern landscape: Integration of remote sensing, forest inventory, and biogeochemical modeling, J. Geophys. Res, vol.111, issue.G1, p.1006, 2006.

S. M. Mcmahon, G. Arellano, and S. J. Davies, The importance and challenges of detecting changes in forest mortality rates, p.475

, Ecosphere, vol.10, issue.2, p.2615, 2019.

V. Meyer, S. S. Saatchi, J. Chave, J. W. Dalling, S. Bohlman et al., Detecting tropical forest biomass dynamics from repeated airborne lidar measurements, Biogeosciences, vol.10, issue.8, pp.5421-5438, 2013.

V. Meyer, S. Saatchi, A. Ferraz, L. Xu, A. Duque et al., Forest degradation and biomass loss along the, p.480
URL : https://hal.archives-ouvertes.fr/hal-02401714

, Chocó region of Colombia, Carbon Balance Manag, vol.14, issue.1, 2019.

E. T. Mitchard, S. S. Saatchi, A. Baccini, G. P. Asner, S. J. Goetz et al., Uncertainty in the spatial distribution of tropical forest biomass: a comparison of pan-tropical maps, Carbon Balance Manag, vol.8, issue.1, p.10, 2013.

E. T. Mitchard, T. R. Feldpausch, R. J. Brienen, G. Lopez-gonzalez, A. Monteagudo et al., , p.485

J. Lloyd, C. A. Quesada, M. Gloor, H. Steege, . Ter et al.,

M. Claros, N. Pitman, C. A. Peres, L. Poorter, A. Prieto et al., Markedly divergent estimates of Amazon forest carbon density from ground plots and satellites, Glob. Ecol. Biogeogr, vol.23, issue.8, pp.935-946, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01555979

E. Naesset, Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data, Remote Sens. Environ, vol.80, issue.1, pp.88-99, 2002.

A. E. N'guessan, J. K. N'dja, O. N. Yao, B. H. Amani, R. G. Gouli et al., Drivers of biomass recovery in a secondary forested landscape of West Africa, For. Ecol. Manag, vol.433, pp.325-331, 2019.

,

. Preprint, , p.31, 2019.

N. Norden, R. C. Mesquita, T. V. Bentos, R. L. Chazdon, and G. B. Williamson, Contrasting community compensatory trends in alternative successional pathways in central Amazonia, Oikos, vol.120, issue.1, pp.143-151, 2011.

N. Norden, H. A. Angarita, F. Bongers, M. Martínez-ramos, I. Granzow-de-la-cerda et al., Successional dynamics in Neotropical forests are as uncertain as they are predictable, Proc. Natl. Acad. Sci, vol.112, issue.26, pp.8013-8018, 2015.

D. Pflugmacher, W. B. Cohen, E. Kennedy, and R. , Using Landsat-derived disturbance history (1972-2010) to predict current forest structure, Remote Sens. Environ, vol.122, pp.146-165, 2012.

D. Pflugmacher, W. B. Cohen, R. E. Kennedy, and Z. Yang, Using Landsat-derived disturbance and recovery history and 510 lidar to map forest biomass dynamics, Remote Sens. Environ, vol.151, pp.124-137, 2014.

P. D. Pickell, T. Hermosilla, R. J. Frazier, N. C. Coops, and M. A. Wulder, Forest recovery trends derived from Landsat time series for North American boreal forests, Int. J. Remote Sens, vol.37, issue.1, pp.138-149, 2016.

L. Poorter, F. Bongers, T. M. Aide, A. M. Zambrano, P. Balvanera et al.,

H. S. Broadbent, E. N. Chazdon, R. L. Craven, D. De-almeida-cortez, J. S. Cabral et al.,

S. Rodríguez-velázquez, J. Romero-pérez, I. E. Ruíz, J. Saldarriaga, J. G. Sanchez-azofeifa et al., Biomass resilience of Neotropical secondary forests, Nature, vol.530, issue.7589, pp.211-214, 2016.

L. Poorter, F. Bongers, T. M. Aide, A. M. Zambrano, P. Balvanera et al.,

H. S. Broadbent, E. N. Chazdon, R. L. Craven, D. De-almeida-cortez, J. S. Cabral et al.,

S. Rodríguez-velázquez, J. Romero-pérez, I. E. Ruíz, J. Saldarriaga, J. G. Sanchez-azofeifa et al., Data from: Biomass resilience of Neotropical secondary forests, 2016.

G. J. Ray and B. J. Brown, Seed Ecology of Woody Species in a Caribbean Dry Forest, Restor. Ecol, vol.2, pp.156-163, 2006.

M. Réjou-méchain, B. Tymen, L. Blanc, S. Fauset, T. R. Feldpausch et al., Using repeated small-footprint LiDAR acquisitions to infer spatial and temporal variations of a high-biomass Neotropical forest, Remote Sens. Environ, vol.169, pp.93-101, 2015.

M. Réjou-méchain, A. Tanguy, C. Piponiot, J. Chave, and B. Hérault, biomass: an r package for estimating above-ground biomass and its uncertainty in tropical forests, Methods Ecol. Evol, vol.8, issue.9, pp.1163-1167, 2017.

. Preprint, , p.31, 2019.

M. Réjou-méchain, N. Barbier, P. Couteron, P. Ploton, G. Vincent et al., Upscaling Forest Biomass from Field to Satellite Measurements: Sources of Errors and Ways to Reduce Them, Surv. Geophys, 2019.

J. Roussel and D. Auty, lidR: Airborne LiDAR Data Manipulation and Visualization for Forestry Applications, 2017.

D. M. Rozendaal and R. L. Chazdon, Demographic drivers of tree biomass change during secondary succession in northeastern Costa Rica, Ecol. Appl, vol.25, issue.2, pp.506-516, 2015.

