J. A. Marsh and S. A. Teichmann, Structure, dynamics, assembly, and evolution of protein complexes, Annu. Rev. Biochem, vol.84, pp.551-575, 2015.

D. Helmlinger and L. Tora, Sharing the SAGA, Trends Biochem. Sci, vol.42, pp.850-861, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02371824

E. Koutelou, C. L. Hirsch, and S. Y. Dent, Multiple faces of the SAGA complex, Curr. Opin. Cell Biol, vol.22, pp.374-382, 2010.

G. Spedale, H. T. Timmers, and W. W. Pijnappel, ATAC-king the complexity of SAGA during evolution, Genes Dev, vol.26, pp.527-541, 2012.

P. Y. Lu, N. Lévesque, and M. Kobor, NuA4 and SWR1-C: two chromatinmodifying complexes with overlapping functions and components, Biochem. Cell Biol, vol.87, pp.799-815, 2009.

D. Helmlinger, New insights into the SAGA complex from studies of the Tra1 subunit in budding and fission yeast, Transcription, vol.3, pp.13-18, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02371836

A. C. Cheung and L. M. Díaz-santín, Share and share alike: the role of Tra1 from the SAGA and NuA4 coactivator complexes, Transcription, vol.00, pp.1-7, 2018.

S. B. Mcmahon, H. A. Van-buskirk, K. A. Dugan, T. D. Copeland, and M. D. Cole, The novel ATM-related protein TRRAP is an essential cofactor for the c-Myc and E2F oncoproteins, Cell, vol.94, pp.363-374, 1998.

A. Saleh, Tra1p is a component of the yeast Ada·Spt transcriptional regulatory complexes, J. Biol. Chem, vol.273, pp.26559-26565, 1998.

A. Vassilev, The 400 kDa subunit of the PCAF histone acetylase complex belongs to the ATM superfamily, Mol. Cell, vol.2, pp.869-875, 1998.

D. Helmlinger, Tra1 has specific regulatory roles, rather than global functions, within the SAGA co-activator complex, EMBO J, vol.30, pp.2843-2852, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02371837

G. Sharov, Structure of the transcription activator target Tra1 within the chromatin modifying complex SAGA, Nat. Commun, vol.8, p.1556, 2017.

X. Wang, S. Ahmad, Z. Zhang, J. Côté, and G. Cai, Architecture of the Saccharomyces cerevisiae NuA4/TIP60 complex, Nat. Commun, vol.9, p.1147, 2018.

H. Takai, R. C. Wang, K. K. Takai, H. Yang, and T. De-lange, Tel2 regulates the stability of PI3K-related protein kinases, Cell, vol.131, pp.1248-1259, 2007.

C. M. Anderson, Tel2 mediates activation and localization of ATM/Tel1 kinase to a double-strand break, Genes Dev, vol.22, pp.854-859, 2008.

H. Takai, Y. Xie, T. De-lange, and N. P. Pavletich, Tel2 structure and function in the Hsp90-dependent maturation of mTOR and ATR complexes, Genes Dev, vol.24, 2010.

K. E. Hurov, C. Cotta-ramusino, and S. J. Elledge, A genetic screen identifies the Triple T complex required for DNA damage signaling and ATM and ATR stability, Genes Dev, vol.24, pp.1939-1950, 2010.

T. Kaizuka, Tti1 and Tel2 are critical factors in mammalian target of rapamycin complex assembly, J. Biol. Chem, vol.285, pp.20109-20116, 2010.

N. Izumi, A. Yamashita, H. Hirano, and S. Ohno, Heat shock protein 90 regulates phosphatidylinositol 3-kinase-related protein kinase family proteins together with the RUVBL1/2 and Tel2-containing co-factor complex, Cancer Sci, vol.103, pp.50-57, 2012.

T. Hayashi, Rapamycin sensitivity of the Schizosaccharomyces pombe tor2 mutant and organization of two highly phosphorylated TOR complexes by specific and common subunits, Genes Cells, vol.12, pp.1357-1370, 2007.

A. Shevchenko, Chromatin central: towards the comparative proteome by accurate mapping of the yeast proteomic environment, Genome Biol, vol.9, p.167, 2008.

H. Inoue, CK2 phospho-independent assembly of the Tel2-associated stress-signaling complexes in Schizosaccharomyces pombe, Genes Cells, vol.22, pp.59-70, 2017.

J. Genereaux, Genetic evidence links the ASTRA protein chaperone component Tti2 to the SAGA transcription factor Tra1, Genetics, vol.191, pp.765-780, 2012.

