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Abstract The leishmaniases are vector-borne diseases that have a broad global distribution 
throughout much of the Americas, Africa, and Asia. Despite representing a significant public health 
burden, our understanding of the global distribution of the leishmaniases remains vague, reliant 
upon expert opinion and limited to poor spatial resolution. A global assessment of the consensus of 
evidence for leishmaniasis was performed at a sub-national level by aggregating information from a 
variety of sources. A database of records of cutaneous and visceral leishmaniasis occurrence was 
compiled from published literature, online reports, strain archives, and GenBank accessions. These, 
with a suite of biologically relevant environmental covariates, were used in a boosted regression 
tree modelling framework to generate global environmental risk maps for the leishmaniases. These 
high-resolution evidence-based maps can help direct future surveillance activities, identify areas to 
target for disease control and inform future burden estimation efforts.
DOI: 10.7554/eLife.02851.001

Introduction
The leishmaniases are a group of protozoan diseases transmitted to humans and other mammals by 
phlebotomine sandflies (Murray et al., 2005; WHO, 2010). Considered as one of the neglected trop-
ical diseases (NTD) (WHO, 2009), the leishmaniases can be caused by around 20 Leishmania species 
and include a complex life cycle involving multiple arthropod vectors and mammalian reservoir species 
(Ashford, 1996; Ready, 2013). Sandflies belonging to either Phlebotomus spp. (Old World) or 
Lutzomyia spp. (New World) are the primary vectors; domestic dogs, rodents, sloths, and opossums 
are amongst a long list of mammals that are either incriminated or suspected reservoir hosts. Non-
vector transmission (e.g., by accidental laboratory infection, blood transfusion, or organ transplanta-
tion) is possible, but rare (Cardo, 2006). Transmission of the leishmaniases can be either anthroponotic 
or zoonotic. The leishmaniases rank as the leading NTD in terms of mortality and morbidity with an 
estimated 50,000 deaths in 2010 (Lozano et al., 2012) and 3.3 million disability adjusted life years 
(Murray et al., 2012).
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Symptoms of Leishmania infection can take many different and diverse forms (Banuls et al., 2011), 
the two main outcomes being cutaneous leishmaniasis (CL) and visceral leishmaniasis (VL). Cutaneous 
leishmaniasis typically presents as cutaneous nodules or lesions at the site of the sandfly bite (localised 
cutaneous leishmaniasis). In some cases, parasites disseminate through the skin and present as multi-
ple non-ulcerative nodules (diffuse cutaneous leishmaniasis, DCL) or propagate through the lymphatic 
system resulting in nasobronchial and buccal mucosal tissue destruction (mucosal leishmaniasis, ML) 
(Reithinger et al., 2007; Dedet and Pratlong, 2009). Localised CL may resolve spontaneously and 
usually responds well to treatment; management of DCL and ML cases is more difficult and cases may 
take considerably longer to resolve, if at all. Visceral leishmaniasis generally affects the spleen, liver, or 
other lymphoid tissues, and, if left untreated, is fatal; a fraction of successfully treated VL cases may 
result in maculopapular or nodular rashes (post-kala-azar dermal leishmaniasis) (Murray et al., 2005; 
Dedet and Pratlong, 2009). While the Leishmania species determines which of the main two forms of 
the leishmaniases will result from infection, establishment, progression, and severity of infection as 
well as treatment regimen and outcome is dependent on a range of other factors, including parasite 
strain, characteristics of sandfly saliva, parasite infection with Leishmania RNA virus, host genetics, and 
immunosuppression, particularly due to HIV co-infection (Reithinger et al., 2007; Ives et al., 2011; 
Novais et al., 2013).

Species distribution models provide a robust means of mapping these diseases at a global level. 
These models define a set of conditions, from a selection of environmental covariates, which best 
categorise known occurrences. Through this categorisation, areas of unknown pathogen presence 
can be identified and thus a global evaluation of environmental suitability for presence can be made. 

eLife digest Each year 1–2 million people are diagnosed with a tropical disease called 
leishmaniasis, which is caused by single-celled parasites. People are infected when they are bitten 
by sandflies carrying the parasite, and often develop skin lesions around the bite site. Though 
mild cases may recover on their own or with treatment, sometimes the parasites multiply and 
spread elsewhere causing further skin lesions and facial disfigurement. Furthermore, the parasites 
can also infect internal organs such as the spleen and the liver, which without treatment can be 
fatal.

The parasites that cause leishmaniasis are found in 88 countries around the world, mainly in 
South and Central America, Africa, Asia, and southern Europe. However, over 90% of potentially 
fatal infections occur in just six countries: Brazil, Ethiopia, Sudan, South Sudan, India, and 
Bangladesh. Although a few studies have looked at the distribution of leishmaniasis within different 
countries, we still do not have a complete picture of the distribution of the disease on a global 
scale.

To address this, Pigott et al. set out to create detailed maps of the distribution of leishmaniasis 
and the factors that promote its spread. Similar techniques had been previously used to map 
dengue fever, another tropical disease. Computer modelling was used to generate the maps based 
on data about the environment at the locations of known cases of leishmaniasis. This information 
was then used to infer the likelihood of leishmaniasis being present at other locations across the 
globe.

Based on their maps, Pigott et al. estimate that about 1.7 billion people, or one quarter of the 
world's population, live in areas where they are at potential risk of leishmaniasis. People living in 
built-up areas outside of cities are at the greatest risk, likely because some sandfly species prefer to 
live near dwellings, but other social and economic factors also contribute to the risk of catching this 
disease.

