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Abstract. The study of evolving artificial organisms to build hardware
or software complex systems is a promising research track. In this paper,
we describe a bio-inspired method that makes agents evolve to form mul-
tiagent organisms. This method mimics the functioning of Hox genes in
the development of natural embryos and implements techniques from the
evolutionary computing field. Furthermore, we study the possibilities of
our approach developing multiagent systems that evolve and self-organize
in various flag patterns.

1 Introduction

Many of the systems that surround us are complex. Understanding their prop-
erties motivates much if not all of scientific inquiry. That is why the study of
complex systems has become recognized in recent years as a scientific discipline
[1], maybe one of the most promising interdisciplinary fields. The field of involved
scientific inquiries covers philosophy, chemistry, physics, computer science, etc.

The study of living organisms, their behavior and evolution, is one of the
rapidly developing areas in the study of complex systems. Living systems outper-
form in many ways complex systems that man has produced. Seeking inspirations
from these systems, there are several established and active research communities
organized around themes such as self-organization [2], artificial immune systems
[3], DNA computing [4], artificial neural networks [5], morphogenesis [6], evolu-
tionary computing [7], etc. Among all these research tracks, we are especially
interested in the following questions:

— How a single cell can grow through division and differentiation to a multi-
cellular organism?

— How evolution can lead to functional and behavioral adaptation to environ-
ment?

Both questions highlight the mechanisms of complexity appearance in the
living systems. How a single evolved cell can give birth to complex organisms



? To answer these questions, evolutionary computationists explore three main
ways to grow artificial embryos from a single cell (process named embryogeny)
(8] :

— External: the growth is hand-designed and organisms do not evolve.

— Explicit : the growth is defined in data structures and organisms evolve to
”learn” growing process.

— Implicit: the growth is the result of interacting behaviours/rules and organ-
isms evolve to "learn” these behaviours/rules.

This paper proposes an implicit embryogeny to explore possibilities of evolving a
multiagent system [9]. Seeking brainwawes in biology, the interacting behaviors
of agents are directly inspired by the functioning of genes involved in the mor-
phogenesis process. Agents replicate and interact to contruct organisms following
morphogenetic rules.

Morphogenesis is one of the fundamental aspects of developmental biology
along with the control of cell growth and cellular differentiation. Morphogenesis
is concerned with the shapes of tissues, organs and the spatial distribution of
cells that arises during the embryonic development of an organism.

To achieve the learning of growing behaviour, agents evolve. In biology, evo-
lution is a change in the traits of living organisms over generations, including
the emergence of new species. The study of evolution processes has leaded to
the development of many population-based metaheuristic optimizations meth-
ods. Genetic algorithms [10], evolution strategies[11], genetic programming[12],
evolutionary programming [13] are usually quoted. The goal of such methods
aims to evolve artificial population of individuals possessing a genetic inheri-
tance (genotype, genome) to explore a problem search-space. The solution of
the problem is thus given by an interpretation (program, subroutine), direct
translation (behaviour, value, result), etc., of the genetic inheritance of the in-
dividual (genotype, genome).

The work presented in this paper is motivated by an attempt to explore the
capabilities of a developmental multiagent model that encompasses the notion
of ”pluri-individual” evolution.

The outlines of the paper are as follows: Section 2 presents a review of some
relevant works on embryogeny. In Sect. 3, a brief biological background is given
in order to explain the morphogenetic process. The multiagent system model is
given in Sect. 4: we first define the agents that mimic embryo cells and then
describe the evolutionary model of agents that construct organisms. Simulations
of the model are developed in Sect. 5 and discussed in Sect. 6. Finally, we draw
conclusions from this work in Sect. 7.

2 Related works

A number of researchers have implemented morphogenetic models in order to
produce realistic phenomena. One of the earliest works returns to Turing (Reac-
tion/Diffusion) [14]. Turing proposed linear equations to achieve spatial differen-
tiation, which is done by postulating two substances with mutual interaction and



different rates of distributions in space, namely the morphogens. Since Turing
studies, the morphogen term is usually employed referring to substances involved
in patterning processes.