C. E. Brown, Recruitment of HAT complexes by direct activator interactions with the ATM-related Tra1 subunit, Science, vol.292, pp.2333-2337, 2001.

S. R. Bhaumik and M. R. Green, SAGA is an essential in vivo target of the yeast acidic activator Gal4p, Genes Dev, vol.15, 1935.

S. R. Bhaumik, T. Raha, D. P. Aiello, and M. R. Green, In vivo target of a transcriptional activator revealed by fluorescence resonance energy transfer, Genes Dev, vol.18, pp.333-343, 2004.

J. Fishburn, N. Mohibullah, and S. Hahn, Function of a eukaryotic transcription activator during the transcription cycle, Mol. Cell, vol.18, pp.369-378, 2005.

W. M. Reeves and S. Hahn, Targets of the Gal4 transcription activator in functional transcription complexes, Mol. Cell. Biol, vol.25, pp.9092-9102, 2005.

E. Herbig, Mechanism of mediator recruitment by tandem Gcn4 activation domains and three Gal11 activator-binding domains, Mol. Cell. Biol, vol.30, pp.2376-2390, 2010.

B. A. Knutson and S. Hahn, Domains of Tra1 important for activator recruitment and transcription coactivator functions of SAGA and NuA4 complexes, Mol. Cell. Biol, vol.31, pp.818-831, 2011.

M. Pal, Structural basis for phosphorylation-dependent recruitment of Tel2 to Hsp90 by Pih1, Structure, vol.22, pp.805-818, 2014.

R. Aligue, H. Akhavan-niak, and P. Russell, A role for Hsp90 in cell cycle control: Wee1 tyrosine kinase activity requires interaction with Hsp90, EMBO J, vol.13, pp.6099-6106, 1994.

M. A. Alaamery and C. S. Hoffman, Schizosaccharomyces pombe Hsp90/Git10 is required for glucose/cAMP signaling, Genetics, vol.178, pp.1927-1936, 2008.

A. A. Boudreault, Yeast enhancer of polycomb defines global Esa1-dependent acetylation of chromatin, Genes Dev, vol.17, pp.1415-1428, 2003.

A. Auger, Eaf1 is the platform for NuA4 molecular assembly that evolutionarily links chromatin acetylation to ATP-dependent exchange of histone H2A variants, Mol. Cell. Biol, vol.28, pp.2257-2270, 2008.

Y. Han, J. Luo, J. Ranish, and S. Hahn, Architecture of the Saccharomyces cerevisiae SAGA transcription coactivator complex, EMBO J, vol.33, pp.2534-2546, 2014.

D. Setiaputra, Conformational flexibility and subunit arrangement of the modular yeast Spt-Ada-Gcn5 acetyltransferase complex, J. Biol. Chem, vol.290, pp.10057-10070, 2015.

D. Setiaputra, Molecular architecture of the essential yeast histone acetyltransferase complex NuA4 redefines its multi-modularity, Mol. Cell. Biol, vol.38, pp.1-15, 2018.

D. Helmlinger, The S. pombe SAGA complex controls the switch from proliferation to sexual differentiation through the opposing roles of its subunits Gcn5 and Spt8, Genes Dev, vol.22, pp.3184-3195, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02371840

P. J. Wu and F. Winston, Analysis of Spt7 function in the Saccharomyces cerevisiae SAGA coactivator complex, Mol. Cell. Biol, vol.22, pp.5367-5379, 2002.

K. K. Lee, Combinatorial depletion analysis to assemble the network architecture of the SAGA and ADA chromatin remodeling complexes, Mol. Syst. Biol, vol.7, p.503, 2011.

Z. Nagy, The human SPT20-containing SAGA complex plays a direct role in the regulation of endoplasmic reticulum stress-induced genes, Mol. Cell. Biol, vol.29, pp.1649-1660, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00370154

A. Köhler, M. Schneider, G. G. Cabal, U. Nehrbass, and E. Hurt, Yeast Ataxin-7 links histone deubiquitination with gene gating and mRNA export, Nat. Cell Biol, vol.10, pp.707-715, 2008.

S. V. Antonova, Chaperonin CCT checkpoint function in basal transcription factor TFIID assembly, Nat. Struct. Mol. Biol, vol.25, pp.1119-1127, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01950091

S. Imseng, C. H. Aylett, and T. Maier, Architecture and activation of phosphatidylinositol 3-kinase related kinases, Curr. Opin. Struct. Biol, vol.49, pp.177-189, 2018.

