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carmen peña-Bautista1, claire Vigor2, Jean-Marie Galano2, camille oger2, thierry Durand2, 
inés ferrer3, Ana cuevas3, Rogelio López-cuevas3, Miguel Baquero3, Marina López-nogueroles4, 
Máximo Vento  1, David Hervás-Marín  5, Ana García-Blanco1 & consuelo cháfer-pericás1

Alzheimer Disease (AD) standard biological diagnosis is based on expensive or invasive procedures. 
Recent research has focused on some molecular mechanisms involved since early AD stages, such 
as lipid peroxidation. therefore, a non-invasive screening approach based on new lipid peroxidation 
compounds determination would be very useful. Well-defined early AD patients and healthy 
participants were recruited. Lipid peroxidation compounds were determined in urine using a validated 
analytical method based on liquid chromatography coupled to tandem mass spectrometry. Statistical 
studies consisted of the evaluation of two different linear (Elastic Net) and non-linear (Random Forest) 
regression models to discriminate between groups of participants. The regression models fitted to 
the data from some lipid peroxidation biomarkers (isoprostanes, neuroprostanes, prostaglandines, 
dihomo-isoprostanes) in urine as potential predictors of early AD. these prediction models achieved 
fair validated area under the receiver operating characteristics (AUc-Rocs > 0.68) and their results 
corroborated each other since they are based on different analytical principles. A satisfactory early 
screening approach, using two complementary regression models, has been obtained from urine levels 
of some lipid peroxidation compounds, indicating the individual probability of suffering from early AD.

Alzheimer’s disease (AD) is the main cause of dementia worldwide1, and a continuous incidence increase is 
expected in the next few years with the corresponding great social and economic impact2. Nowadays, the standard 
diagnosis consists of specific neuroimaging procedures and biomarkers in cerebrospinal fluid (CSF)3,4, with the 
corresponding disadvantages of high cost and invasive sampling. In addition, available treatments have proven to 
be more effective in early stages5,6. Therefore, it would be very useful to develop an early and non-invasive screen-
ing model based on the individual risk to develop the AD.

In recent years, there is an increase body research about the involvement of oxidative stress since early AD 
stages7–9. Specifically, lipid peroxidation plays an important role in the development of AD due to the high 
lipid composition of the brain, as well as its high oxygen consumption10. In fact, Benseny-Cases et al. observed 
co-localization of oxidized lipids with senile plaques11, but also higher levels of oxidized lipids were found in 
plasma from AD patients than healthy individuals12. Among the lipid peroxidation products, isoprostanes (IsoPs) 
are considered important potential biomarkers of brain damage in AD13. Actually, high levels of F2-IsoPs were 
found in CSF14,15, as well as in plasma and serum from early AD patients16,17. However, few studies have been 
carried out in urine samples18–20 and most of them did not develop any statistical models for predicting AD.

The regression models constitute an important tool to predict the individual risk of suffering from AD. In 
this sense, few AD predictive models using sophisticated statistical tools can be found in literature, and they are 
based on CSF biomarkers or not validated analytical methods21–23. In addition, most of them required expensive 
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neuroimaging measures24. In this study we have developed regression models from lipid peroxidation biomarkers 
in urine in order to obtain a non-invasive and early AD screening approach.

Materials and Methods
Study design and participants. Participants were from the Neurology Unit (University and Polytechnic 
Hospital La Fe, Valencia, Spain). Their ages were between 50 and 75 years, and they were classified into early AD 
(case group) (n = 70) and healthy (control group) (n = 29) according to neuropsychological tests, neuroimaging 
(nuclear magnetic resonance, computerized axial tomography), and CSF biomarkers (β-amyloid, total tau (t-Tau), 
phosphorylated tau (p-Tau)).

The study protocol was approved by the Ethics Committee (CEIC) from Health Research Institute La Fe 
(Valencia, Spain), the methods were carried out in accordance with the relevant guidelines and regulations, and 
informed consent from all participants was obtained.