In the field of Artificial Embryology, de Garis was one of the first to present a
work based on cellular automata and genetic programming [15]. De Garis’s work
achieved to grow simple non-convex organisms until the addition of external
sources of chemical gradients. Exogenous sources of substances or morphogens
are commonly used in research on morphogenesis. For instance, Eggenberger used
exogenous morphogens to induce a symmetry break in his digital organisms [16].

Fleischer and Barr [17] developed a simulation framework for multi-cellular
pattern formation including chemical diffusion. This framework also includes
mechanical factors such as cell adhesion, genetic factors, etc. Fleischer and Barr
showed the difficulty of maintaining the size and shape of a multi-cellular or-
ganism and pointed out the necessity of combining multiple mechanisms in the
pattern formation to guarantee the robustness of the organism. COMPUCELL
3D has been developed to simulate morphogenetic processes in different organ-
isms and also implements phenomena such as cell growth, diffusion of chemical
gradients, etc [18]. COMPUCELL 3D highlighted the necessity to model each
cell state of an organism to implement differentiation processes. Still, the mor-
phogenesis model of COMPUCELL 3D is limited by the fact that it a priori
assumes the shape of the organism as a function of time.

Developing artificial neural networks(ANNS) is a great challenge in researches
on morphogenesis. A number of researchers have studied the potential of Linden-
meyer systems (L-systems) [19] for generating ANNs.? Boers and Kuiper used
evolutionary algorithms to evolve the rules of L-systems that generate ANNs[20].
Gruau abandoned L-systems to develop a language called cellular programming
based on graphs transformations[21]. Cellular programming enables the control-
ling of the division of cells that grow into ANNs.

Miller developed artificial organisms based on Cartesian Genetic Program-
ming[22]. Miller’s goal is to extend classical Cartesian Genetic Programming to
evolve a cell that can build a larger program by iterating the cell’s program
in its environment. Each cell becomes a part of the program which is literally
the organism as a whole. Miller’s method permits to build enormous programs
that would have required very large amount of information to be specified. Still,
this method seems to be expensive in resources for simple problems for which
developing a single program is easier.

3 Biological background

3.1 Background

In order to describe our bio-inspired model, we now introduce the biological
concepts we will use later on. Pattern formation is a key process in embryonic

3 Due to their fractal properties, L-systems are often used for both modeling and
visualizing plants.



development[23]. During this development, a fertilized egg gives rise via division
to various complex structures (body, organs, etc.). Three main processes can be
distinguished:

— Cell differentiation: the cells acquire specific functionality/type such as mus-
cle, neuron, cartilage, etc.

— Morphogenesis: the cells become ”aware” of their spatial position.

— Growth: the cells divide and the organism grows.

Our approach relies on the functioning of genes involved in the morphogenetic
process. Morphogenesis has been first studied via the observation of alteration
of developmental processes in species. Indeed, Bateson defined Homeosis in 1894
to describe natural variants of species where certain parts of the body plan ex-
hibited morphological features typical of other regions. At the end of the 19"
century, Lewis discovered few mutants drosophila (a fruit fly) which part of the
body was transformed into another one (See fig. 1). Lewis then spoke about
homeotic alterations. Since the end of the 20*" century, the genes involved in
these alterations are known. Those are the same which are involved in the mor-
phogenesis process, the Homeobox genes, or Hox genes.

Fig. 1. (1): Antennapedia (legs on the place of antennae) - (2): Bithorax (two thoraxes
instead of one).

¢ Photos from http://www.snof.org.

3.2 Genes and Hox genes

Genes are regions of DNA inheritance of living creatures. A gene basically en-
codes the chemical structure of a protein and the way this protein is produced.
A protein is produced by a cell when the coding part(CP) of the gene is tran-
scribed. The transcription process depends on regulatory elements(REs) which
are other parts of the gene. Some kinds of molecules (proteins, RNA%  etc.)
named transcription factors are able to interact with the REs to:

4 Ribonucleic acid.



— Activate or increase the gene transcription.
— Repress or decrease the gene transcription.

