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Abstract

1. Plants are enormously diverse in their traits and ecological adaptation, even within given 

ecosystems, such as tropical rainforests. Accounting for this diversity in vegetation models 

poses serious challenges. Global plant functional trait databases have highlighted general 

trait correlations across species that have considerably advanced this research program. 

However, it remains unclear whether trait correlations found globally hold within 

communities, and whether they extend to drought tolerance traits. 

2. For 134 individual plants spanning a range of sizes and life forms (tree, liana, understory 

species) within an Amazonian forest, we measured leaf drought tolerance (leaf water 

potential at turgor loss point, πtlp), together with 17 leaf traits related to various functions, 

including leaf economics traits and nutrient composition (leaf mass per area, LMA; and 

concentrations of C, N, P, K, Ca, and Mg per leaf mass and area), leaf area, water use 

efficiency (carbon isotope ratio), and time-integrated stomatal conductance and carbon 

assimilation rate per leaf mass and area. We tested trait coordination and the ability to 

estimate πtlp from the other traits through model selection. Performance and transferability 

of the best predictive model were assessed through cross-validation.

3. πtlp was positively correlated with leaf area, and with N, P and K concentrations per leaf 

mass, but not with LMA or any other studied trait. Five axes were needed to account for 

>80% of trait variation, but only three of them explained more variance than expected at 

random. The best model explained only 30% of the variation in πtlp, and out-sample 

predictive performance was variable across life forms or canopy strata, suggesting a 

limited transferability of the model. 

4. Synthesis. We found a weak correlation among leaf drought tolerance and other leaf traits 

within a forest community. We conclude that higher trait dimensionality than assumed 

under the leaf economics spectrum may operate among leaves within plant communities, 

with important implications for species coexistence and responses to changing 

environmental conditions, and also for the representation of community diversity in 

vegetation models.
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Introduction

Functional traits are measurable quantities related to individual performance and response to 

environmental conditions (Violle et al., 2007). In plants, efforts to standardize trait measurement 

protocols have led to global trait databases (Cornelissen et al., 2003; Kattge et al., 2011; Pérez-

Harguindeguy et al., 2013) and the exploration of trait coordination and variation with 

environment (Chave et al., 2009; Díaz et al., 2016; Reich, Walters, & Ellsworth, 1997; Wright et 

al., 2004). A major finding of this research is that, across biomes worldwide, species leaf traits 

covary, in particular revealing a global trade-off between productive but short-lived leaves with 

rapid turnover and less productive but more persistent leaves with longer carbon payback 

(henceforth denoted the leaf economics spectrum, LES; Wright et al., 2004). Other reported trait 

coordination within or across biomes led to the hypothesis that plants operate along a universal 

“fast-slow” spectrum (Reich, 2014), encompassing plant strategies related to all resources, 

including water (Li et al., 2018; Meinzer et al., 2008; Santiago et al., 2004; Zhu et al., 2018), and 

all plant organs, including stem and roots (Chave et al., 2009; Díaz et al., 2016; Roumet et al., 

2016). This formalizes earlier theories suggesting that plant phenotypes correspond to a one-

dimensional gradient from acquisitive but risky strategies to conservative but safe ones 

(MacArthur, 1972).

These functional tradeoffs have been transformative in the study of plant strategies by 

suggesting that the multidimensional plant trait space can be summarized into few well-described 

dimensions (Hodgson, Wilson, Hunt, Grime, & Thompson, 1999; Westoby & Wright, 2006). One 

major application is the development of new parameterization of land surface models (Lavorel et 

al., 2007; Prentice et al., 2007). Scheiter, Langan, & Higgins, (2013) and Sakschewski et al. 

(2015) used the leaf and wood economics spectra to constrain individual trait combinations in 

simulations of forest dynamics. The model representation of functional diversity thus improved 

from a few discrete strategies to a continuum of traits, while eliminating unrealistic trait 

combinations (Van Bodegom et al., 2012). 