Lipid peroxidation compounds. The isoprostanes’ standards 5-F2t-IsoP, 2,3-dinor-15-epi-15-F2t-IsoP, 
15(R)-15-F2t-IsoP, 15-F2t-IsoP, 15-E2t-IsoP, 15-keto-15-E2t-IsoP, 15-keto-15-F2t-IsoP, prostaglandins PGE2, 
PGF2α, and 1a,1b-dihomo-PGF2α and deuterated internal standard (IS) PGF2α-d4 were from Cayman Chemical 
Company (Ann Arbor, Michigan, USA). The standards of 10-epi-10-F4t-NeuroP, d4-10-epi-10-F4t-NeuroP, 4(RS)-
4-F4t-NeuroP, 14(RS)-14-F4t-NeuroP, 7(RS)-ST-Δ8-11-dihomo-IsoF, 17(RS)-10-epi-SC-Δ15-11-dihomo-IsoF, 
17-epi-17-F2t-dihomo-IsoP, 17-F2t-dihomo-IsoP, and ent-7(RS)-7-F2t-dihomo-IsoP, were synthesized at the 
Institute of Biomolecules Max Mousseron (IBMM) (Montpellier, France) by Professor Durand’s team25.

The calibration curves were prepared by serial dilutions in H2O (pH 3):CH3OH (85:15 v/v) with CH3COOH 
0.01%, in concentrations from 300 nmol L−1 to 0.004 nmol L−1 of each analyte.

Urine samples analysis. Urine samples (n = 99) were collected in a sterile bottle and immediately stored 
at −80 °C until analysis (~6 months). As stated in a previous study, no deterioration was observed for the lipid 
peroxidation compounds at long-term, since samples were not subjected to freeze-thaw cycles26. Then, they were 
treated following the optimum procedure established in a previous work26. Briefly, samples were thawed on ice 
and 5 μL of the internal standard solution (PI) (PGF2α-d4 10 μmol L−1 and d4-10-epi-10-F4t-NeuroP 6 μmol L−1) 
were added to 1 mL of sample. Then, enzymatic hydrolysis was performed by adding the enzyme β-glucuronidase 
and sodium acetate buffer (100 mmol L−1, pH 4.9) and incubated for 2 hours at 37 °C. Then, the reaction was 
stopped and the enzyme was precipitated with cold methanol and chlorhydric acid (37%, v/v) and centrifuged 
for 10 min (14000 g, 4 °C). The supernatant pH was adjusted to 6–7 with sodium hydroxide (2.5 mol L−1). Then, a 
cleaning and pre-concentration step was carried out by solid-phase extraction (SPE). For this, the cartridges were 
first conditioned with methanol and H2O, then the samples were loaded into the SPE cartridge and the cartridge 
was washed with ammonium acetate (100 mmol L−1, pH 7) and heptane. Elution was carried out with 2 × 500 μL 
of methanol (5% v/v CH3COOH). After that, the samples were evaporated in the vacuum evaporator and recon-
stituted in 100 μL of H2O (pH 3):CH3OH (85:15 v/v) containing 0.01% (v/v) CH3COOH. Finally, the samples 
were injected into a chromatographic system (UPLC-MS/MS).

The results were standardized by the creatinine levels measured using a colorimetric kit (MicroVue creatinine 
EIA) and a spectrophotometer.

chromatographic system. The chromatographic system consisted of a UPLC system (Waters Acquity) 
coupled to a Xevo TQD system mass spectrometry system (Waters, United Kingdom). The conditions used were: 
ionization in negative mode (ESI-), capillary tension 2.0 kV, source temperature of 150 °C, desolvation tempera-
ture of 395 °C, gas flow of the nitrogen cone of 150 L h−1, and desolvation flow of 800 L h−1.