Transcription factors may come from the inside (internal) or the outside (exter-
nal) of the cell. The mechanism of activation/repression is called the regulation
system (See Fig. 2). When a protein is involved in the transcription of a gene
a, this protein regulates the gene a. In the same way, a gene encoding this pro-
tein regulates the gene a. Hox genes are part of the homeobox gene family. A
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Fig. 2. The regulation system.

homeobox gene encodes a particular protein called homeodomain protein. Due
to its chemical properties, Homeodomain proteins are transcription factors for
a number of genes, especially for structural genes. Homeodomain proteins usu-
ally act with other transcription factors, such as homeodomain proteins, to form
chemical complexes. Hoz genes specifically function in patterning the body axis,
especially the antero-posterior axis (axis from head to feet). Thus, by providing
the identity of particular body regions via regulation of numerous genes, Hoz
genes determine where limbs and other body segments will grow in a develop-
ing foetus or larva for many species. Because of their role in the developmental
process, homeodomain proteins can be considered as morphogens.

3.3 Drosophila larva development

In order to better understand the role of Hox genes, we will now describe, at a
high level of abstraction, the early phases of drosophila larva development. For
further information on this subject see [24]. The drosophila oocyte (the female
gamete) is polarized by gradients of maternal molecules which are mRNAs®. It is

5 Maternal ribonucleic acids.



important to note that mRNAs have deep effects on the development of a fertil-
ized egg, but they are expressed by cells within the maternal ovary. Within the
fertilized egg, these mRNAs are translated into proteins which are transcription
factors. Those factors regulate a first set of Hoz genes. This process induces the
formation of new gradients of proteins within the cell. Those gradients regulate
new genes creating new gradients, and so on (See Fig. 3). Rapidly the egg is
segmented in zones by numerous proteins gradients. Then, those proteins reg-
ulate new genes, the homeotic genes. The homeotic genes are Hox genes which
regulate groups of functional/structural genes. For instance, drosophila labial
and deformed homeotic genes encode proteins that are expressed in head seg-
ments. Within head segments, these proteins activate the genes defining head
features. If this transcription factor is damaged, the resulting individual can be
a mutant(See Fig. 3.1).

translated )
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Fig. 3. Gradients of homeodomain proteins during the development of drosophila larva.

It is interresting to note that due to a considerable genetic redundancy, the
vertebrates Hox genes has been highly conserved during the Evolution. For in-
stance, there are strong similarities between Hox complexes of tilapia, pufferfish,
striped bass, zebrafish, horn shark, human, and mouse; species which are sepa-
rated by approximately 500 million years of evolution[25].

4 Model

The proposed MAS model is directly inspired by the functioning of hox genes in
the morphogenetic process. Our approach aims to closely mimic this biological
process:

— Environment takes the role of egg/embryo, in which maternal gradients of
morphogens are diffused.

— Agents take the role of cells and their behavior is an interpretation of a
genome composed by Hox genes and behavioural genes. They are called cell-
agent.



4.1 Environment and information

The environment is a discretized rectangular surface (8-connexity) representing
either a toroidal world or a closed world. The environment acts primarily as
an interaction medium. Gradient of maternal substances are initially present
to initiate the developmental process. These gradients are placed randomly or
in an ad-hoc manner, depending on the organism adaptation objectives. The
maternal gradients assume the role of biological mRNAs (cf. Sect. 3.3) as in
natural morphogenesis. De Garis achieved to grow convex shapes with such an
addition of external morphogens [15]. The evolution of the system is discrete
and can be described as follows: Let S(;) be the system state at time ¢, which is
characterized by a set 1 of agents in the environment E:

S(t) = (E(t)7¢) - S(t+1) = (E(t+1)7¢) (1)

The information management is comparable to a biological plain diffusion.
This management involves equalizing the concentration of proteins/substances
within the environment. Amount of proteins varies each step in each space unit as
follows: (1) proteins importation from the 8-neighbors space, (2) proteins export
towards the 8-neighbors space, (3) proteins evaporation, (4) drop of proteins by
agents.

