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Abstract

This paper describes a bio-inspired method that enables the
production of artificial multiagent organisms starting from a
single agent. This method relies on two complementary com-
puting approaches: (1) mimicking the functioning of segmen-
tation genes and homeotic genes in the development of nat-
ural embryos and (2) using techniques from the evolutionary
computing and the artificial embryogeny fields. The paper
first details these mechanisms and then studies some possi-
bilities of such a bio-inspired approach developing multiagent
systems that evolve and self-organize in various flag patterns.

Introduction
Living systems outperform in many ways complex systems
that man has produced. Seeking inspirations from these sys-
tems, several established and active research communities
are organized around themes such as self-organization (Ca-
mazine et al., 2001), DNA computing, artificial neural net-
works (Boers et al., 1993), morphogenesis (Roggen et al.,
2003), evolutionary computation (Koza, 1994), etc.

The problems tackled with evolutionary computation be-
come increasingly complex and traditional approaches are
becoming less efficient. In the nascent field of artificial em-
bryogeny (Stanley and Miikkulainen, 2003), researchers ex-
plore new ways to outperform the classical direct mapping
of evolutionary methods (from genotype to phenotype) by
proposing various approaches to evolve and grow artificial
organisms (indirect encoding).

This paper proposes an artificial embryogeny to explore
possibilities of evolving a multiagent system (MAS) (Fer-
ber, 1999). In our model, the agents behavior mimics
the functioning of the segmentation genes and homeotic
genes involved in the animals morphogenesis, based on the
drosophila larva development model. Agents replicate and
interact to construct organisms following morphogenetic
rules.

The outlines of the paper are as follows: A review of some
relevant works on artificial embryogeny is first presented.
Secondly, a biological background is given to explain the
role of segmentation and homeotic genes in the morpho-
genetic process. The MAS model is given in the third part:

we first define the cell-agents and then describe the way to
make them evolve to construct multiagent organisms. Sim-
ulations of the model are developed and then discussed. Fi-
nally, we draw conclusions from this work.

Artificial embryogeny related works
Considering artificial embryogeny research, a clear distinc-
tion can be made between grammatical approaches and cell
chemistry approaches (Stanley and Miikkulainen, 2003).

Using grammatical approaches, a number of researchers
have studied the potential of Lindenmeyer systems (L-
systems) (Prusinkiewicz and Lindenmayer, 1990) for gener-
ating Artificial Neural Networks (ANNs) which are a major
challenge for artificial embryogeny. Boers and Kuiper used
evolutionary algorithms to evolve the rules of L-systems that
generate ANNs (Boers et al., 1993). Gruau abandoned L-
systems to develop a language called cellular programming
based on the transformation of graphs (Gruau, 1993). Cel-
lular programming enables the controlling of the division of
cells that grow into ANNs.

Grammatical approaches produce good results but do not
seem to be well fitted for evolutionary processes (Stanley
and Miikkulainen, 2003). So, a number of researchers have
managed to simulate the low-level aspect of natural embryo-
geny. One of the earliest works on cell chemistry approaches
returns to Turing (Reaction/Diffusion) (Turing, 1952). Tur-
ing proposed linear equations to achieve spatial differentia-
tion, which is done by postulating two substances with mu-
tual interaction and different spatial distribution, namely the
morphogens. De Garis was one of the first to present a work
based on cellular automata, cell chemistry and genetic pro-
gramming (de Garis, 1999). De Garis’s work achieved to
grow simple non-convex organisms. Moreover, de Garis ex-
tended his work to obtain convex organisms thanks to the
addition of external sources of morphogens. In fact, exoge-
nous sources of morphogens are commonly used in artificial
embryogenies. For instance, Eggenberger used exogenous
substances to induce a symmetry break in his digital organ-
isms (Eggenberger, 1997).

Fleischer and Barr (Fleischer and Barr, 1992) developed



a simulation framework for multi-cellular pattern formation
including chemical diffusion. This framework also includes
mechanical factors such as cell adhesion, genetic factors,
etc. Fleischer and Barr showed the difficulty of maintain-
ing the size and the shape of a multi-cellular organism and
pointed out the necessity of combining multiple mechanisms
in the pattern formation to guarantee the robustness of the or-
ganism. COMPUCELL 3D has been developed to simulate
morphogenetic processes in different organisms and also im-
plements phenomena such as cell growth, diffusion of chem-
ical gradients, etc (Izaguirre et al., 2004). COMPUCELL
3D highlighted the necessity of modeling each cell state of
an organism to implement differentiation processes. Still,
the morphogenesis model of COMPUCELL 3D is limited
by the fact that it a priori assumes the shape of the organism
as a function of time.