The LC conditions were selected to achieve appropriate chromatographic retention and resolution by using a 
C18 column (2.1 × 100 mm, 1.7 μm) (Acquity UPLC BEH, Waters). Mobile phases consisted of water (0.01% v/v 
CH3COOH as mobile phase A) and acetonitrile (0.01% v/v acetic acid as mobile phase B). The temperatures of 
the column and the autosampler were set at 55 °C and 4 °C, respectively. The injection volume was set at 8 µL and 
the flow rate was set to 0.45 mL min−1. A total 8.5 min elution gradient was performed. It consisted of 0.5 min with 
eluent composition at 80% A and 20% B, which was gradually changed to 55% A and 45% B at 6 min; then B was 
increased to 95% along 0.2 min, and kept constant for 0.8 min. Finally, the mobile phase composition returned to 
the initial conditions, and it was maintained for 1.3 min for system conditioning.

The detection was performed by multiple reaction monitoring (MRM) using the acquisition parameters 
obtained in a previous work26.

Statistical analysis. Data were summarized using median and interquartile range (IQR) in the case of con-
tinuous variables, and with relative and absolute frequencies in the case of categorical variables (Table 1). Prior 
to modelling, variables were log-transformed to avoid potential strongly influential outliers due to the highly 
skewed nature of some variables (Fig. S1 in Supplementary Material). Then, a logistic regression model based on 
elastic-net-penalized was developed including gender and age as covariates. The penalization parameter lambda 
was selected by performing 500 replications of ten-fold cross validation. The minimum cross-validated error 
was selected on each replication and the median from the selected lambda values was considered the consensus 
lambda. Since the minimum lambda value was used, an alternative variable selection method was performed as 
a sensitivity analysis. This alternative analysis consisted on a random forest using the Altmann et al. method27. 
The final elastic net model was validated using bootstrap validation. For this, the procedure of Steyerberg et al. 
was followed28. Statistical analyses were performed using the softwares R (version 3.5.0), the BootValidation R 
(version 0.1.3), glmnet R (version 2.0–16), and ranger (version 0.9.0).
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Results
participants’ characteristics. Table 1 shows the demographic and clinical data for both groups. Small dif-
ferences were shown for age and gender between groups, so these variables were considered covariates. Regarding 
the neuropsychological variables (Clinical Dementia Rating (CDR), Repeatable Battery for the Assessment of 
Neuropsychological Status (RBANS), Functional Activities Questionnaire (FAQ), Minimental State Examination 
(MMSE) and biological measures (CSF β-amyloid, CSF t-Tau, CSF p-Tau, temporal atrophy) used in the standard 
diagnosis, they showed significant differences between groups. However, the demographic variables (age, gen-
der, studies, alcohol, smoking status, medication and comorbidity) did not show statistical differences between 
groups.

Variable Case (n = 70) Control (n = 29)

Age (years) (median (IQR)) 70.5 (68, 74) 66 (62, 72)

Gender (female) (n (%)) 28 (40%) 18 (62%)

Secondary Studies (n (%)) 10 (14%) 10 (34%)

Alcohol consumption (yes) (n (%)) 6 (8%) 6 (21%)

Smoking status (yes) (n (%)) 8 (11%) 1 (3%)

Medications (yes) (n (%)) 54 (77%) 18 (62%)

Comorbidity (yes) (n (%)) 53 (76%) 18 (62%)
aRBANS.DM (median (IQR)) 44 (40, 49) 100 (91, 106)
bCDR (median (IQR)) 0.5 (0.5,1) 0 (0,0)
cFAQ (median (IQR)) 7 (3, 13) 0 (0, 0)
dMMSE (median (IQR)) 22 (18, 26) 30 (28, 30)

CSF Amyloid β (pg mL−1) (median (IQR)) 568 (441, 668) 1227 (1143, 1144)

CSF t-Tau (pg mL−1) (median (IQR)) 553 (377, 790) 208 (141, 333)

CSF p-Tau (pg mL−1) (median (IQR)) 88 (71, 116) 51 (38, 70)

Temporal atrophy (yes) (n (%)) 51 (72%) 2 (7%)

Depression (yes) (n (%)) 9 (13%) 3 (10%)

Table 1. Demographic and clinical variables of the study participants. IQR: Interquartilic range. aRBANS-DM, 
Repeatable Battery for the Assessment of Neuropsychological Status- Delayed Memory (Standard Score; cut-
off point < 85). bCDR, Clinical Dementia Rating, values: 0, 0.5, 1, 2. cFAQ, Functional Activities Questionnaire 
(Direct Score; cut-off point >9). dMMSE, Minimental State Examination.