@ R I, : Export
...... 7
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Fig. 4. Diffusion model in discretized environment.

The coefficient of diffusion and the evaporation rate are the plain diffusion
parameters for every kind of proteins. Various kind of plain diffusion algorithms
have been used without affecting the behaviour of the model.

4.2 Agents

Our approach extends the classical models using logical regulatory networks by
distinguishing morphogenetic interactions (Hox genes) and functionnal interac-
tions (Behavioural genes). In our model cell-agents are reactive. Each cell-agent
has a genome (set of genes) which describes the agent’s behaviour. There are
two types of genes:

— Hox genes which are involved in the patterning process of the organism.
— Behavioural genes that encode the agents’ behaviour.



A gene is composed by two parts: (1) the coding part(CP) and (2) the reg-
ulatory elements(REs). The CP encodes the primary function of the gene. The
REs encode the interaction properties that enable the regulation of the gene. If
a gene is correctly regulated, it expresses the function encoded in its CP.

The CP of Hox genes encodes the properties and the emitted quantity of a
particular homedomain protein. The protein properties are the diffusion model
parameters. When a Hox gene is activated, a diffusing protein is produced with
corresponding evaporation rate and diffusion coefficient. The Hox gene CP is
implemented in a set of binary digits, namely a bitset. The CP can easily be
extended to add extra properties to the produced proteins (e.g. type, colour,
etc.).

In the case of behavioural genes, the type of the CP depends on the nature of
the implemented function. Indeed, the CP works as an evolutionary computing
standard tool. For instance, the CP can be a tree encoding a part of a program
(like in genetic programming[12]), a bitset encoding a specific parameter/value
(like in genetic algorithm[10]), a graph, etc. The CP of behavioural genes en-
codes a behavioural/physical characteristic of the agent (e.g. size, reproduction
behaviour, etc.).

The REs encode the interaction of the gene with the proteins gradients in
environment to enable the regulation process. The formal description of REs is
inspired by the Reaction/Diffusion model[14] (See Fig. 5). The REs encode a

Regulation Reaction Unit
factors part value

| | D
10011100 | 1110010110011001010100000111 |00100 |

Translation
[CBDA| 114C +102B+42D+7A |U-4]

Fig. 5. Example of regulatory elements.

Simulation 1 Simulation 2 Simulation 3
Proteins |Quantity Reactions|Quantity Reactions|Quantity Reactions
A 0 0 1000 35 336 12
B 800 1 2448 6 8000 19
C 200 0 6000 13 22000 48
D 2620 15 2000 11 2500 168
Global result 0 6 12

Table 1. Examples of reactions of the regulatory elements from Fig. 5 with various
quantities of homeodomain proteins.



chemical reaction involving the transcription factors® of the gene. First of all,
a bitset encodes which proteins are the transcription factors of the gene. These
transcription factors are randomly chosen at the beginning of the simulation
(namely C, B, D, A in Fig. 5). The second part of the REs, called the reaction
part(RP), encodes the chemical reaction. The RP is decomposed into equal parts
representing reaction factors with each of the transcription factors. The last part
encodes the reaction unit quantity, an integer. The REs functions as follows: An
agent perceives proteins in its space unit. An integer quantity is associated to
each kind of perceived proteins. If this protein is a transcription factor of a
gene, the chemical reaction of this gene RP is applied: let @) be the quantity
of perceived transcription factors, Rf the value of the reaction factor for this
transcription factor, U the unit value and Nr the result of the reaction. (See
Fig. 1 for examples).