In initial studies of the leaf economics spectrum, hydraulic traits have received little 

attention, in spite of the global significance of vegetation response to drought (Allen et al., 2010; 

Anderegg et al., 2015). Owing to the scarcity of field-measured drought tolerance traits (O’Brien 

et al., 2017), modellers proposed to infer plant hydraulic parameters from more easily measured 

traits such as leaf mass per area (LMA) or wood density (Christoffersen et al. 2016; Xu, Medvigy, 

Powers, Becknell, & Guan 2016). However, these studies acknowledge that correlations of A
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hydraulic and classical traits are weak, potentially reducing the predictive accuracy and increasing 

uncertainty in simulations (Christoffersen et al., 2016; Medlyn, De Kauwe, & Duursma, 2016). 

There are several hypotheses for the weakness of these relationships. First, the absence of 

direct mechanistic link between hydraulic traits and other traits allow them to vary independently 

from each other in given contexts (Bartlett, Scoffoni, & Sack, 2012; Blackman, Aspinwall, Resco 

de Dios, Smith, & Tissue, 2016; Gleason et al., 2016; Li et al., 2015; Sack et al., 2014). For 

example, across species within tropical forest communities, xylem drought tolerance, as inferred 

from xylem water potential at 50% loss of conductivity, was found to be uncorrelated with wood 

density (Powell et al., 2017), and leaf drought tolerance, as inferred from leaf water potential at 

turgor loss point (πtlp) was decoupled from LMA (Maréchaux et al., 2015). 

A second hypothesis for weakness in trait relationships is that trait associations may vary at 

different scales (Sack et al., 2013). For example, globally established cross-species trait 

correlations may not hold across individual leaves or individual plants within community or 

populations (Anderegg et al., 2018; Messier, McGill, Enquist, & Lechowicz, 2017). Intra-specific 

variation, which may be associated with plant size, within-canopy variation, or broader 

environmental gradients, may be comparable or even greater than among-species trait variation 

(Li, Pei, Kéry, Niklaus, & Schmid, 2017; Messier, McGill, & Lechowicz, 2010; Poorter, Castilho, 

Schietti, Oliveira, & Costa, 2018; Siefert et al., 2015), and traits can present contrasting 

sensitivities to these scale-dependent drivers (Messier et al., 2017; Rosas et al., 2019). 

Intraspecific variation can thus blur interspecific trait relationships, especially when trait values 

are drawn from independent studies led under various conditions (Clark et al., 2011; Laughlin et 

al., 2017). As an illustration, accounting for variation in tree size can substantially strengthen trait 

relationships across species (Medeiros et al., 2019). Overall, higher trait dimensionality than 

typically assumed under global trait spectra may operate within plant communities, with important 

implications for species coexistence and responses to changing environmental conditions (Clark, 

2010; Laughlin, 2014; Medeiros et al., 2019; Rosas et al., 2019).

We carried out a test of the hypothesis that a leaf drought tolerance trait, the leaf water 

potential at turgor loss point (πtlp; Bartlett, Scoffoni, & Sack, 2012), co-varies with and can be 

predicted from other leaf-level traits within an Amazonian forest. These traits relate to multiple 

resource use and processes (Table 1), and our dataset covers a diversity of life forms and functions 

and contrasting microhabitats at the individual level within a tropical forest community. We thus 

explored trait co-variation as it occurs in the field, without restricting ourselves to potential A
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peculiarities of a life form or growth in a common environment (Keenan & Niinemets, 2016). 

We addressed the following specific questions: (i) How do leaf traits co-vary within a 

tropical forest community? Does πtlp correlate with other leaf functional traits and how does 

plasticity or intraspecific variability affect these relationships? We hypothesized that πtlp should 

show stronger relationships with other physiological traits such as carbon assimilation rate, than 

morphological traits such as LMA (Table 1), with stronger trends when parsing out intraspecific 

from interspecific variation. (ii) Can leaf traits be combined to robustly estimate πtlp within a 

diverse community? If so, how transferable would such a predictive model be across life forms or 

environmental conditions? A high transferability of the model would suggest the model relies on 

robust mechanistic underpinnings, and vice versa. We hypothesized that a fitted model combining 

several leaf traits would explain substantial variance in πtlp across plants in our dataset given the 

wide range of function these traits encompass, and yet hypothesized limited model transferability 

given the strong context-dependency of many trait-trait relationships.  