Inspired by the cell adhesion process, Hogeweg
(Hogeweg, 2000) developed a model to simulate mor-
phogenetic processes such as cell migration or engulfing.
Using Boolean networks of genetic regulation, Hogeweg
achieved to evolve complex artificial organisms. However,
Hogeweg’s model does not use morphogen gradients and
cannot handle the simulation of phenomena such as chemo-
taxis or chemical genes regulation.

Miller developed artificial organisms based on Cartesian
Genetic Programming which is an extension of Boolean net-
works (Miller, 2003). Miller’s goal is to evolve a develop-
mental program inside a cell to create multicellular organ-
isms. The obtained organism can be then considered as a
program. Still, this method seems to be expensive in com-
puting resources for simple problems for which developing
a single program is easier.

Biological background
Morphogenesis
The proposed chemical approach is a multiagent model di-
rectly inspired by the functioning of genes involved in the
morphogenesis process of animals. To better describe this
model, we now briefly introduce the biological concepts we
will use later on.

Morphogenesis has been first studied via the observation
of the alteration of the developmental process in species. At
the end of the 19th century, Bateson discovered few mutants
drosophila (a fruit fly) which parts of the body were trans-
formed into another ones. At the end of the 20th century,
Lewis discovered the genes involved in these alterations.
These genes are known to be the same involved in the pro-
cess of morphogenesis, the homeotic genes.

Genes are regions of DNA inheritance of living crea-
tures. A gene basically encodes the chemical structure of
a protein and the way this protein (the transcript) is pro-
duced. A protein is produced by a cell when the coding
part (CP) of the gene is transcribed and translated. The

Figure 1: A cascade of gene activation in the drosophila
larva development.

transcription/translation process depends on interactions be-
tween regulatory elements (REs), which are other parts of
the gene, and transcription factors which are cells internal or
external molecules. The interaction process that takes place
between a transcription factor and a gene is called the regu-
lation process.

The homeotic genes encode transcription factors that
control the expression of genes responsible for particular
anatomical structures, such as wings, legs, and antennae.
Basically, during the early phases of the development of an-
imals, these genes are expressed within the organism to as-
sign an identity to regions which are already established. In
the case of the insects, these regions are called segments and
are created by a cascade of regulations of genes, namely the
segmentation genes.

Drosophila larva development model

To better understand the role of homeotic genes and segmen-
tation genes, we will now briefly describe the early phases
of drosophila larva development. For further information on
this subject see (Li et al., 2001). The genes that priorly act
in the developmental process are already present in the egg
before the embryo starts to transcribe its own genes. These
maternal genes are expressed during oogenesis (production
of female gamete) and they produce the mRNAs (mater-
nal ribonucleic acids) which are stored within the egg. Ini-
tial asymmetries in the egg along the anterior-posterior axis
(from head to tail) are set up by localization of mRNAs at the
anterior and posterior poles of the embryo. These mRNAs
are translated and diffuse through the embryo, forming two
opposite long-range protein gradients (see Fig. 1.a.). These
two protein gradients are transcription factors that regulate a
first set of segmentation genes, the gap genes. A gene X may
be active only at high concentrations of transcription factors,
whereas a gene Y could also be active at lower concentra-
tions, and therefore at a greater distance from the source of
the transcription factors. It is the case for gap genes which
roughly subdivide the embryo along the anterior/posterior
axis (see Fig. 1.b.). The gap genes encode transcription
factors that regulate the expression of a second set of seg-
mentation genes, the pair-rule genes. The broad domains of
gap gene expression are translated into a striped pattern and



the embryo is divided into pair of segments (see Fig. 1.c.).
Finally, the pair-rule genes encode transcription factors that
regulate the expression of a third set of segmentation genes,
the segment polarity genes. The segment polarity genes set
the anterior/posterior axis of each segment (see Fig. 1.d.).
Once established, the homeotic genes are regulated to assign
each segment its own identity by regulating groups of func-
tional/structural genes.