The factors driving the transmission of leishmaniasis differed in the Old World (Europe, Africa 
and Asia) and the New World (the Americas): built-up areas were more likely to be at risk in the Old 
World, while temperature and rainfall were bigger factors affecting risk in the New World. It is 
hoped that the maps created by Pigott et al. will help inform future estimates of the burden of 
leishmaniasis and target surveillance and disease control efforts more effectively to combat this 
tropical disease.
DOI: 10.7554/eLife.02851.002
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A variety of factors can influence the distribution of an organism, including an array of environmental 
and other abiotic characteristics as well as biotic factors (Peterson, 2008). Whilst many areas may be 
environmentally suitable for a given species, other factors may prevent the species from being pre-
sent in all of these locations. This distinction is often referred to as the difference between the funda-
mental and the realised niche of the species, the former describing a potential distribution based upon 
specific features of the environment whilst the latter indicates the distribution we observe. Such a 
framework can be applied just as successfully in the context of pathogens and their vectors as with 
macroorganisms (Peterson et al., 2011) and has already been applied to the mapping of malaria vec-
tors (Sinka et al., 2010, 2010, 2011) and dengue (Bhatt et al., 2013). The relationships between 
the leishmaniases and environmental and socioeconomic factors known to influence their distribu-
tion at a global scale has not previously been considered in a comprehensive and quantitative manner 
(Hay et al., 2013). This study uses these modelling techniques in order to define the first evidence- 
based global environmental risk maps of the leishmaniases.

Results
Evidence of leishmaniasis
For each province or state across the globe (classed as Admin 1 by the Food and Agriculture 
Organization's Global Administrative Unit Layers (FAO, 2008), totalling some 3450) evidence was 
collected regarding CL and VL presence or absence. An assessment of the consensus of this evidence 
ranging from comprehensive agreement on disease presence (+100%) to consensus of disease absence 
(−100%) was made. Figures 1A–4A present these evidence consensus maps, with full reasoning for 
each administrative unit's score outlined in the associated data set (Dryad data set doi: 10.5061/
dryad.05f5h). For Brazil, it was possible to perform this analysis at the district level (classed as Admin 2) 
totalling some 5510 units. In total, 950 Admin 1 units from 84 countries reported a consensus on CL 
presence greater than indeterminate (a score of 0), with 310 Admin 1 units from 42 countries reporting 
a complete consensus on the presence of CL. In Brazil, 2469 Admin 2 regions recorded CL cases over 
the period of investigation. Consensus on the presence of VL (score greater than 0) was reported in 
793 Admin 1 units from 77 countries, with 88 Admin 1 units from 32 countries reporting complete 
consensus on VL. In Brazil, 1320 Admin 2 units recorded VL cases.

Of the 10 countries (Afghanistan, Colombia, Brazil, Algeria, Peru, Costa Rica, Iran, Syria, Ethiopia, 
and Sudan) that contribute 75% of the global estimated CL incidence (Alvar et al., 2012), only 
Algeria did not have regions of complete evidence consensus on presence due to incomplete and 
non-contemporary case data. Similarly, of the six countries (Brazil, Ethiopia, Sudan, South Sudan, India, 
and Bangladesh) that report 90% of all VL cases (Alvar et al., 2012), all six had regions of complete 
consensus on VL.

Figures 1A–4A also show the spatial distribution of occurrence data, defined as one or more 
reports of leishmaniasis in a given calendar year, collated from a variety of sources. Overall, there is a 
relatively broad geographic spread and good correspondence with the evidence consensus maps for 
each disease. Tunisia, Morocco and Brazil report the highest number of unique CL occurrences in any 
given year, whilst India reported the largest proportion of the VL occurrence data.

Table 1 reports the sources and types of data within the occurrence database. Whilst the majority 
of occurrence records contain accurate point data (62%), the remainder were recorded at a provincial 
or district level. Occurrence records for the two diseases were relatively similar in number with a total 
of 6426 records for CL and 6137 for VL.

Modelled distribution of the leishmaniases
Figures 1B–4B show the global predicted environmental risk maps for CL and VL. Table 2 identifies 
the top five predictor variables in each of the four modelled regions (since CL and VL were modelled 
separately in the Old World and New World) as measured by average contribution to the boosted 
regression trees (BRT) submodels. Peri-urban and urban land cover is an important predictor of the 
distribution of CL in the Old World and of VL globally. Abiotic factors such as land surface temperature 
(LST) were better predictors of CL than of VL. In total, LST variables (annual minimum, maximum and 
mean) explain 21.99% of CL distribution in the Old World and 43.65% of CL distribution in the New 
World (with maximum LST having the highest relative contribution). Abiotic factors combined (including 
LST, normalised difference vegetation index (NDVI) and precipitation) accounted for 29.02% and 
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48.55% of VL distribution in the Old World and New World, respectively. Validation statistics for all 
models were high with a mean area under the receiver operator curve (AUC) above 0.97 and mean 
correlations above 0.85 for all models.

In the New World, CL is predicted to occur primarily within the Amazon basin and other areas of 
rainforest. By contrast, VL is predicted to occur mainly along the coastline of Brazil, with sporadic foci 
across the rest of Southern and Central America. Outside of their main foci, both diseases are strongly 
associated with urban and peri-urban areas, resulting in a focal distribution throughout much of the 
New World.

In the Old World, both CL and VL are predicted to be present from the Mediterranean Basin across 
the Near East to Northwest India, with a few foci in Central China as well as in a thin band of predicted 
risk across West Africa and in the Horn of Africa. The predicted distribution of VL also extends into 
Northeast India and China with a large predicted focus in the northwest.

The populations living in areas predicted to be subject to environmental risk of CL and VL are esti-
mated to be 1.71 billion and 1.69 billion, respectively, approximately a quarter of the world's popula-
tion. Figure 4—figure supplement 4 compares these national estimates to the annual case incidence 
data from all countries for which at least one case per annum was estimated by Alvar et al. (2012). 
There is a strong positive association between the two measures of disease occurrence. We provide 
estimates of the populations at risk in 90 countries for which no human cases of CL or VL were regularly 
reported (Alvar et al., 2012). A full table of this information is presented in the associated Dryad data 
set (doi: 10.5061/dryad.05f5h). For many of these countries, Alvar et al. (2012) reported a handful of 

Figure 1. Reported and predicted distribution of cutaneous leishmaniasis in the New World. (A) Evidence consensus for presence of the disease ranging 
from green (complete consensus on the absence: −100%) to purple (complete consensus on the presence of disease: +100%). The blue spots indicate 
occurrence points or centroids of occurrences within small polygons. (B) Predicted risk of cutaneous leishmaniasis from green (low probability of 
presence) to purple (high probability of presence).
DOI: 10.7554/eLife.02851.003
The following figure supplements are available for figure 1:

Figure supplement 1. Uncertainty associated with predictions in Figure 1B. 
DOI: 10.7554/eLife.02851.004
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sporadic cases over the years indicating very rare occurrence of infection, whilst the remainder were 
countries with inconclusive evidence of disease presence or absence. It is important to note that the 
relationship between environmental risk and true incidence of disease remains to be elucidated; how-
ever the association between populations living in areas of environmental risk and national level esti-
mates of incidence suggests that the modelled occurrence–incidence relationship approach used by 
Bhatt et al. (2013) for dengue could be applied if the necessary longitudinal cohort study data were 
available.

