J. Alvar, I. D. Velez, C. Bern, M. Herrero, P. Desjeux et al., Leishmaniasis worldwide and global estimates of its incidence, PLOS ONE, vol.7, p.35671, 2012.

R. W. Ashford, Leishmaniasis reservoirs and their significance in control, Clinics in Dermatology, vol.14, pp.523-532, 1996.

D. L. Balk, U. Deichmann, G. Yetman, F. Pozzi, S. I. Hay et al., Determining global population distribution: methods, applications and data, Advances in Parasitology, vol.62, pp.119-156, 2006.

A. L. Banuls, P. Bastien, C. Pomares, J. Arevalo, R. Fisa et al., Clinical pleiomorphism in human leishmaniases, with special mention of asymptomatic infection, Clinical Microbiology and Infection, vol.17, pp.1451-1461, 2011.

M. Barbet-massin, F. Jiguet, C. H. Albert, and W. Thuiller, Selecting pseudo-absences for species distribution models: how, where and how many?, Methods in Ecology and Evolution, vol.3, pp.327-338, 2012.

I. Benkova and P. Volf, Effect of temperature on metabolism of Phlebotomus papatasi (Diptera : Psychodidae), Journal of Medical Entomology, vol.44, pp.150-154, 2007.

C. Bern, C. O. Alvar, and J. , Of cattle, sand flies and men: a systematic review of risk factor analyses for South Asian visceral leishmaniasis and implications for elimination, PLOS Neglected Tropical Diseases, vol.4, p.599, 2010.

C. Bern, J. H. Maguire, and J. Alvar, Complexities of assessing the disease burden attributable to leishmaniasis, PLOS Neglected Tropical Diseases, vol.2, p.313, 2008.

S. Bhatt, P. W. Gething, O. J. Brady, J. P. Messina, A. W. Farlow et al., The global distribution and burden of dengue, Nature, vol.496, pp.504-507, 2013.

G. S. Bhunia, S. Kesari, N. Chatterjee, R. Mandal, V. Kumar et al., Seasonal relationship between normalized difference vegetation index and abundance of the Phlebotomus kala-azar vector in an endemic focus in Bihar, India. Geospatial Health, vol.7, pp.51-62, 2012.

G. S. Bhunia, V. Kumar, A. J. Kumar, P. Das, and S. Kesari, The use of remote sensing in the identification of the eco-environmental factors associated with the risk of human visceral leishmaniasis (kala-azar) on the Gangetic plain, in north-eastern India, Annals of Tropical Medicine and Parasitology, vol.104, pp.35-53, 2010.

M. Boelaert, F. Meheus, A. Sanchez, S. P. Singh, V. Vanlerberghe et al., The poorest of the poor: a poverty appraisal of households affected by visceral leishmaniasis in Bihar, India. Tropical Medicine & International Health, vol.14, pp.639-644, 2009.

O. J. Brady, P. W. Gething, S. Bhatt, J. P. Messina, J. S. Brownstein et al., Refining the global spatial limits of dengue virus transmission by evidence-based consensus, PLOS Neglected Tropical Diseases, vol.6, p.1760, 2012.

S. Branco, C. Alves-pires, M. C. Cortes, S. Cristovão, J. M. Gonçalves et al., Entomological and ecological studies in a new potential zoonotic leishmaniasis focus in Torres Novas municipality, Central region, Portugal. Acta Tropica, vol.125, pp.339-348, 2013.

L. J. Cardo, Leishmania: risk to the blood supply, Transfusion, vol.46, pp.1641-1645, 2006.

L. Chamaille, A. Tran, A. Meunier, G. Bourdoiseau, P. Ready et al., Environmental risk mapping of canine leishmaniasis in France, Parasites & Vectors, vol.3, p.31, 2010.

. Ciesin/ifpri/wb/ciat, Global rural urban mapping project (GRUMP): gridded population of the world, vol.3, 2007.

E. R. Cross, W. W. Newcomb, and C. J. Tucker, Use of weather data and remote sensing to predict the geographic and seasonal distribution of Phlebotomus papatasi in southwest Asia, The American Journal of Tropical Medicine and Hygiene, vol.54, pp.530-536, 1996.

&. De and G. , Boosted trees for ecological modeling and prediction, Ecology, vol.88, p.88, 2007.

E. F. De-oliveira, E. Silva, C. Fernandes, A. C. Paranhos, R. M. Gamarra et al., Biotic factors and occurrence of Lutzomyia longipalpis in endemic area of visceral leishmaniasis, Memorias Do Instituto Oswaldo Cruz, vol.107, pp.396-401, 2012.