Proposed MAS organism model
The proposed model is a MAS based on reactive agents able
to evolve and replicate. Our approach aims to closely mimic
the role of segmentation genes and homeotic genes in the
process of morphogenesis:

- Environment takes the role of egg/embryo, in which ma-
ternal gradients of morphogens/mRNAs are diffused.

- Agents take the role of cells and their behavior is an
interpretation of a genome composed by segmentation genes
and homeotic genes (behavioral genes). They are called cell-
agents.

Environment and information
The environment is a discretized rectangular surface (8-
connectivity) that primarily acts as interaction medium. Gra-
dients of maternal morphogens are initially present to initi-
ate the developmental process. These gradients are placed
randomly or in an ad-hoc manner, depending on the organ-
ism adaptation objectives (see the evolutionary experiments
section). Maternal gradients assume the role of biological
mRNAs as in natural morphogenesis. An alternative to the
use of an exogenous source of morphogens is discussed in
the end of the paper. Nevertheless, maternal gradients are a
fundamental feature of natural embryogenetic processes and
must be considered when designing bio-inspired embryoge-
nies.

The information management is comparable to a biolog-
ical plain diffusion and involves equalizing the concentra-
tion of emitted proteins. The proteins diffuse at each time
step according to a diffusion coefficient δ and a decay rate ρ.
The physical mechanism of diffusion, when mapped onto a
discrete system (space and time), may be expressed quite
simply: at each time step, squares give out a fraction of
the proteins they hold, in all ”directions” (to each neighbor).
The fraction is computed by using the diffusion coefficient
δ. At the same time, the proteins also decay according to
their decay rate ρ. Hence, for the simplest version of the
plain diffusion algorithm, a square i that holds a quantity Φi
of a protein P, characterized by a diffusion coefficient δp
and a decay rate ρp, will give a small fraction of P, ∆Φi,
at each time step to each of its neighbors, independently of
squares, of neighbors, and of time. Each transfer of protein
to a neighbor j can then be captured by the following equa-
tion:
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Figure 2: Example of regulatory elements.

∆Φi→ j = (Φi− (Φi×ρp))× (δp/8) (1)

Cell-agents
The proposed approach relies on extending classical regula-
tory networks (Stanley and Miikkulainen, 2003) by distin-
guishing morphogenetic interactions (segmentation genes)
and functional interactions (homeotic genes). Each cell-
agent behavior is an interpretation of a genome composed
by two types of genes: segmentation genes, which are
involved in the patterning process of the organism, and
homeotic/behavioral genes that encode the behavior of the
agents and give the identity of the regions of the formed
organism. Both homeotic/behavioral terms are used since
some behaviors (such as the replicating one) are not dedi-
cated to a particular region/segment of the organism.

A gene is composed by two parts: (1) the coding part
(CP) and (2) the regulatory elements (REs). The CP encodes
the gene primary function. The REs encode the interaction
properties that enable the gene regulation (as in classical ar-
tificial regulatory networks).

The CP of segmentation genes encodes protein properties.
When a segmentation gene is activated, a parameterized dif-
fusing protein is produced. The segmentation gene CP is
implemented in a set of binary digits, namely a bitset. The
diffusion coefficient and the decay rate of the protein are
encoded in 7 bits (values ranged from 0.00 to 1.00 with a
precision of one-hundredth). The CP can be easily extended
to add extra properties to the produced proteins encoded in
the same bitset (e.g. type, color, etc.).

In the case of behavioral genes, the CP type is related
to the implemented function. Indeed, the CP works as an
evolutionary computing standard tool. For instance, the CP
can be a tree encoding a part of the cell-agent program (like
in genetic programming (Koza, 1994)), a bitset encoding a
specific parameter/value of the cell-agent behavior (like in
genetic algorithm (Holland, 1987)), etc. For instance, we
can imagine encoding the color of a cell-agent by using a set
of 24 bits representing the RGB canal, or a moving behavior
with simple commands encoded within a tree.

The REs encode the interaction between genes and pro-
tein gradients to enable the regulation process. The for-
mal description of REs is inspired by the Reaction/Diffusion



model (Turing, 1952) and encodes a chemical reaction in-
volving genes transcription factors (the diffusing proteins).
But, instead of encoding the chemical result of a chemical
reaction, the REs encode the possibility of this reaction to
appear. First of all, all the transcription factors of the gene
are encoded within a bitset defining a set of transcription
identifiers. The transcription factors of the gene are ran-
domly chosen (C, B, D, A in Fig. 2). The REs second
part is called the reaction part (RP) and encodes the chem-
ical reaction itself. The RP is decomposed into equal parts
representing reaction factors with each of the transcription
factors. The last part encodes the reaction unit quantity, an
integer that matches the perceived quantity of proteins with
the reaction (as the mole unit in chemistry).