Discussion
This work has compiled a large body of qualitative and quantitative information on the global distribu-
tion of the leishmaniases and employed a statistical modelling framework to generate the first pub-
lished high-resolution global distribution maps of these diseases.

The evidence consensus maps provide a useful assessment of both global and regional knowledge 
of these diseases. Whilst in many countries consensus on presence or absence of the leishmaniases 
exists, in other areas, including large parts of Africa and many states in India, these assessments reveal 
significant uncertainty in assessing disease presence or absence using currently available evidence. It 
is in these data-poor countries that increased surveillance efforts should be concentrated to improve our 
knowledge of the global distribution of the leishmaniases. In some locations, cases have been reported as 
locally transmitted without the presence of proven vector species, which could indicate a false 
positive. However, the overall consensus score will reflect any uncertainty associated with the validity 

Figure 2. Reported and predicted distribution of visceral leishmaniasis in the New World. (A) Evidence consensus for presence of the disease ranging 
from green (complete consensus on the absence: −100%) to purple (complete consensus on the presence of disease: +100%). The blue spots indicate 
occurrence points or centroids of occurrences within small polygons. (B) Predicted risk of visceral leishmaniasis from green (low probability of presence) 
to purple (high probability of presence).
DOI: 10.7554/eLife.02851.005
The following figure supplements are available for figure 2:

Figure supplement 1. Uncertainty associated with predictions in Figure 2B. 
DOI: 10.7554/eLife.02851.006
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Figure 3. Reported and predicted distribution of cutaneous leishmaniasis in the Old World. (A) Evidence consensus for presence of the disease ranging 
from green (complete consensus on the absence: −100%) to purple (complete consensus on the presence of disease: +100%). The blue spots indicate 
Figure 3. Continued on next page

http://dx.doi.org/10.7554/eLife.02851
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of these reports; if multiple independent sources report autochthonous cases, this increased certainty 
will be reflected in a higher consensus score. Similarly, whilst the occurrence database contains data 
from across the globe, this data set is inevitably subject to spatial bias in reporting, with more data 
reported from more economically developed countries where we already have a good knowledge of 
the disease (e.g., Spain, France, and Italy).

The complexity and diversity of transmission cycles involving not just humans, but also a multitude 
of vectors and reservoirs, necessitated a modelling approach which can account for highly non-linear 
effects of covariates on probability of disease presence. The BRT modelling approach employed is 
able to do this and has previously been shown to produce highly accurate predictions across a wide 
range of species (Elith et al., 2006, 2008). This ecological niche modelling approach is therefore able 
to deal with not only the variation in parasites causing infection, but also the various life-histories and 
habitat preferences associated with the different vector species.

A restriction of the BRT approach (in common with other species distribution modelling approaches) 
is the need for absence data in addition to occurrence data. Since reliable absence data were not 
available at this spatial scale, the incorporation of pseudo-data into the modelling framework was 
necessary. The methodology employed in this study attempted to minimise the problems this can 
cause, by using a probabilistic approach to generate the pseudo-data which incorporates the evi-
dence consensus and distance from existing occurrence points. Similarly, reporting bias within the 
occurrence database is an issue with all presence-only species distribution models (Peterson et al., 
2011). If bias is unaccounted for, there is the potential that the model merely reflects factors that 
correlate with the probability of reporting disease occurrence rather than the disease itself, such as 
healthcare expenditure (Phillips et al., 2009; Syfert et al., 2013). The pseudo-data selection pro-
cedures (which included information from both the occurrence data set and the less-biased evidence 
consensus map) coupled with the model ensembling approach aimed to minimise this potential 
source of bias.

The differences in the most important predictors of disease presence between the two forms of 
the disease and between the Old and New Worlds highlight the complex and spatially variable epi-
demiology of the leishmaniases. Similar to a recent study of the spatial predictors of dengue occur-
rence (Bhatt et al., 2013), environmental and socioeconomic factors were found to be important 
contributors to the distribution of both CL and VL. For VL, both Old World and New World distribu-
tions are driven by peri-urban (and to a lesser degree urban) land cover. This reflects recent trends 
observed, for instance, in Brazil and Bihar state in India, where areas of highest risk have been found 
in peridomestic settings (Bern et al., 2010; Harhay et al., 2011). This risk factor may well be linked 
back to aspects of vector bionomics, with many vectors in these regions associating with or near 
households in general (Singh et al., 2008; Poche et al., 2011; Uranw et al., 2013). Furthermore, 
whilst significant anthroponotic transmission of L. donovani occurs across parts of the Old World, zoo-
notic cycles of VL, primarily tied to canine hosts, dominate L. infantum transmission (Chamaille et al., 
2010; Ready, 2013), with infection in dogs shown to be closely associated with human population 
density.