Material and methods

Study sites and sampling strategy

Field measurements were conducted at the Nouragues Ecological Research Station in French 

Guiana, 120 km south of Cayenne within an undisturbed forest, ca. 50 km from Cacao, the closest 

village (4°05’ N, 52°40’ W; Bongers et al. 2001). The site receives c.a. 3000 mm/yr rainfall, with 

significant seasonal and inter-annual variation due to the movement of the Inter-Tropical 

Convergence Zone. The wet season lasts from December to July, often interrupted by a short dry 

period in March, and the dry season generally lasts from the end of August to November with 2-3 

months of precipitation < 100 mm/mo. 

Data were collected in May 2014, in the middle of the wet season. In total, we collected 

mature leaves for 134 individuals, including: 49 canopy trees of 10 species belonging to 7 

families, 43 canopy lianas of more than 11 families, 42 understory plants of 12 species (27 tree 

and liana saplings of 6 species, among which 5 were also sampled as canopy individuals, and 15 

individuals of 6 understory species representing 3 families). For a subset of the individuals (n=61), 

we measured the height of leaf sampling. Small branches of canopy plants were collected using 

the French-spike tree climbing method (Fonderies Lacoste, Excideuil, France; De Castilho et al. 

2006) or the single-rope technique (Anderson, Koomjian, French, Altenhoff, & Luce, 2015). 

When part of the foliage of an individual was exposed to direct sunlight, sun leaves were collected A
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when possible, otherwise shade leaves were collected. Mature leaves of understory plants were 

collected at their canopy top. Trees were selected to span contrasting life histories and 

successional status and maximize variation in leaf drought tolerance (Maréchaux, Bartlett, 

Gaucher, Sack, & Chave, 2016). Trees were identified by expert taxonomists. Lianas were 

identified at the family level, and genus or species level when possible, with the aid of DNA 

barcoding. DNA was extracted from leaf samples and rbcL and matK plastid DNA gene regions 

were amplified using universal primers and classic protocols, and compared against reference 

databases (Hollingsworth, Graham, & Little, 2011). 

Leaf trait measurements

Leaf water potential at turgor loss point (πtlp, in MPa; Table 1) was measured using a 

previously published field protocol (Bartlett, Scoffoni, Ardy, et al., 2012). Briefly, a vapour 

pressure osmometer (Vapro 5520, Wescor, Logan, UT) was used to measure the osmotic potential 

at full hydration (πo). πo was then converted into πtlp using a physically-based calibration 

relationship, which was further validated at our site (Maréchaux et al., 2016). 

Measurements of leaf area (LA, in cm-2; Table 1), leaf mass per area (LMA, in g m-2), and 

mass-based concentrations of leaf carbon (Cmass, in %), and nutrients (in mg g-1), including 

nitrogen (Nmass), phosphorus (Pmass), potassium (Kmass), calcium (Camass), and magnesium (Mgmass), 

and carbon isotope ratio (δ13C, in ‰) were made for the same leaves or for leaves of the same 

small branch as πtlp, following standardized protocols (Pérez-Harguindeguy et al., 2013). Thick 

woody petioles were removed and fresh leaves were scanned using a portable scanner (Canon 

LiDE 60, Canon USA, Lake Success, NY, USA). Leaf area was measured manually from the 

scans using the ImageJ software (http://imagej.nih.gov/ij/). Leaves were then oven-dried at 65°C 

for 72 h and weighed, yielding leaf dry mass, from which we calculated LMA (leaf dry mass per 

unit leaf area). Dry leaves were then ground into a homogeneous powder using a mixer mill 

(Retsch MM 200, Haan, Germany). Cmass, Nmass, and δ13C were determined using a continuous 

flow mass spectrometer (Isoprim 100 and Geo-multi-flow, Elementar, Hamburg, Germany). δ13C 

was calculated as:

δ13C = ( 13𝐶 12𝐶
𝑅𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑

― 1) ×  100

where Rstandard is the  ratio measured on a V-PDB standard. After mineralisation, Pmass, 13𝐶 12𝐶

Kmass, Camass and Mgmass were measured by Inductively Coupled Plasma – Atomic Emission A
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Spectrometry (ICP–AES, JY 180 Ultrace Jobin-Yvon, France). Nutrient concentrations per leaf 

area (Narea, Parea, Karea, Caarea, and Mgarea) were then obtained by multiplying nutrient 

concentrations per leaf mass by LMA.