A cell-agent perceives all proteins in its square and ap-
plies the chemical reaction for all of its genes. For a given
gene, the result of the reaction depends on the restricting
chemical factor:

let G be a gene, let H be the set of all transcription factors
h of G, let Fh be the reaction factor for h and Qh the quantity
of h perceived. Let u be the reaction unit quantity of G. Then
the reaction result r for the gene G is given by:

r = min
{
∀(h ∈ H),

Qh

u∗Fh

}
(2)

The reaction result r can be interpreted in various ways. In
standard reactions, if r > 1, the chemical reaction intervenes
and the regulatory elements activate G: the cell-agent per-
ceives a sufficient amount of transcription factors. If r = 0,
the gene is inhibited.

The REs have been extended to perform more sophisti-
cated tasks. For instance, a second RP can be added to
inhibit the gene when r > 1. This permits to greatly in-
crease the way a gene can be regulated but slows down the
evolutionary process. Another extension deals with activa-
tion/inhibition thresholds. The quantities of perceived tran-
scription factors may be high enough to react several times
(e.g. r = 8). So, a part can be added to the REs to limit the
regulation process to a certain number of reactions: under
or over (or both) a threshold encoded in the gene, the CP is
inhibited.

Genetic model
The evolutionary principles of the model are inspired by
classical approaches of evolutionary computing. A standard
evolutionary algorithm has been extended to encompass the
notion of organism. Every cell-agent possesses a behavioral
gene encoding the replication function (mitosis).

The evolutionary algorithm works as follows:
(1) Generate maternal gradients in the environment E.
(2) Generate a population P of cell-agents with random

genomes.
(3) While (criterion not reached) {
(4) Place each cell-agent of P in E and let it grow.

(5) Assign fitness to each genome of the cell-agents ac-
cording to an objective function with respect to the formed
organism.

(6) Select n cell-agents for reproduction with respect to
the fitness of their genome.

(7) Reproduce cell-agents by taking two parents at a time
and use reproduction operators on the set of genes of their
genomes.

(8) Apply mutation operators on the genes of the offspring
genomes.

(9) Replace old population by offspring according to re-
placement strategies. }

Step 1 is trivial: the generation of the maternal gradients
can be done either randomly or by the simulation designer
to accelerate the population convergence. In most of the
cases, gradients are deposited according to symmetry axes.
This phase intervenes at first in order to correctly initialize
the regulatory elements of the generated genomes (transcrip-
tions factors).

Step 2 consists in randomly generating coding parts and
regulatory elements for every gene of the cell-agents. This
generation can be different according to the nature of the
gene (i.e. bitsets, tree of instructions, graphs of values, etc.).

Step 3: the criterion consists in reaching a pre-determined
value of the fitness.

Step 4 and 5 are crucial ones. They consist in simulat-
ing each single cell-agent and evaluating the quality of the
formed organism. Fitness is given by external(s) observer(s)
based on the designer desiderata (task to achieve, size, color,
etc.). The fitness is calculated on the formed organism but
assigned to the genome of the single cell-agent that has given
birth to the whole organism.

Step 6 involves selection methods of evolutionary com-
puting and consists in choosing which cell-agents are al-
lowed to reproduce thanks to the fitness of their genome.
Several methods can be used here: Roulette Wheel Selec-
tion, Tournament Selection, Rank Selection, Boltzmann Se-
lection, etc. (Koza, 1994).

Step 7 consists in creating new cell-agents (with new
genomes) starting from pre-selected cell-agents. The off-
spring are generated in the hope that they will be better than
their parents (in the sense of fitness). Again, various tech-
niques can be used depending on the type of the genes: Sim-
ple Crossing-over, Double Crossing-over, etc. (Koza, 1994).

Step 8 is used to alter genetic information on the genes of
the genomes of the newly created cell-agents. This operation
is used to prevent the evolutionary algorithm from stagnating
at local optima.

Step 9 determines which offspring will replace old cell-
agents in order to generate the new population. Elitism,
Steady State Replacement and CHC Selection are com-
monly used techniques for this purpose (Koza, 1994).