Important predictors of CL distribution differed markedly between the Old and New World. Whilst 
peri-urban land cover was the most important predictor of the disease in the Old World, in the New 
World temperature was the highest predictor, with abiotic factors predicting 74.18% of CL distribu-
tion. This difference in the relative importance of climatic drivers reflects the fact that in the Old World 

occurrence points or centroids of occurrences within small polygons. (B) Predicted risk of cutaneous leishmaniasis from green (low probability of 
presence) to purple (high probability of presence).
DOI: 10.7554/eLife.02851.007
The following figure supplements are available for figure 3:

Figure supplement 1. Uncertainty associated with predictions in Figure 3B. 
DOI: 10.7554/eLife.02851.008

Figure supplement 2. Reported and predicted distribution of cutaneous leishmaniasis in northeast Africa. 
DOI: 10.7554/eLife.02851.009

Figure supplement 3. Reported and predicted distribution of cutaneous leishmaniasis across the Near East, including Syria, Iran and Afghanistan. 
DOI: 10.7554/eLife.02851.010

Figure 3. Continued
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Figure 4. Reported and predicted distribution of visceral leishmaniasis in the Old World. (A) Evidence consensus for presence of the disease ranging 
from green (complete consensus on the absence: −100%) to purple (complete consensus on the presence of disease: +100%). The blue spots indicate 
occurrence points or centroids of occurrences within small polygons. (B) Predicted risk of visceral leishmaniasis from green (low probability of presence) 
to purple (high probability of presence).
Figure 4. Continued on next page

http://dx.doi.org/10.7554/eLife.02851
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the main endemic CL areas are due to both anthroponotically transmitted L. tropica and zoonotic 
cycles of L. major, whereas in the New World the disease is primarily associated with sylvatic and zoo-
notic cycles with a variety of different Leishmania spp. and wild reservoir hosts implicated (Ashford, 
1996; Reithinger et al., 2007; WHO, 2010; Lima et al., 2013; Ready, 2013).

The distribution maps represent a spatially refined assessment of the global environmental risk of 
leishmaniasis and provide a starting point for various public health activities including targeting areas 
for control and assessing disease burden. The maps compare favourably to the WHO Expert Committee 
on the Control of Leishmaniases outputs (WHO, 2010), have high model validation statistics and 
improve upon the existing body of work by providing a finer resolution of risk at a subnational level. 
Similarly, the countries indicated by Alvar et al. (2012) as having 90% of all VL and 75% of all CL cases, 
were all predicted by our maps to have risk for VL and CL, respectively.

There are a number of regions in which our maps do not correspond as closely to these previous 
findings. Regions such as Northwest China are predicted to have high risk for VL, though the low pop-
ulation densities in this area are likely to lead to very few cases and, given its remoteness, even fewer 
reported cases. Other regions, such as the Mediterranean coastline of Europe, are predicted to be 
highly suitable for leishmaniasis, but we see few human cases. This is because the maps presented 
predict the probability of disease presence in an area, rather than directly infer measures of incidence 
or burden, which can be influenced by a variety of other factors (e.g., in the Mediterranean coastline 
of Europe, VL has been associated with immunosuppression). The evidence consensus layer, used to mask 
out regions with high consensus on leishmaniasis absence, acts as a rough filter on the environmental risk 

DOI: 10.7554/eLife.02851.011
The following figure supplements are available for figure 4:

Figure supplement 1. Uncertainty associated with predictions in Figure 4B. 
DOI: 10.7554/eLife.02851.012

Figure supplement 2. Reported and predicted distribution of visceral leishmaniasis in northeast Africa. 
DOI: 10.7554/eLife.02851.013

Figure supplement 3. Reported and predicted distribution of visceral leishmaniasis in the Indian subcontinent. 
DOI: 10.7554/eLife.02851.014

Figure supplement 4. Population at risk estimates for leishmaniasis. 
DOI: 10.7554/eLife.02851.015

Figure 4. Continued

Table 1. Origin and spatial resolution of leishmaniasis occurrence data

Origin and resolution of occurrence data

Point data Province level data District level data Total

Cutaneous leishmaniasis

 Literature 3680 879 1220 5779

 CNR-L 531 47 31 609

 HealthMap 31 – – 31

 GenBank 6 – 1 7

 Total 4248 926 1252 6426

Visceral leishmaniasis

 Literature 3050 1500 1068 5618

 CNR-L 429 24 29 482

 HealthMap 32 1 – 33

 GenBank 3 – 1 4

 Total 3514 1525 1098 6137

Each cell gives the number of occurrence records added to the data set by considering each additional datasource 
after removing duplicate records. Occurrence records are separated by spatial resolution—whether they are 
recorded as points (typically representing settlements) or as province level (admin 1) or district level (admin 2) data.
DOI: 10.7554/eLife.02851.016
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http://dx.doi.org/10.7554/eLife.02851.011
http://dx.doi.org/10.7554/eLife.02851.012
http://dx.doi.org/10.7554/eLife.02851.013
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maps. However, in order to model the true relationship between environmental risk and disease 
incidence, a global data set of geopositioned disease incidence data would be required; at present 
this is unavailable.

Estimates of the populations living in areas of environmental risk are therefore supplied as a proxy for 
the true burden of disease. However, they cannot be directly compared with other global estimates of the 
leishmaniases’ disease burden, such as the WHO estimates of clinical burden of around 350 million (WHO, 
2010). Figure 4—figure supplement 4 shows a strong, positive relationship between population at risk 
estimates and estimated annual incidence from Alvar et al. (2012). The exceptions to this relationship 
(e.g., Egypt, Nigeria, and Côte d’Ivoire) are all countries with indeterminate evidence consensus scores, 
indicating a genuine lack of knowledge regarding both the distribution and incidence of disease.

Previous estimates of the leishmaniases' global burden have been complicated by poor knowledge 
of the global distribution of the diseases (Bern et al., 2008; Reithinger, 2008). It is hoped that the 
maps presented here will help to increase the accuracy of future estimates. Ideally, future improve-
ments to the global distribution maps presented here would distinguish between the different 
Leishmania species and sandfly vectors. Species-specific models at the same level of detail as those 
presented here are not currently possible due to a lack of suitable data. Developments in the use of 
‘big data’ approaches to disease mapping (such as the incorporation of informal internet resources) 
may enable the construction of data sets which could be used in these analyses (Hay et al., 2013). 
A further complication with burden estimation is the epidemic nature of the disease, as evidenced 
by the national case time series in Alvar et al. (2012), leading to significant interannual variation in 
burden. Therefore, any burden estimation would have to account for this and the temporal spread of 
data would therefore be critical.