Nr=Q/(Rf=U) (2)
Method |[Simulation 1|Simulation 2|Simulation 2
Inh Act Act
Standard ol HO HO
Inh Inh Act
Treshold 1 Ll ull HQ
Inh Act Inh
Treshold 2 ull HOQ ol
Functi Inh Act Act
netion null 240 480

Table 2. Reactions results with various reaction methods. Value are taken from Ta-
ble 1. Top: Activation result for behavioural genes (activated - Act, inhibited - Inh),
Bottom: Quantity of proteins emitted for Hox genes (HQ - Quantities encoded in Hox
gene).(1) Standard (2) Treshold 1: min:8, max treshold:14. (3) Treshold 2: min tresh-
old:1, max treshold:6. (4) Function: Quantity emitted = number of reactions * unit x
10

In standard reactions, if Nr is higher than 1 for all the transcription factors
of the gene, the regulatory elements activate the gene (See line 1 of table 2). REs
can be extended to perform more sophisticated or realistic tasks. Actually, the
role of the RP is limited to the activation of the CP. Some experiments are led
with a second RP. Instead of activating the CP like the first RP does, this sec-
ond RP inhibits it. This permits to increase the way a gene can be regulated by
considering transcription factors as activators and inhibitors at the same time.
Another extension deals with activation/inhibition thresholds. The quantities of
perceived transcription factors may be high enough to react several times (See
line 2-3 of table 2). So, a part can be added to REs to limit the regulation to
a certain number of reactions: under or over (or both) a number of reactions

5 The transcription factors are the diffusing homeodomains proteins.



encoded in the gene, the CP will be inhibited. This principle is fundamental in
the Hox genes functioning. Hox genes encode diffusing proteins that are tran-
scription factors. The quantity of these emitted proteins is implemented into the
CP of the gene. To model more sophisticated phenomena, this coding can be
modified by calculating the quantities of emitted proteins as a function of the
number of reactions of the RP (See line 4 of Table 2).

4.3 Genetic model

The evolutionary principles of the model are inspired by classical approaches of
the evolutionary computing field. The evolutionary algorithm has been extended
to encompass the notion of organism. Every agent possesses a behavioural gene
encoding the replication function (mitosis). Hox genes are generated randomly,
and behavioural genes depend on designer objectives.

The evolutionary algorithm works as follows:

1. Generate maternal gradients in the environment

. Generate a population of agents with a random genome

3. Assign fitness to each agent according to objective function on the formed
organism

. Select n individuals according to fitness for reproduction

. Reproduce offspring by taking two parents at a time and using reproduction
operators

. Apply mutation operators on the offspring

. Evaluate each offspring and assign fitness

. Replace old population by offspring according to replacement strategies

. Unless stopping criterion reached return to step 4

[N)

[SARE

© 0 D

Step 1 is a trivial one: the number of generated gradient depends on the or-
ganism adaptation objectives. Gradients generation can be either done randomly
or by the simulation designer (in order to accelerate the population convergence.
See Sect. 5.1).

Step 2 consists in randomly generating coding parts and regulatory elements
for every genes of the agents. This generation can be different according to the
nature of the gene (i.e. bitsets, tree of instructions, graphs of values, etc.).

The third step and the seventh step are crucial ones. They consist in sim-
ulating each single agent in the pre-generated environment and evaluating the
quality of the formed organism. The fitness is given by external(s) observer(s)
based on the designer desiderata. It is important to note that fitness function(s)
are computed on formed organisms but is assigned to the single agent that has
generated the whole organism.

Step 4 involves selection methods of evolutionary computing. Selection con-
sists in choosing the agents that are allowed to reproduce and then transmit
their characteristics to the next generation. A lot of methods can be used there.
Roulette Wheel Selection, Tournament Selection, Rank Selection, Boltzmann
selection are usual selection criteria [12].



Step 5 consists in creating new agents (with new genomes) from pre-selected
agents. The methods are related to the genes type. For instance, a crossover oper-
ator is a standard method for binary encoded genes. The offspring are generated
in the hope that they will be better (in the sense of fitness) than their parents.
Partial Mapping crossover, Order crossover, Cycle crossover, Edge Recombina-
tion crossover, Edge Assembly crossover are examples of crossing techniques [12].

Step 6 is used to alter genetic information on genes. This operation is used to
prevent the evolutionary algorithm from stagnating at local optima. Mutation is
dependant on the gene type. For instance, a mutation on a binary gene consists
in a probabilistic switching of one or more digits.

Step 8 determines which offspring will replace old agents in order to gener-
ate the new population. Elitism, steady state replacement, CHC selection, are
techniques commonly used for this purpose [12].