Although this algorithm is a classical model of evolution-
ary programming, it has been designed to fit our embryoge-



netic/organism point of view: the genomes of the cell-agents
neither encode problem solutions nor methods for solving a
problem, but rather encode the chemical interactions and the
growth of an organism which is expected to have properties
that will eventually resolve a problem from an external point
of view.

Evolutionary experiments
To validate our model and evaluate its capabilities, classical
artificial life experiments have been conducted creating or-
ganisms that construct flag patterns. The model has been im-
plemented on the MAS platform MadKit (Gutknecht et al.,
2001) using the TurtleKit framework (Michel et al., 2005).

Some modifications have been done to the model to en-
sure a faster convergence of the system. Firstly, four ma-
ternal gradients are deposited according to symmetry axes
in order to bootstrap the morphogenetic process. The ma-
ternal gradients consist in linear gradients of proteins de-
posited from one side to the other side of the environment
in arbitrary quantities (from 0 to 5000 in the presented sim-
ulations). In the drosophila larva model, these gradients are
emitted by the mother during the early phase of the devel-
opment according to the anteroposterior axis. Secondly, the
coding parts of some genes are simplified by defining, in an
ad-hoc manner, the encoded behaviors. When such genes
are regulated, they directly activate the cell-agent behaviors
instead of extracting these behaviors from an interpretation
of the coding part of the gene.

The fitness of the organisms is calculated by an external
observer-agent when the growing process stops or when the
size of the organism reaches the size of the environment.
This fitness is given by the observer-agent to the genome of
the cell-agent which has formed the whole organism. The
fitness consists in a percentage of similarity between the
graphical representation of the formed organism and a pre-
defined flag pattern. The simulation ends when an organism
is at least similar at 98% to the predefined pattern. The cell-
agents which are eligible for reproduction are chosen via a
roulette wheel selection with respect to the computed fitness.
The mutation operator consists in randomly switching bits in
the genes. At each new generation, the probability for a bit
to mutate is 0.15%. The reproduction operator is a two-point
crossover.

The French flag experiment
The French flag model of Wolpert (Wolpert, 1968) has been
the inspiration for the first task the model has to achieve.
This model has already been studied by Miller (Miller, 2003)
using CGP. The evolved organism has to grow a recogniz-
able French flag.

To exhibit the role of maternal gradients, the first system
has been implemented without segmentation genes. All the
genes of the cell-agents are directly regulated by maternal
gradients that are initially present in the environment. The

Figure 3: Growth of fittest program from a single cell-agent
to a mature French flag organism.

genome of the cell-agents consists in four genes: mitosis,
blue, white and red. All genes have been implemented in bit-
sets and the coding part simply activates a particular behav-
ior of the cell-agents. The mitosis gene controls the replicat-
ing behavior. When the mitosis gene is activated, cell-agents
replicate in the free neighbor spaces. When a color gene is
activated, cell-agents take the corresponding color. By de-
fault, the cell-agents are green. Each transcription identifier
of the transcription factors of the genes has been encoded in
a set of 2 bits, the reaction factors of the reaction parts have
been encoded in a set of 5 bits and the reaction unit quantity
has been encoded in a set of 6 bits.

One hundred simulations have been made using 30 indi-
viduals as population, in a 100x100 environment. We ob-
tained the growth of a French flag organism in all cases. We
obtained the convergence of the population in an average of
250 generations. Figure 3 shows the growth of a mature
French flag organism.

The Japanese flag experiment
This second experiment exhibits the role of segmentation
genes in the patterning process. The genome of the cell-
agents consists in three genes: mitosis, segmentation and
red. By default, the cell-agents are white. Each transcrip-
tion identifier of the transcription factors of the genes has
been encoded in a set of 2 bits, the reaction factors of the
reaction parts have been encoded in a set of 5 bits and the
reaction unit quantity has been encoded in a set of 6 bits.
The same environment (size and maternal gradients) than in
the French flag experiments has been used. It permitted us to
reuse the mitosis gene of evolved French flag agents. Indeed,
the mitosis gene specifically controls the size of the formed
organism. So, we used a predefined Japanese flag pattern
of the same size as the French flag pattern. It is a funda-
mental feature of the model: by reusing evolved genes, the
performance of the evolution algorithm can be significantly
increased and a step by step evolution is possible. Figure 4
shows the growth of a Japanese flag organism.