It should be noted that non-environmental drivers of transmission and morbidity, such as HIV immuno-
suppression and risk of infection via blood transfusions and intravenous drug usage, are not incorporated 
into our present models. The maps presented here can help inform the wider discussion of these factors 
and their impact on leishmaniasis (e.g., by identifying regions with greater risk for HIV and leishmaniasis 
co-infection) (Desjeux and Alvar, 2003). Similarly, the niche based models used here could enable a 
decoupling of environmental from social factors to assess the importance of the latter on leishmaniasis 
transmission in particular areas. It may indeed be the case that in some specific localities it is these 
non-environmental risk factors that are the main determinants of disease distribution.

Conclusions
These maps represent evidence-based estimates of the current global distribution of the leishmaniases 
incorporating a comprehensive occurrence database and a rigorous statistical modelling framework 

Table 2. Mean relative contribution of predictor variables to the ensemble BRT models of CL and VL 
in both the Old and New World

Top predictors of CL Relative contribution Top predictors of VL Relative contribution

Old world

 Peri-urban extents 47.34 Peri-urban extents 51.50

 Minimum LST 18.36 Urban extents 17.38

 Urban extents 9.01 Maximum NDVI 7.87

 G-Econ 7.33 Minimum LST 5.87

 Minimum Precipitation 4.95 Maximum Precipitation 4.00

New World

 Maximum LST 36.91 Peri-urban extents 25.90

 Peri-urban extents 18.61 Urban extents 21.24

 Maximum precipitation 12.06 Mean LST 9.18

 Minimum precipitation 6.21 Mean NDVI 7.83

 Minimum LST 4.39 Maximum LST 6.40

LST = Land Surface Temperature, G-Econ = Geographically based Economic data, NDVI = Normalised Difference 
Vegetation Index.
DOI: 10.7554/eLife.02851.017
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with associated uncertainty statistics. We estimate that 1.71 billion and 1.69 billion individuals live in 
areas that are suitable for CL and VL transmission, respectively. These figures highlight the need for 
much greater awareness of this disease at a global scale. These maps provide an important baseline 
assessment and a strong foundation on which to base future burden estimates, target regions for con-
trol efforts and inform public health decisions.

Materials and methods
A boosted regression tree (BRT) modelling framework was used to generate global predicted environ-
mental risk maps for CL and VL. This framework required four key information components: (i) a map 
of the consensus of evidence for the global extents of the leishmaniases; (ii) a comprehensive data set 
of geopositioned CL and VL occurrence records; (iii) a suite of global, gridded data sets on environ-
mental correlates of the leishmaniases; and (iv) pseudo-data to augment the occurrence records. In 
order to better capture the realised niche of these diseases, prediction by the model is restricted to 
those areas of known disease transmission, or where transmission is uncertain, as defined by the evi-
dence consensus layer (i). The full procedures used to generate these components and the resulting 
risk and prevalence maps are outlined below.

Evidence consensus
The methodology used for generating the definitive extents for the leishmaniases was adapted from 
work on dengue (Brady et al., 2012). Four primary evidence categories were used to determine a 
consensus on the presence or absence of the leishmaniases: (i) health reporting organisations; (ii) peer-
reviewed evidence of local autochthonous transmission; (iii) case data; (iv) supplementary information. 
Cutaneous and visceral leishmaniasis were the two symptomatologies investigated: other forms of the 
disease were subset within these two – whilst VL contained cases of post-kala-azar dermal leishmani-
asis, CL included diffuse, disseminated, and mucosal forms of the disease. Although limited amounts 
of data were available for some of these forms, their epidemiology is similar, and consequently this 
categorisation was seen as appropriate. Information was collected at provincial level (termed Admin 1 
units by the Food and Agriculture Organization's (FAO) Global Administrative Unit Layers (GAUL) 
coding (FAO, 2008)) to better capture the focal nature of these diseases.

Health Reporting Organisation Evidence (scores between −3 and +3)
Two health reporting organisations were referenced, the Global Infectious Diseases and Epidemiology 
Online Network (GIDEON) (Edberg, 2005) and the World Health Organization (WHO) (WHO, 2010). 
The status of disease was recorded for each Admin 1 unit as either present, absent or unspecified. If 
both reported the disease as present, +3 was scored, if both reported absence, −3 was scored, with 
+2/−2 scored if one reporting body did not specify the presence or absence of the disease. If the two 
disagreed, or both were non-specific, 0 was scored reflecting the lack of a consensus on the status of 
that region.

Peer-reviewed evidence (scores between +2 and +6)
A review of reported leishmaniases' cases was performed. Using PubMed and Web of Knowledge with 
‘[admin1 province] leish*’ as the search parameters, articles from January 1960 until September 2012 
were abstracted. Each abstract was imported into Endnote X4 and assessed for relevance. Papers that 
included reported cases on either CL or VL were then obtained. Cases were included if there was suf-
ficient evidence to suggest that local autochthonous transmission had occurred. Where individuals 
from a non-endemic country had travelled to an endemic country (e.g., tourists and military personnel) 
and returned with an infection, this was included (as evidence for leishmaniasis in the foreign destina-
tion) since these typically represent immunologically naive individuals who have undergone more rig-
orous diagnostics in their home country, and thus represent a potentially more informed data source. 
Each paper was assessed for contemporariness and diagnostic accuracy. Contemporariness was 
graded in 3 bands: 2005–2012 = 3, 1997–2004 = 2 and 1997 and earlier = 1, as was diagnostic accu-
racy where 1 was scored for data that reported ‘confirmed’ cases without detailing methodologies 
implemented; 2 was scored where evidence of microscopy, serology, or the Montenegro skin test had 
been used; 3 was awarded to those studies that had used PCR or other molecular techniques 
(Reithinger and Dujardin, 2007). Contemporariness bins were based upon the potentially lengthy 
intrinsic incubation periods present with some Leishmania spp. as well as to accommodate the poten-
tial for epidemic cycles, where cases may only be detected in peak years and missed in the intervening 
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baseline periods. The most contemporary and diagnostically accurate papers were then subset to 
maximise the consensus score for any given area.