For each sampled leaf, we estimated the time-integrated CO2 assimilation rate per area (

, in mol m-2 s-1) and the time-integrated stomatal conductance to water vapour ( , in mol 𝐴𝑎𝑟𝑒𝑎 𝑔𝑤

m-2 s-1) using the following approach (Medeiros et al., 2019). A time-integrated estimate of the 

leaf intercellular CO2 mole fraction, (in mol CO2 per mole air; μmol mol-1), was estimated 𝑐𝑖 

from leaf δ13C using the following relationship:  (Cernusak et al., 𝑐𝑖/𝑐𝑎 = ―0.04 ×  𝛿13𝐶 ― 0.55

2013; Farquhar, O’Leary, & Berry, 1982), with ca the atmospheric CO2 concentration taken as 390 

ppm.  was then estimated using the model of Farquhar, von Caemmerer & Berry (1980) and 𝐴𝑎𝑟𝑒𝑎

constant values following Franks, Drake & Beerling (2009), with the maximum carboxylation 

capacity and the maximum electron transport rate estimated using N and P co-limitation model 

proposed by Domingues et al. (2010; Figure 7 therein).  was then estimated as 𝑔𝑤

𝑔𝑤 = 1.6 ×
𝐴𝑎𝑟𝑒𝑎 

𝑐𝑎 ― 𝑐𝑖

and  (in mol g-1 s-1) was computed by dividing  by LMA.𝐴𝑚𝑎𝑠𝑠 𝐴𝑎𝑟𝑒𝑎

Data analysis

All data analyses were conducted at the individual level. We first tested trait-by-trait 

correlations among the 18 leaf traits (Table 1) using pairwise Pearson correlation tests on the 

whole dataset (n=134 individuals). Second, to assess the dimensionality of the leaf trait space, we 

conducted a principal component analysis (PCA) on the standardized leaf traits for the whole 

dataset. We assessed the significance of PCA axes by comparing the axes’ eigenvalues with 

expectations from a broken-stick model following Jackson (1993) and Peres-Neto, Jackson & 

Somers (2003). Then, to test whether trait within-canopy plasticity or intra-specific variability can 

affect the pairwise relationships between πtlp and the other traits, we restricted the dataset to tree 

species collected at ≥5 canopy heights (5 species; 28 individuals). For each trait, we used this 

subset to fit a linear model with πtlp as the dependent variable and species as factor and/or height 

of leaf sampling as an additional predictor that could account for contrasting trait variability across 

the canopy gradient. A
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We then tested the ability to predict πtlp from other leaf traits. Using multivariate 

regressions, we searched for the best model to predict πtlp from the other traits (n=134 individuals). 

To avoid predictor multicollinearity, we removed traits that exhibited variation inflation factors 

(VIFs) >2.0 (Kutner, Nachtsheim, & Neter, 2004). The VIF of a given predictor x is given by 

VIF=1/(1-R2), where R2 is the determination coefficient of the regression where the predictor of 

interest x is predicted by all the other predictors. We ran the models with all possible combinations 

of traits as predictors and computed the goodness of fit using the Akaike’s Information Criterion 

corrected for small sample sizes (AICc, Burnham & Anderson 2003). We estimated the relative 

‘importance’ of each predictor by summing the AICc weights across all the models where the 

predictor occurs. We selected the model that minimized AICc, choosing the model with fewer 

predictors in case of a similar performance (differences in model AICc<2). Including trait 

interactions and following the same procedure led to the same selected model. We then quantified 

model accuracy by computing the in-sample root-mean-square error (RMSE), model consistency 

and bias by computing the slope and intercept of the linear regression of measured vs. predicted 

πtlp values (Piñeiro, Perelman, Guerschman, & Paruelo, 2008), and the fraction of variance 

uniquely explained by each predictor using commonality analysis, which separates unique and 

shared effects of predictors (Ray-Mukherjee et al., 2014). 