The formation of the red circle intervenes when (1) the



Figure 4: Growth of fittest program from a single cell-agent
to a mature Japanese flag organism.

segmentation gene encodes a protein which is a transcription
factor of the red gene, (2) this protein has fittest parameters,
(3) the red gene encodes an adequate reaction with this tran-
scription factor. One hundred simulations have been made
using 30 individuals as population in a 100x100 environ-
ment. The convergence of the population has been obtained
in all cases with an average of 200 generations. Without
reusing the pre-evolved mitosis gene, for one hundred simu-
lations, the convergence of the population has been obtained
with an average of 290 generations, showing (1) the mod-
ularity of the model and (2) the added value provided by
reusing previously evolved genes.

Experiments and model evaluation
Compared to other similar experiments which have been
published in the literature, the obtained results are very
promising. Firstly, the evolved organisms are almost equal
to each predefined pattern. Secondly, these results have been
achieved in a number of generations which was less than ex-
pected. Finally, the Japanese flag experiment showed that it
is possible to successfully reuse evolved genes within differ-
ent organisms. This result has urged us to work on establish-
ing a kind of gene library that could be used to ease the de-
sign of new organisms based on the reuse of predefined/pre-
evolved genes either (1) during the a priori design phase or
(2) at runtime, directly within the evolutionary engine (man-
ually or automatically).

A model limitation relies on the ad-hoc use of predefined
maternal gradients. In fact, even if maternal gradients most
likely are a fundamental feature of natural processes of mor-
phogenesis, it would be very interesting to design organ-
isms that do not require exogenous sources of morphogens
prior to the emission of the cell-agents themselves. Consid-
ering this issue, we are currently working on applying Re-
action/Diffusion techniques to define a better local control:
substituting maternal gradients by the behavior of the agents.
Indeed, Gierer and Meinhardt (Gierer and Meinhardt, 1972)
have shown that interactions between heterogeneous gradi-
ents of morphogens can lead to symmetry breaks and polar-

ity gradients formations.
Additionally, we are exploring some modifications of the

reaction part of the genes: (1) we are extending the chem-
ical reaction to transform the classical reaction factors into
a polynomial function of the transcription factors, (2) this
polynomial function is encoded and evolved within a node
tree instead of a simple bitset. Preliminary experiments
showed great improvements in the pattern refining and in
the symmetry breaking of the simulated organisms.

Another way to improve the expressiveness of the model
is to act on the mutation mechanisms. So, we plan to mod-
ify the mutation operators to permit modifications of the
genome structure of the cell-agents. In fact, following the
establishment of new sources of gradients in a pattern as a
consequence of the regulation of segmentation genes, new
gradients may be fired leading to more refined patterns.
However, this refining may be insufficient and lead to lo-
cal minima. So, we are exploring the introduction of new
segmentation genes during the evolution process to ensure a
better refining of complex organisms.

Conclusion
We have presented and discussed a bio-inspired develop-
mental model of multiagent organisms. This model is an
artificial embryogeny closely inspired by the morphogenetic
process and is implemented using the multiagent paradigm.
The evolved entities are reactive agents sensitive to protein
gradients. The system has been simulated to exhibit its ca-
pabilities in evolving complex organisms.

Perspectives of such a work are numerous, but we are ac-
tually interested in three issues. The first one deals with
multiagent systems design. We plan to construct swarm or-
ganisms giving the cell-agents low-level functions, enabling
them to resolve simple tasks which require distributed reso-
lution. Another interesting long-term perspective deals with
data encryption and data compression. It can be interest-
ing to consider predefined patterns of organisms as a data
to compress or to encrypt. Evolved genomes would be thus
considered as compressed data which have to evolve to be
readable. In the same way, we can imagine to encrypt data
in a genome. Then, the relevant key to decrypt data could
be either the environment properties or the behavior of the
agents.

Finally, we are very interested in refining our inspirations
from biological processes. In a general way, the artificial
embryogeny field can help in increasing knowledge on the
mechanisms of complexity appearance in natural organisms.
Seeking inspirations in these mechanisms can greatly con-
tribute in designing complex systems. Indeed, Bentley and
Kumar demonstrated that an evolutionary approach of em-
bryogeny provides significant benefits to evolve complex
solutions in evolutionary computation (Kumar and Bentley,
2003).
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