Case data (scores between −6 and +6)
Case data were derived from reports on the leishmaniases provided by national health officials (Alvar 
et al., 2012). A threshold value of 12 CL cases and 7 VL cases in a given province in a given year was 
deemed suitable by the authors to distinguish significant disease events from sporadic cases within 
that region. If cases were reported at or above the threshold and were dated no later than 2005, +6 
was scored. If data existed below this threshold, indicating sporadic cases, or data indicated a history 
of reported cases in the region but with no evidence of time period, scores were assigned stratified by 
total annual healthcare expenditure (HE) per capita at average US$ exchange rates (WHO, 2011). This 
was used as a proxy to determine genuine sporadic reporting from inadequate surveillance. Three 
categories were defined—HE Low (<$100), HE Medium ($100 ≤ HE < $500), and HE High (≥$500). If 
sporadic cases were reported in an HE Low country, +4 was scored, whilst in an HE Medium country, 
+2 was scored, and in an HE High country, 0 was scored. If there were no reported case data available, 
HE Low countries scored +2, HE Medium countries scored −2 and HE High countries scored −6 (Brady 
et al., 2012).

Supplementary evidence
Supplementary evidence was provided in cases where a consensus on presence or absence could not 
be reached using the aforementioned evidence types, typically with areas where the consensus value 
was close to 0%. For these regions, additional literature searches were undertaken to determine 
whether known vector species or infected reservoir hosts were reported in the region. The justification 
for each provincial scenario is outlined in the associated online databases (Dryad data set doi: 10.5061/
dryad.05f5h). In total, this assessment was required in 24 countries.

An overall consensus score for each administrative region was calculated by the sum of the scores in 
each category, divided by the maximum possible score, then expressed as a percentage. Consensus was 
defined as either complete (±75% to ±100%), good (±50% to ±74%), moderate (±25% to ±49%), poor 
(±1% to ±24%), or indeterminate (0%). Such a classification is intended more as a guide to the quality of 
evidence for the leishmaniases in an area, rather than as a strict classification of certainty. The full scores for 
each country are laid out in the associated online data sets (Dryad data set doi: 10.5061/dryad.05f5h).

Brazil and Peru
The Brazilian Ministry of Health produces, via the Sistema de Informação de Agravos de Notificação 
(SINAN, 2013) reporting network, records of infections at the municipality level. This allowed for a 
more thorough evidence consensus to be performed at district level (termed Admin 2 FAO, 2008) 
within Brazil. As above, WHO and GIDEON status as well as peer-reviewed literature score were re-
corded, both aggregated to Admin 1 provincial level. Case data were then defined by the presence of 
a municipality reporting leishmaniasis between 2008 and 2011 inclusive, with positive reports scoring 
+6 and absence scoring −6. The overall consensus score was then calculated as above. In addition, 
provincial level case data for Peru was replaced by Ministry of Health information as it was more con-
temporary than that listed by Alvar et al. (2012).

Occurrence records
Two separate searches using PubMed and Web of Knowledge were undertaken using the search 
parameter “leish*,” and including articles up to December 2012, and their respective abstracts, 
were filtered for relevance. From these searches, 4845 articles were collated, with data recorded at the 
resolution of either a point or Admin 1 or 2 polygon. These were then geo-positioned using Google 
Maps (https://maps.google.co.uk/). Each entry was evaluated to ensure that non-autochthonous cases 
and duplicate entries were eliminated. Each occurrence was assigned a start and end date based upon 
the content of the paper, used to define the time period over which occurrences were reported.

In addition to this resource, reports were taken from the HealthMap database (http://healthmap.
org/en/). HealthMap is an online based infectious disease surveillance system that compiles data from 
informal data sources ranging from online news articles to ProMED reports (Freifeld et al., 2008). It 
parses information from these sources searching for relevant keywords, and then, using crowdsourcing 
and automated processes, geopositions those relating to the disease of interest. As of December 
2012, a total of 690 leishmaniasis relevant articles were archived.
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Searches were also performed on GenBank accessions, searching for archived genetic information 
from Leishmania spp. known to infect humans (WHO, 2010). If the host was identified as human, geo-
graphic indicators were assigned either as point, Admin 1 or Admin 2, based upon the information in 
the location tag. Tags at the national level were filtered out of the data set. In total, 563 accessions 
were associated with sub-national location details and added to the database.

Finally, data were provided from the curated strain archives of the Centre National de Référence 
des Leishmanioses (CNR-L) in Montpellier, France. In total, information about 3465 strains isolated 
from humans was provided, collected from between 1954 and 2013.

All data were geopositioned as precisely as possible, which resulted in both point-level data (refer-
ring to cities, towns or villages) as well as polygon-level data (provinces or districts) with area no 
greater than one square decimal degree. All data that had been manually geopositioned were checked 
to ensure coordinates were plausible and then occurrences were standardised annually to remove 
intra-annual duplicates, so that each individual record used in our model represented an occurrence of 
leishmaniasis infections in a given 5 km × 5 km location or administrative unit for one given year. As a 
result, the occurrence data were independent of burden; a location with 200 cases in one year has 
equal weighting in the model as a location with just one reported case, since it was only the presence 
of the disease being modelled.

Environmental correlates
Leishmania spp. are known to have anthroponotic, zoonotic, or sylvatic transmission cycles in nature 
(WHO, 2010; Ready, 2013) which is apparent in the focal nature of the disease; however, there are 
some key features of the environment that are important in determining the distribution of disease 
across the globe. Numerous models have been constructed for local transmission scenarios implicat-
ing various environmental features from temperature and precipitation to socioeconomic factors relat-
ing to standards of living in villages in endemic foci. For the modelling process, a suite of global 
gridded environmental, biologically plausible, correlates was generated.