We assessed model out-sample predictive performance through a k-fold random cross-

validation (Olden & Jackson, 2000): we randomly partitioned the dataset into k equal-sized 

groups, and withheld one group at a time for validation (here we used k=5 or 10). This provided 

an out-sample RMSE, henceforth denoted RMSEk-fold. We repeated this procedure a hundred times 

and reported the distribution of RMSEk-fold. Finally, we assessed model transferability (also named 

generality or generalizability) to other datasets through non-random cross-validation (Wenger & 

Olden, 2012). Non-random cross-validation involves assigning data to groups that are 

ecologically, spatially or temporally distinct. In doing so, the heterogeneity in the dataset is taken 

to be a surrogate for heterogeneity among datasets (Wenger & Olden, 2012). We used life forms 

(lianas, trees, understory species) and canopy strata (understory, canopy) as alternative ways to 

partition the dataset, and this provided RMSE values (RMSEliana, RMSEtree and RMSEund.sp, with 

liana, tree and understory species withheld for validation, respectively; and RMSEund and 

RMSEcanopy, with canopy and understory individuals withheld for validation, respectively). To 

avoid the potentially confounding effect of unequal-sized groups when comparing the RMSE 

across life forms or canopy strata, we randomly sampled individuals in the more numerous groups A
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to obtain equal-size groups (n=15 individuals per group for life forms, and n=42 individuals per 

group for canopy strata). We repeated this procedure a hundred times and reported the distribution 

of RMSE values for each life form and canopy strata. As the trees (in the life form partitioning) 

and the canopy individuals (in the strata partitioning) covered wider ranges of πtlp values than the 

other life forms or strata respectively (Figs. S2-S3), we also reproduced this analysis by restricting 

the random sampling of 15 trees or 42 canopy individuals to individuals with πtlp values within the 

range of the other life forms or strata. In doing so, we aimed to test whether any variability in 

RMSE values across life forms or strata could be due to contrasting πtlp ranges.

For all analyses, LMA, LA, Narea,  , πtlp, and P, K, Ca, and Mg on a mass and area basis 𝑔𝑤

were log-transformed to meet the assumption of normality. For all RMSE computations, predicted 

πtlp values were back-transformed to arithmetic scale by applying the Baskerville correction factor 

to account for log-normally distributed errors (Baskerville, 1972). Analyses were conducted using 

the R software (R Core Team, 2018), and the ‘Hmisc’ (Harrell & Dupont, 2015), ‘smatr’ (Warton, 

Duursma, Falster, & Taskinen, 2012), ‘ade4’ (Dray & Dufour, 2007), ‘car’ (Fox & Weisberg, 

2011), and ‘MuMIn’ (Bartoń, 2015) packages.

Results

Leaf trait correlation pattern across individuals 

Across the dataset (n=134 individuals), πtlp was statistically linked with leaf size and composition: 

leaves with more negative πtlp (higher drought tolerance) tended to have lower LA, Nmass, Pmass and 

Kmass (Table 2, Fig. 1). The relationship of πtlp with LA and Nmass was however mainly driven by 

trees, whereas understorey species and trees showed contrasting relationships between πtlp and 

Kmass (Fig. 1, Fig. S4). The πtlp was statistically independent of LMA, which across the dataset was 

intercorrelated with Nmass and Pmass, with low-LMA leaves tending to show high Nmass and Pmass 

(Table 2). LMA, nutrient concentrations per leaf area, δ13C, Cmass and  were also pairwise 𝐴𝑎𝑟𝑒𝑎

related, with low-LMA leaves tending to present low nutrient concentrations per leaf area and 

 as well as low Cmass and δ13C (low water use efficiency). Camass and Mgmass were positively 𝐴𝑎𝑟𝑒𝑎

related, and both were negatively with Cmass.  was positively associated with LA and N and P 𝐴𝑚𝑎𝑠𝑠

concentrations both per leaf mass and area. 

In the PCA analysis, the three first components explained each more variance than 

expected from a broken-stick model, explaining altogether 68% of the total trait variance, and five A
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axes were actually needed to account for >80% of variance (Table 3). The first axis depicted a 

dimension driven by the tight relationships among LMA and nutrient concentrations per leaf area, 

δ13C and . The second axis encapsulated the correlations among πtlp, LA, and mass-based 𝐴𝑎𝑟𝑒𝑎

nutrient concentrations and assimilation rate, whereas the third axis related to the specific 

coordination between Ca and Mg concentrations.