J. P. Dedet and F. Pratlong, Manson's tropical diseases, pp.1341-1365, 2009.

P. Desjeux and J. Alvar, Leishmania/HIV co-infections: epidemiology in Europe, Annals of Tropical Medicine and Parasitology, vol.97, pp.3-15, 2003.

S. C. Edberg, Global infectious diseases and epidemiology network (GIDEON): a world wide web-based program for diagnosis and informatics in infectious diseases, Clinical Infectious Diseases, vol.40, pp.123-126, 2005.

J. Elith, C. H. Graham, R. P. Anderson, M. Dudik, S. Ferrier et al., Novel methods improve prediction of species' distributions from occurrence data, Ecography, vol.29, pp.129-151, 2006.

J. Elith, J. R. Leathwick, and T. Hastie, A working guide to boosted regression trees, The Journal of Animal Ecology, vol.77, pp.802-813, 2008.

D. A. Elnaiem, J. Schorscher, A. Bendall, V. Obsomer, M. E. Osman et al., Risk mapping of visceral leishmaniasis: the role of local variation in rainfall and altitude on the presence and incidence of kala-azar in eastern Sudan, The American Journal of Tropical Medicine and Hygiene, vol.68, pp.10-17, 2003.

D. Elnaiem, Ecology and control of the sand fly vectors of Leishmania donovani in East Africa, with special emphasis on Phlebotomus orientalis, The Global Administrative Unit Layers (GAUL): Technical Aspects. Rome: Food and Agriculture Organization of the United Nations, vol.36, pp.23-31, 2011.

M. D. Feliciangeli, Natural breeding places of phlebotomine sandflies, Medical and Veterinary Entomology, vol.18, pp.71-80, 2004.

M. S. Fernandez, E. A. Lestani, R. Cavia, and O. D. Salomon, Phlebotominae fauna in a recent deforested area with american tegumentary leishmaniasis transmission, Acta Tropica, vol.122, pp.16-23, 2012.

D. Fischer, S. M. Thomas, and C. Beierkuhnlein, Temperature-derived potential for the establishment of phlebotomine sandflies and visceral leishmaniasis in Germany, Geospatial Health, vol.5, pp.59-69, 2010.

J. L. Fleiss, B. Levin, and M. C. Paik, Statistical methods for rates and proportions, p.800, 2003.

C. C. Freifeld, K. D. Mandl, B. Y. Ras, and J. S. Bronwnstein, HealthMap: global infectious disease monitoring through automated classification and visualization of internet media reports, Journal of the American Medical Informatics Association, vol.15, pp.150-157, 2008.

J. H. Friedman, Greedy function approximation: a gradient boosting machine, Annals of Statistics, vol.29, pp.1189-1232, 2001.

R. Galvez, M. A. Descalzo, I. Guerrero, G. Miro, and R. Molina, Mapping the current distribution and predicted spread of the leishmaniosis sand fly vector in the Madrid region (Spain) based on environmental variables and expected climate change, Vector Borne and Zoonotic Diseases, vol.11, pp.799-806, 2011.

T. Gebre-michael, J. B. Malone, M. Balkew, A. Ali, N. Berhe et al., Mapping the potential distribution of Phlebotomus martini and P. orientalis (Diptera : Psychodidae), vectors of kala-azar in East Africa by use of geographic information systems, The American Journal of Tropical Medicine and Hygiene, vol.90, pp.839-846, 2004.

C. Gonzalez, O. Wang, S. E. Strutz, C. Gonzalez-salazar, V. Sanchez-cordero et al., Climate change and risk of leishmaniasis in North America: predictions from ecological niche models of vector and reservoir species, PLOS Neglected Tropical Diseases, vol.4, p.585, 2010.

H. Guzman and R. Tesh, Effects of temperature and diet on growth and longevity of phlebotomine sand flies (Diptera: Psychodidae), vol.20, pp.190-199, 2000.

M. O. Harhay, P. L. Olliaro, D. L. Costa, and C. Costa, Urban parasitology: visceral leishmaniasis in Brazil, Trends in Parasitology, vol.27, pp.403-409, 2011.

N. Hartemink, S. O. Vanwambeke, H. Heesterbeek, D. Rogers, D. Morley et al., Integrated mapping of establishment risk for merging vector-borne infections: a case study of canine leishmaniasis in southwest France, PLOS ONE, vol.6, p.20817, 2011.