Precipitation
Humidity and moisture, whether from rainfall or in the soil, have often been identified as important for 
the sandfly, with humidity influencing breeding and resting (Ready, 2013). Whilst relatively little is 
known about these breeding sites, of the few that have been identified, high humidity seems to be a 
common trait, including moist Amazonian soils, caves, animal burrows, and select human dwellings 
(Killick-Kendrick, 1999; Feliciangeli, 2004). Studies have indicated soil type and their moisture 
profiles as determinants of sandfly distribution (Bhunia et al., 2010; Elnaiem, 2011). Precipitation 
represents a good global proxy measure for moisture, and has been shown to play a prominent role in 
shaping disease distribution in previous leishmaniasis modelling efforts (Thomson et al., 1999; 
Elnaiem et al., 2003; Bhunia et al., 2010; Chamaille et al., 2010; Gonzalez et al., 2010, 2011; 
Elnaiem, 2011; Hartemink et al., 2011; Malaviya et al., 2011).

Estimates of precipitation were obtained from the WorldClim database (www.worldclim.org). This 
resource, which is freely available online, provides data spanning from 1950 to 2000, describing 
monthly averages over this time, at a 1 km × 1 km resolution (Hijmans et al., 2005). Using this base-
line, interpolated global climate surfaces were produced using ANUSPLIN-SPLINA software (Hutchinson, 
1995). With the use of temporal Fourier analysis, seasonal and inter-annual variation in precipitation 
patterns, taken from the interpolated global surface, were used to calculate minimum and maximum 
monthly precipitation averages (Rogers et al., 1996; Scharlemann et al., 2008).

Temperature
Temperature influences both the development of the infecting Leishmania parasite in the sandfly 
(Hlavacova et al., 2013) as well as the life cycle of the sandfly vectors. On one hand, studies have 
shown that with increasing temperatures, the metabolism of the sandfly increases, influencing 
oviposition, defecation, hatching, and adult emergence rates (Kasap and Alten, 2005; Benkova and 
Volf, 2007; Guzman and Tesh, 2000). On the other hand, higher temperatures have also been shown 
to increase mortality rates of adults (Benkova and Volf, 2007; Guzman and Tesh, 2000). Studies have 
integrated the effects of temperature on sandfly biting rates, sandfly mortality, and extrinsic incubation 
periods to produce maps of how the basic reproductive number of canine leishmaniasis varied spatially 
(Hartemink et al., 2011). Multiple studies have also implicated temperature (including maximum, 
minimum, and mean temperatures) as being an important explanatory variable for both sandfly and 
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disease distribution (Thomson et al., 1999; Gebre-Michael et al., 2004; Bhunia et al., 2010; 
Chamaille et al., 2010; Fischer et al., 2010; Galvez et al., 2011; Fernandez et al., 2012; Branco 
et al., 2013).

Using a similar methodology to generating precipitation surfaces, minimum, maximum, and mean 
monthly temperature values were generated (Hijmans et al., 2005).

Normalised difference vegetation index (NDVI) and land cover
Vegetation provides many roles in sandfly habitat and survival, ranging from maintaining the necessary 
moisture profile for both immature stages and adults, to a sugar resource for both male and female 
sandflies (Killick-Kendrick, 1999; Feliciangeli, 2004; Ready, 2013). Moreover, vegetation is an impor-
tant resource for many mammals that sandflies feed on, and that potentially are Leishmania reservoirs. 
The importance of considering NDVI was demonstrated with respect to the distribution of the reser-
voir Psammomys obesus (sand rat) and the distribution of its primary food, chenopods (Toumi et al., 
2012). NDVI has been implicated as a key explanatory variable in the distribution of leishmaniasis 
cases in several studies (Cross et al., 1996; Thomson et al., 1999; Elnaiem et al., 2003; Gebre-
Michael et al., 2004; Elnaiem, 2011; Hartemink et al., 2011; Bhunia et al., 2012; Toumi et al., 2012; 
de Oliveira et al., 2012).

The Advanced Very High Resolution Radiometer (AVHRR) NDVI product uses the spectral reflect-
ance of AVHRR channels 1 and 2 (visible red and near infrared wavelength) to quantitatively assess the 
level of photosynthesising vegetation in a region (Hay et al., 2006). Using this data, compiled over 
multiple time intervals, patterns of NDVI were extracted for each gridded 1 km × 1 km cell.

Poverty
Neglected tropical diseases and poverty are often found to be linked and the use of a purely economic 
variable was chosen to act as a proxy for a variety of important global risk factors for disease, including 
malnutrition, housing quality, and living with domesticated animals (Bern et al., 2010; Boelaert et al., 
2009; Herrero et al., 2009; Malafaia, 2009; Zeilhofer et al., 2008).

The G-Econ database (gecon.yale.edu) takes economic data, at the smallest administrative division 
available, and spatially rescales these data to create a 1o × 1o gridded surface of the globe (Nordhaus, 
2006, 2008). This rescaling estimates the gross cell product of each grid cell, conceptually similar to 
gross domestic product, referring to the total market value of all final goods and services produced 
within 1 year, and can be considered as an indicator of overall standard of living within that area. Some 
cells provided multiple data; in these scenarios the best-quality information, as outlined by the quality 
field associated with the data, was used to select one value. All gross cell product values were then 
adjusted using purchasing power parity in US$ for the years 1990, 1995, 2000, and 2005, using national 
aggregates estimated by the World Bank (Nordhaus, 2006) and computed the mean across all years 
for each gridded cell globally. This adjusted measure was used as the indicator of poverty in the model.

Urbanisation
Over the last few decades, there has been a tendency for the leishmaniases having a sylvatic/zoonotic 
transmission cycle to transition into the urban and peri-urban environment in response to increasing 
urbanisation trends (Harhay et al., 2011). The increasing overlap in habitat between suitable human 
and animal hosts and multiple available resting sites for adults can allow for transmission of disease to 
occur relatively easily (Singh et al., 2008; Poche et al., 2011; Uranw et al., 2013).

The Gridded Population of the World version 3 (GPW3) population density database projected for 
2010 was used. The core Global Rural–Urban Mapping Project Urban Extents surface used night-time 
light satellite imagery to differentiate urban areas (Balk et al., 2006); GPW3 is a revision which updates 
the criteria for urban areas to those areas where population density is greater than or equal to 1000 
people per km2. Using the most up-to-date national censuses available and other demographic data 
resolved to the smallest available administrative unit, a gridded surface of 5 km × 5 km cells was gener-
ated. Each pixel could then be classified as urban, peri-urban, or rural.