Using the subset of five tree species with at least five different heights of leaf sampling, 

accounting for a species or height effect in the pairwise relationships between πtlp and the other 

traits did not explain additional variation, except for  which, after parsing out within- and 𝑔𝑤

across-species correlations, appeared weakly positively related to πtlp across species (P=0.02; Fig. 

S5).

Estimating πtlp from other leaf traits

Parea, Karea, Caarea, Mgarea,  , LMA, δ13C, Pmass and Cmass were successively removed 𝐴𝑎𝑟𝑒𝑎

from the predictors to avoid too strong multicolinearity in the models (VIF >2). The most 

important traits to predict πtlp were, in decreasing order, LA, Nmass, Kmass, Camass, , , 𝐴𝑚𝑎𝑠𝑠 𝑔𝑤

Mgmass, Narea (with estimated ‘importances’ of 1.00, 0.97, 0.81, 0.41, 0.28, 0.28, 0.26, 0.26 

respectively). Going through the same procedure after removing the pionner trees, which have 

very large LA, from the dataset led to similar results and the same selected predictors.

The selected model included LA, Nmass and Kmass, which respectively and uniquely 

explained 9.2%, 5.0%, and 2.6% of the variation in πtlp. The random 5-fold and 10-fold cross-

validation produced results close to the model in-sample performance (RMSE5-fold and RMSE10-fold 

narrowly distributed with in-sample RMSE within their range, Table 4, Fig. S6), but the non-

random cross-validation produced more variable RMSE values across life forms or canopy strata, 

with higher RMSEtree and RMSEcanopy. This variability remained when controlling πtlp ranges, 

although it was then reduced in the case of the life form partitioning (not shown). The selected 

models tended to underestimate leaf drought tolerance of most tolerant leaves (Fig. 2), although 

the fitted line on measured vs. predicted values was not significantly distinct from the 1:1 line in 

both cases (Fig.2, Table 4).

Discussion

Weak coordination among leaf traits within a tropical forest communityA
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We tested coordination among 18 leaf traits related to key functions and resources (Table 1) and 

measured on individuals of different life forms across the canopy of a diverse Amazonian 

rainforest. We first explored trait relationships at the scale at which they operate (the organ). We 

found trait coordination in agreement with a “fast-slow” leaf spectrum (Reich, 2014; Table 1), 

consistent across life forms and canopy strata (Supporting information Appendix S1). Leaves with 

lower N and P concentrations per leaf mass (Nmass and Pmass) tended to have a higher leaf mass per 

area (LMA), but also a more negative leaf water potential at turgor loss point (πtlp). This partly 

extends to drought tolerance previously reported economic trait coordination across tropical tree 

species (Baltzer & Thomas, 2010; Baraloto et al., 2010; Fortunel, Fine, & Baraloto, 2012; Patiño 

et al., 2012; Santiago & Wright, 2007; Zhu et al., 2018). This is in agreement with previous results 

at our site showing that πtlp varied with species successional status, early successional species 

having a less negative πtlp than late successional ones (Maréchaux et al., 2016). The fact that 

Powell et al. (2017) found no relationship between πtlp and wood density is consistent with the fact 

that the wood economic spectrum and the leaf economic spectrum are independent in tropical 

rainforests (Baraloto et al., 2010), e.g., some light-demanding species with acquisitive leaves may 

have a relatively dense wood, and shade tolerant species with conservative leaves may have a 

relatively light wood. 

However, the relationships in agreement with a leaf “fast-slow” spectrum in our dataset left 

the majority of trait variance unexplained. No fewer than five dimensions were needed to 

encapsulate >80% of trait variation, and only three of them explained more variance than expected 

from a random pattern. Specifically, πtlp and LMA were not correlated, in agreement with previous 

studies (Bartlett, Scoffoni, & Sack, 2012; Esperón-Rodríguez et al., 2018; Maréchaux et al., 2015). 