Biomarkers

Case (n = 70) Control (n = 29)

Median (IQR) (ng mg−1 
creatinine)

Median (IQR) (ng mg−1 
creatinine)

15(R)-15-F2t-IsoP 0.72 (0.5, 1.56) 0.7 (0.48, 0.94)

PGE2 1.98 (0.62, 3.5) 1.69 (0.93, 4.26)

15-keto-15-E2t-IsoP 0.93 (0.53, 1.47) 1.02 (0.65, 1.54)

15-keto-15-F2t-IsoP 0.84 (0.22, 1.94) 1.33 (0.58, 2)

2,3-dinor-15-epi-15-F2t-IsoP 0.78 (0.53, 1.22) 0.65 (0.47, 1.09)

15-E2t-IsoP 0.23 (0.06, 1.31) 0.16 (0.07, 0.58)

5-F2t-IsoP 2.67 (1.68, 5.07) 2.37 (1.76, 3.37)

15-F2t-IsoP 0.01 (0, 0.02) 0.01 (0, 0.02)

PGF2α 3.72 (2.79, 7.32) 3.38 (2.35, 5.17)

4(RS)-4-F4t-NeuroP 0.89 (0.67, 1.36) 0.72 (0.5, 1.01)

1a,1b-dihomo-PGF2α 1.33 (0.64, 2.48) 1.67 (1.05, 2.23)

10-epi-10-F4t-NeuroP 0.03 (0, 0.06) 0.01 (0, 0.05)

14(RS)-14-F4t-NeuroP 1.21 (0.76, 2.16) 1.27 (0.74, 1.94)

ent-7(RS)-7-F2t-dihomo-IsoP 0.33 (0.14, 0.63) 0.28 (0.19, 0.36)

17-F2t-dihomo-IsoP 0.09 (0, 0.38) 0.11 (0, 0.26)

17-epi-17-F2t-dihomo-IsoP 0.01 (0, 0.07) 0 (0, 0)

17(RS)-10-epi-SC-Δ15-11-dihomo-IsoF 0.03 (0, 0.1) 0.05 (0.03, 0.08)

7(RS)-ST-Δ8-11-dihomo-IsoF 0 (0, 0.02) 0 (0, 0.03)

Table 2. Concentrations of lipid peroxidation biomarkers in urine samples. IQR, inter-quartile range; IsoP, 
isoprostane; dihomo-IsoP, dihomo-isoprostane; dihomo-IsoF, dihomo-isofuran, NeuroP, neuroprostane;
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Determination of urine lipid peroxidation biomarkers. Urine levels of lipid peroxidation compounds 
obtained for each group are shown in Table 2. Some of them (5-F2t-IsoP, 2,3-dinor-15-epi-15-F2t-IsoP, 15-E2t-IsoP, 
PGE2, PGF2α, 10-epi-10-F4t-NeuroP, 4(RS)-4-F4t-NeuroP, ent-7(RS)-7-F2t-dihomo-IsoP) showed higher levels in 
early AD patients than in healthy controls, and some analytes (15-keto-15-E2t-IsoP, 15-keto-15-F2t-IsoP) showed 
lower values in the case group than in the control group. Figure 1 shows the box plots for each analyte.

Screening model from urine lipid peroxidation biomarkers. The elastic net model selected five var-
iables corresponding to one isoprostane, one neuroprostane, one prostaglandin and two dihomo-isoprostanes 
shown in Table 3. The model also included gender and age, which were introduced as covariates. These predictor 
variables were combined as it is indicated in the formula below in order to estimate the individual probability (Pr) 
of suffering from AD.