The evolution algorithm is a classical model of evolutionary programming.
This algorithm has been extended to fits our embryologic/organism point of
view. The genome of an individual neither encodes the solution of a problem nor
a program for solving a problem but rather encodes the growth of an organism
which would have selected properties to resolve the considered problem.

5 Evolutionary experiments

The model has been implemented on the MAS platform MadKit [26] using the
TurtleKit framework [27]. TurtleKit is a simulation engine which provides tools
for exploiting multiagent simulations based on agents evolving in a discretized
world. TurtleKit also provides tools for plain diffusion management.

In this paper, two experiments are analyzed in order to present step by step
the two types of genes. In both experiments, we explore the possibilities of the
model by creating organisms that construct flag patterns.

Some modifications have been done to the model to ensure a faster conver-
gence of the system. First of all, in both experiments, the maternal gradients have
been deposited according to symmetry axis: bottom-up, up-bottom, left-right,
right-left. In natural embryos, these gradients are emitted by the mother during
the early phase of the development in order to bootstrap the morphogenetic pro-
cess. The gradients do not diffuse nor evaporate: the perception of these proteins
by agents remains unchanged during simulation. In sect. 6, we discuss the pos-
sibility of designing experiments without maternal gradients. Secondly, coding
parts of some genes have been simplified by defining in an ad-hoc manner some
behaviours or proteins properties: it permits to ignore evolution process on such
part and quicken the global evolution of the population.

In both experiments, the fitness of agents is given by external observers
and agents eligible for reproduction are chosen via a roulette wheel selection
tournament. The fitness consists in a percentage of similarity with a pre-defined
pattern. The maximum fitness value is 100 when the formed organism matches
perfectly with the pre-defined pattern. Agents are simulated one by one and
placed in the center of the environment in order to facilitate evaluation.



5.1 French flag

The French flag model of Wolpert [28] has been the inspiration for the first task
the model has to achieve. This model has already been studied by Miller [29]
using CGP. The evolved organism has to grow a recognizable French flag.

In order to exhibit the role of maternal gradients, the first system has been
implemented without hox genes. All agents’ genes are directly regulated by pro-
teins gradients initially present in the environment. Agent’s genome consists in
four genes: mitosis, blue, white and red. The mitosis gene controls the duplicat-
ing behaviour of agents. If the mitosis gene is activated, then agents duplicates
in the free neighbor spaces. If the colour genes are activated, then agents take
the colour corresponding to the gene. By default, agents are green. There is an
order relation between colour genes: blue > white > red.

Several simulations have been made using 30 individuals as a population. Fig-
ure 6 shows the growth of French flag organisms. The convergence of population

is obtained with an average of 250 generations’.

Iteration 2 Iteration 5 Iteration 8 Iteration 12 Iteration 16

Tieration 21 Treration 26 Tteration 32 Iteration 40 Pre-defined pattern

Fig. 6. Growth of fittest program from a single agent to a mature French flag organism.

5.2 Japanese flag

The second system has been implemented to exhibit the role of hox genes in
the patterning process. Moreover the Japanese flag organism has been chosen
as a more complex organism. Indeed, circular shapes seem to be a difficult task
to achieve in embryologic developmental approaches. Agent’s genome consists

7 Data taken from 25 simulations.



of three genes: mitosis, Hox and red. By default, agents are white. The same
environment (size, maternal gradients) than in French flag experiments has been
used. It permitted us to reuse the mitosis gene of evolved French flag agents.
Indeed, the mitosis gene specifically controls the size of the formed organism.
We used a Japanese flag pattern of the same size as the French flag pattern. It is
an important feature of the model: by reusing evolved genes, the performance of
the evolution algorithm can be significantly increased. This notion is discussed
in sect. 6.

Several simulations have been made using diverse size of population. Figure
7 shows the growth of Japanese flag organism.

Tteration 2 Tteration 5 Tteration & Tteration 18 Tteration 25

Ireration 33 Tteration 37 Pre-defined pattern

Fig. 7. Growth of fittest program from a single agent to a mature Japanese flag organ-
ism.