S. I. Hay, K. E. Battle, D. M. Pigott, D. L. Smith, C. L. Moyes et al., Global mapping of infectious disease, Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, vol.368, 2013.

S. I. Hay, A. J. Tatem, A. J. Graham, S. J. Goetz, and D. J. Rogers, Global environmental data for mapping infectious disease distribution, Advances in Parasitology, vol.62, pp.37-77, 2006.

M. Herrero, G. Orfanos, D. Argaw, A. Mulugeta, P. Aparicio et al., Natural history of a visceral leishmaniasis outbreak in highland Ethiopia, The American Journal of Tropical Medicine and Hygiene, vol.81, pp.373-377, 2009.

R. J. Hijmans, S. E. Cameron, J. L. Parra, P. G. Jones, and A. Jarvis, Very high resolution interpolated climate surfaces for global land areas, International Journal of Climatology, vol.25, pp.1965-1978, 2005.

J. Hlavacova, J. Votypka, and P. Volf, The effect of temperature on Leishmania (Kinetoplastida: Trypanosomatidae) development in sand flies, Journal of Medical Entomology, vol.50, pp.955-958, 2013.

M. F. Hutchinson, Interpolating mean rainfall using thin-plate smoothing splines, International Journal of Geographical Information Systems, vol.9, pp.385-403, 1995.

A. Ives, C. Ronet, F. Prevel, G. Ruzzante, S. Fuertes-marraco et al., Leishmania RNA virus controls the severity of mucocutaneous leishmaniasis, Science, vol.331, pp.775-778, 2011.

O. E. Kasap and B. Alten, Laboratory estimation of degree-day developmental requirements of Phlebotomus papatasi (Diptera : Psychodidae), Journal of Vector Ecology, vol.30, pp.328-333, 2005.

R. Killick-kendrick, The biology and control of phlebotomine sand flies, Clinics in Dermatology, vol.17, pp.279-289, 1999.

B. S. Lima, F. Dantas-torres, M. R. De-carvalho, J. F. Marinho, E. L. De-almeida et al., Small mammals as hosts of Leishmania spp. in a highly endemic area for zoonotic leishmaniasis in north-eastern Brazil, Transactions of the Royal Society of Tropical Medicine and Hygiene, vol.107, pp.592-597, 2013.

R. Lozano, M. Naghavi, K. Foreman, S. Lim, K. Shibuya et al., Lancet, vol.380, pp.2095-2128, 2010.

G. Malafaia, Protein-energy malnutrition as a risk factor for visceral leishmaniasis: a review, Parasite Immunology, vol.31, pp.587-596, 2009.

P. Malaviya, A. Picado, P. Singh, E. Hasker, R. P. Singh et al., Visceral leishmaniasis in Muzaffarpur district, PLOS ONE, vol.6, pp.61689-61693, 1990.

H. W. Murray, J. D. Berman, C. R. Davies, and N. G. Saravia, Advances in leishmaniasis, Lancet, vol.366, pp.1561-1577, 2005.

W. Nordhaus, New metrics for environmental economics: gridded economic data, Integrated Assessment, vol.8, pp.73-84, 2008.

W. D. Nordhaus, Geography and macroeconomics: new data and new findings, Proceedings of the National Academy of Sciences of the United States of America, vol.103, pp.3510-3517, 2006.

F. O. Novais, L. P. Carvalho, J. W. Graff, D. P. Beiting, G. Ruthel et al., Cytotoxic T cells mediate pathology and metastasis in cutaneous leishmaniasis, PLOS Pathogens, vol.9, p.1003504, 2013.

A. T. Peterson, Biogeography of diseases: a framework for analysis, Die Naturwissenschaften, vol.95, pp.483-491, 2008.

A. T. Peterson, J. Soberon, R. G. Pearson, R. P. Anderson, E. Martinez-meyer et al., Ecological niches and geographic distributions, p.314, 2011.

S. J. Phillips, M. Dudik, J. Elith, C. H. Graham, A. Lehmann et al., Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data, Ecological Applications, vol.19, pp.181-197, 2009.

S. J. Phillips and J. Elith, Logistic methods for resource selection functions and presence-only species distribution models, Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence. San Francisco: AAAI (Association for the Advancement of Artificial Intelligence, pp.1384-1389, 2011.

D. Poche, R. Garlapati, K. Ingenloff, J. Remmers, and R. Poche, Bionomics of phlebotomine sand flies from three villages in Bihar, India. Journal of Vector Ecology, vol.36, pp.106-117, 2011.