H. Yang, 4.4 Å resolution Cryo-EM structure of human mTOR complex 1, Protein Cell, vol.7, pp.878-887, 2016.
URL : https://hal.archives-ouvertes.fr/hal-00710539

M. Karuppasamy, Cryo-EM structure of Saccharomyces cerevisiae target of rapamycin complex 2, Nat. Commun, vol.8, p.1279, 2017.

Z. Herceg, Disruption of Trrap causes early embryonic lethality and defects in cell cycle progression, Nat. Genet, vol.29, pp.206-211, 2001.

T. Baptista, SAGA is a general cofactor for RNA polymerase II transcription, Mol. Cell, vol.68, p.5, 2017.

J. Bahler, Heterologous modules for efficient and versatile PCRbased gene targeting in Schizosaccharomyces pombe, Yeast, vol.14, pp.943-951, 1998.

P. Hentges, B. Van-driessche, L. Tafforeau, J. Vandenhaute, and A. M. Carr, Three novel antibiotic marker cassettes for gene disruption and marker switching in Schizosaccharomyces pombe, Yeast, vol.22, pp.1013-1019, 2005.

U. Gueldener, J. Heinisch, G. J. Koehler, D. Voss, and J. H. Hegemann, A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast, Nucleic Acids Res, vol.30, p.23, 2002.

F. Storici, L. K. Lewis, and M. A. Resnick, In vivo site-directed mutagenesis using oligonucleotides, Nat. Biotechnol, vol.19, pp.773-776, 2001.

X. Zhang, J. He, Y. Wang, and L. Du, A cloning-free method for CRISPR/Cas9-mediated genome editing in fission yeast. G3 (Bethesda). 8, g3, 2018.

A. Lock, PomBase 2018: user-driven reimplementation of the fission yeast database provides rapid and intuitive access to diverse, interconnected information, Nucleic Acids Res, vol.47, pp.821-827, 2019.

T. Kubota, K. Nishimura, M. T. Kanemaki, and A. D. Donaldson, The Elg1 replication factor C-like complex functions in PCNA unloading during DNA replication, Mol. Cell, vol.50, pp.273-280, 2013.

T. Laboucarié, TORC1 and TORC2 converge to regulate the SAGA co-activator in response to nutrient availability, EMBO Rep, vol.16, pp.202-212, 2017.

S. A. Bustin, The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments, Clin. Chem, vol.55, pp.611-622, 2009.

G. Rigaut, A generic protein purification method for protein complex characterization and proteome exploration, Nat. Biotechnol, vol.17, pp.1030-1032, 1999.

J. Cox and M. Mann, MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification, Nat. Biotechnol, vol.26, pp.1367-1372, 2008.

J. Cox, Andromeda: a peptide search engine integrated into the MaxQuant environment, J. Proteome Res, vol.10, pp.1794-1805, 2011.

A. H. Smits, P. W. Jansen, I. Poser, A. A. Hyman, and M. Vermeulen, Stoichiometry of chromatin-associated protein complexes revealed by labelfree quantitative mass spectrometry-based proteomics, Nucleic Acids Res, vol.41, p.28, 2013.

D. Kim, B. Langmead, and S. L. Salzberg, HISAT: a fast spliced aligner with low memory requirements, Nat. Methods, vol.12, pp.357-360, 2015.

S. Anders, P. T. Pyl, and W. Huber, HTSeq-A Python framework to work with high-throughput sequencing data, Bioinformatics, vol.31, pp.166-169, 2015.

M. I. Love, W. Huber, and S. Anders, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome Biol, vol.15, pp.1-21, 2014.

M. J. De-hoon, S. Imoto, J. Nolan, and S. Miyano, Open source clustering software, Bioinformatics, vol.20, pp.1453-1454, 2004.

E. Afgan, The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update, Nucleic Acids Res, vol.46, pp.537-544, 2018.

R. Edgar, M. Domrachev, and A. E. Lash, Gene expression omnibus: NCBI gene expression and hybridization array data repository, Nucleic Acids Res, vol.30, pp.207-210, 2002.

Y. Perez-riverol, The PRIDE database and related tools and resources in 2019: improving support for quantification data, Nucleic Acids Res, vol.47, pp.442-450, 2019.

D. W. Buchan, F. Minneci, T. C. Nugent, K. Bryson, and D. T. Jones, Scalable web services for the PSIPRED protein analysis workbench, Nucleic Acids Res, vol.41, pp.349-357, 2013.