D. M. Rozendaal, R. L. Chazdon, F. Arreola-villa, P. Balvanera, T. V. Bentos et al., , p.550

F. , Demographic Drivers of Aboveground Biomass Dynamics During Secondary Succession in Neotropical Dry and Wet Forests, Ecosystems, vol.20, issue.2, pp.340-353, 2017.

J. Ruiz, M. C. Fandino, and R. L. Chazdon, Vegetation Structure, Composition, and Species Richness Across a 56-year Chronosequence of Dry Tropical Forest on Providencia Island, Colombia1, Biotropica, vol.37, issue.4, pp.520-530, 2005.

J. G. Saldarriaga, D. C. West, M. L. Tharp, and C. Uhl, Long-Term Chronosequence of Forest Succession in the Upper Rio Negro of Colombia and Venezuela, J. Ecol, vol.76, issue.4, pp.938-958, 1988.

N. Sasaki and F. E. Putz, Critical need for new definitions of "forest" and "forest degradation" in global climate change agreements, Conserv. Lett, vol.2, issue.5, pp.226-232, 2009.

W. L. Silver, R. Ostertag, and A. E. Lugo, The Potential for Carbon Sequestration Through Reforestation of Abandoned 560

, Tropical Agricultural and Pasture Lands, Restor. Ecol, vol.8, issue.4, pp.394-407, 2000.

S. M. Stas, E. Rutishauser, J. Chave, N. P. Anten, and Y. Laumonier, Estimating the aboveground biomass in an old secondary forest on limestone in the Moluccas, Indonesia: Comparing locally developed versus existing allometric models, For. Ecol. Manag, vol.389, pp.27-34, 2017.

H. Stibig, F. Achard, S. Carboni, R. Ra?i, and J. Miettinen, Change in tropical forest cover of Southeast Asia from, Biogeosciences, vol.11, issue.2, pp.247-258, 2010.

M. J. Sullivan, J. Talbot, S. L. Lewis, O. L. Phillips, L. Qie et al., , p.570

D. Bongers, F. Brienen, R. Camargo, J. L. Cerón, C. Moscoso et al., , p.575

P. S. Morandi, J. T. Mukendi, J. Mukinzi, R. Nilus, P. N. Vargas et al., Diversity and carbon storage across the tropical forest biome, Sci. Rep, vol.7, p.39102, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01594863

. Preprint, , p.31, 2019.

S. C. Thomas and A. R. Martin, Carbon Content of Tree Tissues: A Synthesis, vol.3, p.2012

M. Toledo and J. Salick, Secondary Succession and Indigenous Management in Semideciduous Forest Fallows of the Amazon Basin 1 : Secondary Succession and Indigenous Management, Biotropica, vol.38, issue.2, pp.161-170, 2006.

J. C. White, N. Saarinen, V. Kankare, M. A. Wulder, T. Hermosilla et al., , p.585

J. Vastaranta and M. , Confirmation of post-harvest spectral recovery from Landsat time series using measures of forest cover and height derived from airborne laser scanning data, Remote Sens. Environ, vol.216, pp.262-275, 2018.

M. A. Wulder, J. C. White, C. W. Bater, N. C. Coops, C. Hopkinson et al., Lidar plots -a new large-area data collection option: context, concepts, and case study, Can. J. Remote Sens, vol.38, issue.5, pp.600-618, 2012.

H. S. Zald, J. L. Ohmann, H. M. Roberts, M. J. Gregory, E. B. Henderson et al., Influence of lidar, Landsat imagery, disturbance history, plot location accuracy, and plot size on accuracy of imputation maps of forest composition and structure, Remote Sens. Environ, vol.143, pp.26-38, 2014.

A. E. Zanne, G. Lopez-gonzalez, D. A. Coomes, J. Ilic, S. Jansen et al., Data from: Towards a worldwide wood economics spectrum, 2009.

K. Zhao, S. Popescu, and R. Nelson, Lidar remote sensing of forest biomass: A scale-invariant estimation approach using airborne lasers, Remote Sens. Environ, vol.113, issue.1, pp.182-196, 2009.

D. Zheng, J. Rademacher, J. Chen, T. Crow, M. Bresee et al., Estimating aboveground biomass using Landsat 7 ETM+ data across a managed landscape in northern Wisconsin, USA, Remote Sens. Environ, vol.93, issue.3, pp.402-411, 2004.

S. G. Zolkos, S. J. Goetz, and R. Dubayah, A meta-analysis of terrestrial aboveground biomass estimation using lidar remote sensing, Remote Sens. Environ, vol.128, pp.289-298, 2013.

, Location of the study area in Thailand (upper left) and in the Khao Yai reserve (bottom left). The central map illustrates the LiDAR top of canopy height in the study area at 1-m resolution and the location of the 70 studied plots (in black). Examples of the different stand development stages are illustrated (right; SIS: stand initiation stage; SES: stem exclusion stage

,

. Preprint, , p.31, 2019.

, LiDAR-AGB model showing the relationship between field-derived plot AGB and the LiDAR top-of-canopy height (TCH) at a 0.5-ha resolution. The power model is illustrated by the red line, and the successional types to which field plots pertain according to Wirong

,

. Preprint, , p.31, 2019.

, Figure 3. LiDAR-AGB map and the distribution of AGB values over the landscape at 60-m resolution. (a)-Spatial distribution of AGB predicted from the LiDAR-AGB inversion model over the study area; (b)-Density distribution of predicted AGB over the landscape

. Preprint, , p.31, 2019.