+

− . + . ∗ + . ∗ − . ∗ + . ∗ − . ∗ + . ∗ + . ∗

− . + . ∗ + . ∗ − . ∗ + . ∗ − . ∗ + . ∗ + . ∗
Y e

e
Pr( )

1

female age A B C D E

female age A B C D E

4 187 0 463 0 064 0 13 ( ) 0 622 ( ) 0 048 ( ) 0 554 ( ) 0 072 ( )

4 187 0 463 0 064 0 13 ( ) 0 622 ( ) 0 048 ( ) 0 554 ( ) 0 072 ( )

Figure 1. Box-Plot of the differences in different lipid peroxidation analytes levels between early AD (case) and 
healthy (control) groups.

https://doi.org/10.1038/s41598-019-50837-2


5Scientific RepoRtS |         (2019) 9:14244  | https://doi.org/10.1038/s41598-019-50837-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

A: 15-keto-15-F2t-IsoP; B: 4(RS)-4-F4t-NeuroP; C: 1a,1b-dihomo-PGF2α; D: ent-7(RS)-7-F2t-dihomo-IsoP; E: 
17-epi-17-F2t-dihomo-IsoP

The alternative analysis using random forest selected the same five variables as the most important ones (Table 3), 
and they were also all considered statistically significant by the Altmann method27. Classification performance of the 
models was assessed using bootstrap in the case of elastic net and by the Out of Bag (OOB) estimate in the case of 
random forest. Bootstrap validated area under the receiver operating characteristics (AUC-ROC) for the elastic net 
model was 0.682 and OOB accuracy for the random forest model was 0.71, so their performance can be considered 
similar. Remarkably for the elastic net results, the sensitivity and specificity profile shows a sharp decrease of the sen-
sitivity values as the specificity increases, forcing a decision between high sensitivity (0.97) at a cost of low specificity 
(0.31) or high specificity (0.93) at a cost of mediocre sensitivity (0.5) (Fig. 2).

Variable
Coefficient 
(elastic net)

Importance 
(random forest)

p-value 
(random 
forest)

Gender (female) 0.463 0.17 0.08*

Age 0.064 1.09 0.012*

15-keto-15-F2t-IsoP −0.13 0.71 0.043*

4(RS)-F4t-NeuroP 0.62 0.74 0.046*

1a,1b-dihomo-PGF2α −0.048 0.73 0.035*

ent-7(RS)-7-F2t-dihomo-IsoP 0.55 0.64 0.044*

17-epi-17-F2t-dihomo-IsoP 0.072 0.58 0.029*

10-epi-10-F4t-NeuroP 0 0.48 0.075

17-F2t-dihomo-IsoP 0 0.35 0.133

17(RS)-10-epi-SC-Δ15-11-dihomo-IsoF 0 0.21 0.219

15-E2t-IsoP 0 0.17 0.293

5-F2t-IsoP 0 0.14 0.325

2,3-dinor-15-epi-15-F2t-IsoP 0 0.11 0.381

15(R)-15-F2t-IsoP 0 0.10 0.379

PGE2 0 0.08 0.405

15-keto-15-E2t-IsoP 0 0.05 0.436

7(RS)-ST-Δ8-11-dihomo-IsoF 0 −0.08 0.636

PGF2α 0 −0.09 0.603

14(RS)-14-F4t-NeuroP 0 −0.25 0.755

Table 3. Results of the elastic net and random forest analyses. Coefficients of the elastic net model are 
interpreted as log-odds, so negative values indicate a negative association between higher concentration levels 
and risk of disease and positive values indicate a positive association between higher concentration levels and 
risk of disease. Importance values and p-values for random forest are derived from the gini index using Altman 
method.