P. D. Ready, Biology of phlebotomine sand flies as vectors of disease agents, Annual Review of Entomology, vol.58, pp.227-250, 2013.

R. Reithinger, Leishmaniases' burden of disease: ways forward for getting from speculation to reality, PLOS Neglected Tropical Diseases, vol.2, p.285, 2008.

R. Reithinger and J. C. Dujardin, Molecular diagnosis of leishmaniasis: current status and future applications, Journal of Clinical Microbiology, vol.45, pp.21-25, 2007.

R. Reithinger, J. C. Dujardin, H. Louzir, C. Pirmez, B. Alexander et al., Cutaneous leishmaniasis, The Lancet Infectious Diseases, vol.7, pp.581-596, 2007.

D. J. Rogers, S. I. Hay, and M. J. Packer, Predicting the distribution of tsetse flies in west Africa using temporal Fourier processed meteorological satellite data, Annals of Tropical Medicine and Parasitology, vol.90, pp.225-241, 1996.

J. Scharlemann, D. Benz, S. I. Hay, B. V. Purse, A. J. Tatem et al., Global data for ecology and epidemiology: a novel algorithm for temporal Fourier processing MODIS data, PLOS ONE, vol.3, p.1408, 2008.

. Sinan, Sistema de Informação de Agravos de, 2013.

R. Singh, S. Lal, and V. K. Saxena, Breeding ecology of visceral leishmaniasis vector sandfly in Bihar state of India, Acta Tropica, vol.107, pp.117-120, 2008.

M. E. Sinka, M. J. Bangs, S. Manguin, T. Chareonviriyaphap, A. P. Patil et al., The dominant Anopheles vectors of human malaria in the Asia-Pacific region: occurrence data, distribution maps and bionomic precis, Parasites & Vectors, vol.4, p.89, 2011.

M. E. Sinka, M. J. Bangs, S. Manguin, M. Coetzee, C. M. Mbogo et al., The dominant Anopheles vectors of human malaria in Africa, Europe and the Middle East: occurrence data, distribution maps and bionomic precis, Parasites & Vectors, vol.3, p.117, 2010.

M. E. Sinka, Y. Rubio-palis, S. Manguin, A. P. Patil, W. H. Temperley et al., The dominant Anopheles vectors of human malaria in the Americas: occurrence data, distribution maps and bionomic precis, Parasites & Vectors, vol.3, p.72, 2010.

M. M. Syfert, M. J. Smith, and D. A. Coomes, The effects of sampling bias and model complexity on the predictive performance of MaxEnt species distribution models, PLOS ONE, vol.8, p.55158, 2013.

M. C. Thomson, D. A. Elnaiem, R. W. Ashford, and S. J. Connor, Towards a kala azar risk map for Sudan: mapping the potential distribution of Phlebotomus orientalis using digital data of environmental variables, Tropical Medicine & International Health, vol.4, pp.105-113, 1999.

A. Toumi, S. Chlif, J. Bettaieb, N. Ben-alaya, A. Boukthir et al., Temporal dynamics and impact of climate factors on the incidence of zoonotic cutaneous leishmaniasis in central Tunisia, PLOS Neglected Tropical Diseases, vol.6, p.1633, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-00733219

S. Uranw, E. Hasker, L. Roy, F. Meheus, M. L. Das et al., An outbreak investigation of visceral leishmaniasis among residents of Dharan town, eastern Nepal, evidence for urban transmission of Leishmania donovani, BMC Infectious Diseases, vol.13, p.21, 2013.

J. Van-der-wal, L. P. Shoo, C. Graham, and S. E. William, Selecting pseudo-absence data for presence-only distribution modeling: how far should you stray from what you know?, Ecological Modelling, vol.220, pp.589-594, 2009.

. Who, Neglected tropical diseases, hidden successes, emerging opportunities. Geneva: World Health Organization, p.59, 2009.

. Who, Control of the Leishmaniases. Report of a Meeting of the WHO Expert Committee on the Control of Leishmaniases, p.170, 2010.

P. Zeilhofer, O. P. Kummer, E. S. Santos, A. Ribeiro, and N. A. Missawa, Spatial modelling of Lutzomyia (Nyssomyia) whitmani sensu lato (Antunes & Coutinho, 1939) (Diptera: Psychodidae: Phlebotominae) habitat suitability in the state of Mato Grosso, Brazil. Memorias Do Instituto Oswaldo Cruz, vol.103, pp.653-660, 2008.