Modelling with boosted regression trees
The boosted regression trees (BRT) methodology employed for mapping the leishmaniases is a var-
iant of the model used in a previous analysis of dengue (Bhatt et al., 2013). Boosted regression 
tree modelling combines both regression trees, which build a set of decision rules on the predictor 
variables by portioning the data into successively smaller groups with binary splits (De'ath, 2007; 
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Elith et al., 2008), and boosting, which selects the tree that minimises the loss of function, to best 
capture the variables that define the distribution of the input data. The core BRT setup followed 
standard protocol already defined elsewhere (Elith et al., 2008; Bhatt et al., 2013).

Pseudo-data generation
As BRT requires both the presence and absence data, the latter which is often hard to collate in 
an unbiased manner, pseudo-data had to be generated (Elith et al., 2008). There is no general 
consensus on how best to generate pseudo-data (Bhatt et al., 2013); however, several factors of 
the generation process are known to influence the predicted distribution and thus can be sources of 
potential bias (Phillips et al., 2009; Van Der Wal et al., 2009; Phillips and Elith, 2011; Barbet-Massin  
et al., 2012). In order to minimise such effects, pseudo-absence selection was directly related to 
the evidence consensus layer and restricted to a maximum distance (μ) from any occurrence point. 
Pseudo-presence data was also incorporated, again informed by the evidence consensus layer, to 
compensate for poor surveillance capacity in low prevalence regions. As in Bhatt et al. (2013) 
points were randomly located in regions above an evidence consensus threshold of −25, with  
regional placement probability weighted by evidence consensus scores, so that regions with 
higher evidence consensus contained more pseudo-presences than lower scoring areas. Since the 
occurrence data set is from a wide range of sources and institutions, this procedure aims to mitigate 
sampling bias. By referencing the evidence consensus layer for pseudo-data selection, detection bias 
was also mitigated.

‘Ensemble’ analysis
There is no definitive procedure for choosing the best number of pseudo-data points to generate the 
most accurate predictive map. To account for the impact that these parameters might have on the 
model predictions, an ensemble BRT model was constructed with multiple BRT submodels fitted using 
pseudo-data points generated using different combinations of parameters na, np, and μ. The numbers 
of pseudo-absences (na) and pseudo-presences (np) were defined as a proportion of the total number 
of actual data occurrence records (6426 and 6137 for CL and VL). The proportions used for generating 
pseudo-absences were 2:1, 4:1, 6:1, 8:1, and 10:1, and pseudo-presences were 0.025:1, 0.05:1 and 
0.1:1. The pseudo-data were also generated within a restricted maximum distance (μ) from any actual 
presence point, and μ was varied through 5 distances: 5, 10, 15, 20, and 25 arc degrees. All combina-
tions of these parameter values resulted in a total of 75 (5na × 3np × 5μ) individual input data sets and 
BRT submodels (making up the BRT ensemble).

For each disease, the 75 BRT submodels were used to predict a range of different risk maps 
(each at 5 km × 5 km resolution), and these were combined to produce a single mean ensemble risk 
map for each disease, also allowing for computation of the associated range of uncertainty in these 
predictions for every 5 km × 5 km pixel as shown in Figure 1—figure supplement 1, Figure 2—figure 
supplement 1, Figure 3—figure supplement 1, Figure 4—figure supplement 1. For both diseases, 
the New World (the Americas) and Old World (Eurasia and Africa) were modelled separately in order 
to account for and explore any differences in the epidemiology of the diseases between these regions. 
This was done to differentiate the potential effect that the different vectors namely Lutzomyia spp. in 
the New World and Phlebotomus spp. in the Old World and their varying life histories, might have on 
the distribution of the diseases within these regions.

Summarising the BRT model
The relative importance of predictor variables was quantified for the final BRT ensemble. Relative 
importance is defined as the number of times a variable is selected for splitting, weighted by the 
squared improvement to the model as a result of each split and averaged over all trees (Friedman, 
2001). These contributions are scaled to sum to 100, with a higher number indicating a greater effect 
on the response. To evaluate the ensemble's predictive performance, we used the area under the 
receiver operator curve (AUC) (Fleiss et al., 2003)—the area under a plot of the true positive rate 
versus false positive rate, reflecting the ability to discriminate between the presence and absence. An 
AUC value of 0.5 indicates no discriminative ability, and a value of 1 indicates perfect discrimination.

It is important to note that this distribution modelling technique assesses pixel level risk, rather than 
population level risk. As such, the ensemble evaluates the likelihood of leishmaniasis presence based 
upon the covariates supplied. In reality, some other factors, such as national healthcare provisioning 
and standards of living will influence the true observed burden. Therefore, whilst these two levels of 
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risk are inherently related, additional information, namely incidence data from many different popula-
tions, is required in order to assess the link quantitatively (Bhatt et al., 2013).

Estimation of population living in areas of environmental risk
Population living in areas of risk was estimated by using a threshold probability to reclassify the prob-
abilistic risk maps into a binary risk map, then extracting the total human population in the ‘at risk’ 
areas using a gridded data set of human population density from 2010 (Balk et al., 2006; CIESIN/
IFPRI/WB/CIAT, 2007). The threshold value was set such that 95% of the point occurrence records fell 
within the at risk area. 5% of occurrence points were allowed to fall outside the predicted risk area to 
account for errors which could have arisen either from errors in the occurrence data set or from inac-
curacies in the predicted risk maps.

For external validation, this population at risk information was compared to national reported annual 
cases (Alvar et al., 2012) to produce Figure 4—figure supplement 4. In these figures, the points 
represent the mean value of the estimated annual incidence reported taking into account the authors 
estimates of underreporting rates (Alvar et al., 2012). The upper and lower limits to these estimates 
are reflected by the bars around each point. Note that these figures use a log-scale on each axis and 
that only countries with non-zero estimates by Alvar et al. (2012) are included.

The threshold probabilities of occurrence used to define ‘at risk’ were as follows: NW CL—0.22, 
OW CL—0.19, NW VL—0.42, OW VL—0.19.
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