The formation of the red circle intervenes when (1) Hox gene encodes a home-
odomain protein which is a regulation factor of the red gene, (2) this homedo-
main protein has fittest parameters, (3) the red gene encode an adequat reaction
with the homeodomain protein. The convergence of 30-individuals population is
obtained with an average of 200 generations®. The simulations without mitosis
gene reusing showed convergences with an average of 290 generations.

6 Discussion

The experiments exhibited the potentiality of the model. This work is in its first
stage and there are many ways in which the system can be improved. First of all,
the model can be improved to be more realistic by adding, for instance, adhesion

8 Data taken from 25 simulations.



laws? between agents or chemical interactions between proteins. However, since
the aim of the work is toward technological applications, it is important to keep
the model as simple as possible.

In real biological development, cells acquire functionalities during the growing
process. This is done by stem cells that gradually differentiate. One could imagine
mimic this process in order to better control growth of organism. Indeed, in the
model agents are stem cells that duplicate without specifying activated functions
in offspring. It can be interesting to fix functional cells in order to produce new
behaviours in the evolution process.

Secondly, we are working on substituting maternal gradients by the agents’
behaviour themselves. To apply this research on real-world problems, we need
to compensate the lack of external signals presence by a better local control. To
this end, we believe that Reaction/Diffusion techniques can be useful. Indeed,
Gierer and Meinhardt [30] have shown that interactions between heterogeneous
gradients of morphogens can lead to symmetry breaks and polarity gradients
formations. Nevertheless, it is our conviction that the maternal gradients are
fundamental in the natural embryogenic process and cannot be ignored in order
to design sophosticated artificical embryogenies. At the same, we are exploring
some modifications of the gene reaction part: the chemical reaction is extended
to a function of transcription factors. The preliminary experiments showed great
improvements in the pattern refining and symmetry breaking of simulated or-
ganisms.

Another great improvement of the model concerns the evolution process. In
Sect. 7, we discussed the possibility of reusing evolved genes in order to improve
evolutionary convergence. We plan to incorporate this technique into the evolu-
tionary engine to facilitate the design of systems by programmers. In the same
way, we plan to modify the mutation operators in order to permit modification
of the genome structure of agents. In fact, following the establishment of new
sources of gradients in a pattern as a consequence of Hox genes regulation, new
gradients may be fired leading to more refined patterns. Nevertheless the refin-
ing can be insufficient and lead to local minima. So, we plan to introduce the
possibility of adding new Hox genes during the evolution process in order to
ensure a better refining of complex organisms.

7 Conlusion

We have presented and discussed a bio-inspired developmental model of mul-
tiagent organisms. Bentley and Kumar demonstrated [8] that an evolutionary
approach of embryogeny provides significant benefits in evolutionary compu-
tation. Indeed, evolutionary models seem to be easier to design in a way to
evolve complex solutions. Our embryogeny model is closely inspired by the mor-
phogenetic process and uses a multiagent paradigm. The presented multiagent
model involves the evolution of reactive agents sensitive to proteins gradients.

9 Chemical or mechanical laws that postulate adhesion between agents.



The system has been implemented in order to exhibit its capabilities in forming
complex organisms.

Perspectives of such a work are various, but we are actually interested in
three issues. The first one deals with complex systems design and especially
multiagent systems design. We plan to construct swarm organisms giving the
formed organism functions to resolve problems which require distributed reso-
lution. Another interesting research track deals with data encryption and data
compression. It can be interesting to consider pre-defined patterns of organisms
as a data to compress or to encrypt. Evolved genomes would be thus considered
as compressed data which have to evolve to be readable. In the same way, we
can imagine to encrypt data in a genome. Then, the relevant key to decrypt data
could be either the environment properties or the agents’ behaviour.

Finally, we claim that a general model with a high level of abstraction and
simple principles can contribute to a better understanding of real biological de-
velopment processes. Moreover, the multiagent paradigm seems to be a relevant
approach to model closely bio-inspired complex systems. It is our conviction
that seeking inspiration from biology can help to enrich our understanding of
the functioning of complex systems.
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