Figure 2. Sensitivity and specificity profile plot. The continuous line depicts the relationship between the 
probability threshold set in the model’s prediction and its corresponding sensitivity and the dashed line 
represent the relationship between the probability threshold and the specificity.
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Discussion
The reliable determination of lipid peroxidation products levels in urine samples from well-defined healthy and 
early AD participants, and the satisfactory classification performance of two complementary regression models 
allowed to develop an early and non-invasive screening model to identify individuals with high risk to develop 
the AD.

The role of lipid peroxidation in AD development has been largely studied10, but few studies have been carried 
out determining isoprostanoids as target metabolites in AD17,29. In addition, the analytical methods used in most 
of these works were based on commercial kits or immunoassays what is associated to low specificity on isomers 
determinations30. Nevertheless, in the present study a previously validated analytical method based on mass spec-
trometry detection has been used, providing high selectivity and sensitivity, as well as high reliability to determine 
simultaneously several isoprostanoids isomers26.

Regarding the development of early and non-invasive diagnosis, urine could be considered a promising 
matrix. However, few studies in literature have focused on this matrix31,32. Specifically, in the present work some 
compounds (PGE2, 2,3-dinor-15-epi-15-F2t-IsoP, 15-E2t-IsoP, 5-F2t-IsoP, PGF2α, 10-epi-10-F4t-NeuroP, 4(RS)-
4-F4t-NeuroP and 17-epi-17-F2t-dihomo-IsoP) showed higher concentrations in urine from AD patients than in 
healthy participants. Similarly, previous studies showed higher levels of some F2-IsoPs in urine from patients with 
AD than in the control group18–20. However, further studies to clinically validate these potential biomarkers, using 
a larger number of samples from well-defined participants, and predictive models are required.

In this work, two alternative modeling methods with completely different characteristics were used. First, 
elastic net logistic regression is based on standard generalized linear regression models, thus assuming linear-
ity of the relationship between predictors and the linear predictor, no interactions are assessed and the results 
are fully interpretable as in a standard logistic regression. On the other hand, random forest is a non-linear 
non-parametric model, that enable the assessment of higher order interactions between variables at a cost of 
lower statistical power compared to elastic net model when the relationship is linear33,34. Random forest does not 
provide an interpretable model, but provides a list of the most important variables in predicting the response. The 
fact that both methods obtained very similar results, provides robustness to our results.

In literature, few AD predictive models using these sophisticated statistical tools can be found21–23,34, and most 
of them are based on neuroimaging measures24. However, none of them were based on non-invasive determina-
tion of lipid peroxidation biomarkers in early AD patients.

The diagnostic indexes obtained from both models indicated that the results could constitute a satisfactory 
screening approach from early AD stages with the consequent benefits for patients and health public system. In fact, 
the high sensitivity obtained would allow a reliable identification of high-risk patients in the early stages of AD, and 
they would be derived to a method with higher specificity to rule out false positives17. Nevertheless, further clinical 
validation using an external cohort of participants would be required in order to obtain a reliable diagnostic model.

Regarding the study limitations, the low number of controls compared to cases would be explained by the dif-
ficulty to obtain healthy participants with CSF biomarkers. Also, we did not include participants with other sim-
ilar dementias, so differential AD diagnosis was not achieved. Further clinical validation work will be developed 
by including a higher number of controls, as well as patients with similar pathologies. In addition, a follow-up 
study will be carried out in order to evaluate the variation of these compounds levels along the time.

conclusion
A set of new lipid peroxidation biomarkers has been determined in urine samples from well-defined participants 
(early AD, healthy) by means of a previously validated analytical method. So, reliable results have been obtained 
and used to develop a preliminary early and non-invasive screening model in order to identify potential indi-
viduals with high risk of suffering AD, although it could not be considered AD specific. For this, two different 
regression models (linear, elastic net; non-linear, random forest) were developed, obtaining similar performance 
in terms of variable selection and accuracy, in spite of being based on different analytical principles, and so pro-
viding robustness to the results.

Data Availability
The datasets generated during the current study are available from the corresponding author on reasonable re-
quest.
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