It has been argued that the strength of leaf economics trait relationships depends on trait ranges, 

which should decrease at smaller spatial scales (Funk & Cornwell, 2013; Messier et al., 2017), and 

this could explain the weaker coordination among leaf traits at local scale than at regional or 

global scale. However, our sampling encompassed a diversity of plant species covering a large 

taxonomic breadth and leaves displaying a substantial variability in trait values. Overall, our 

dataset gathered at a single site of Amazonia spans a large fraction of the reported global leaf trait 

variation. Indeed, Nmass and Pmass ranged from 0.75% to 3.93% and from 0.03 to 0.20%, 

respectively, LMA varied from 28 to 398 g m-2, and πtlp from -2.73 to -1.06 MPa in our dataset, 

which are substantial in comparison with respective 95% ranges in global plant trait databases, 

i.e.,  0.8–3.9% and 0.04–0.35% for Nmass and Pmass, 21–222 g m-2 for LMA (Kattge et al., 2011), A
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and -3.44 to -1.00 MPa for  πtlp (Bartlett, Scoffoni, & Sack, 2012). 

Alternatively, the weak coordination among traits in our dataset may have arisen from trait 

plasticity (Anderegg et al., 2018; Laughlin et al., 2017; Li et al., 2017; Niinemets, Keenan, & 

Hallik, 2015). Our sampling was designed to span a large range of leaf functional diversity at our 

site, and leaves were collected from shaded understory to top canopy. Environmental plasticity 

may thus add to genetic variation in leaf traits. Indeed, several traits, such as LMA or δ13C, varied 

with canopy leaf height (Appendix S1) as previously documented for these traits along the 

vegetation depth gradient, or equivalently light intensity (Domingues, Berry, Martinelli, Ometto, 

& Ehleringer, 2005; Keenan & Niinemets, 2016; Niinemets, Keenan, & Hallik, 2015; Ometto et 

al., 2006). In contrast, other traits such as Kmass or πtlp did not vary with leaf height in our dataset 

(Appendix S1; Maréchaux et al., 2016). These contrasted relationships with vertical environmental 

gradient across traits can weaken the relationships among traits in our dataset (Messier et al., 

2017). Thus, trait coordinations were stronger when we restricted our analysis to understory plants 

(Appendix S1), which thrive in a more homogeneous environment. However, explicitly 

accounting for height effect or intra-specific variation in our dataset did not reveal any additional 

relationship between πtlp and the other traits, except for the time-integrated stomatal conductance 

which then showed a weak positive relationship with πtlp across species, as expected under a “fast-

slow” spectrum (Table 1, Medeiros et al., 2019). Although a more in-depth sampling would allow 

to better disentangle any potential scale effect on trait covariation in the future (Anderegg et al., 

2018; Li et al., 2017; Medeiros et al., 2019; Messier et al., 2017), our results thus suggest that leaf 

traits within a tropical forest community vary across a higher-dimensional space than often 

assumed. As a result, care should be taken when interpreting variation in one trait as a proxy of 

individual integrated ecological strategies according to spectra observed at higher scales. 

As opposed to our sampling, previous trait sampling protocols often attempted to minimize 

trait variation due to environment and focused exclusively on leaves exposed to high-light 

conditions (Asner et al., 2014; Pérez-Harguindeguy et al., 2013; but see e.g. Li et al., 2017). 

However, in doing so, the majority of leaves within a forest canopy and an important diversity of 

plants and species within forest communities are being overlooked (Keenan & Niinemets, 2016). 

If trait coordination is to be used to explore the drivers of community assembly and ecosystem 

functioning, trait-based studies should encompass the diverse light conditions and plant life forms 

that occurred locally. More in-depth sampling of multiple trait variation across forest micro-

environmental conditions is needed to further identify the multiple drivers that can entangle A
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themselves in shaping observed trait co-variation patterns across individuals.

On attempting to predict leaf drought tolerance based on other leaf traits

Statistical models may be used to estimate some unmeasured trait values from measured ones, thus 

facilitating the parameterization of multiple processes for a diversity of plants in vegetation 

models. Several studies hence proposed to estimate species hydraulic traits such as πtlp from other 

traits such as LMA and wood density, based on relationships obtained through global meta-

analyses on species means (Christoffersen et al., 2016; Xu et al., 2016). Intra-specific variability 

may have weakened these relationships established using trait values drawn from independent 

sources (Patiño et al., 2012). Although the 18 leaf traits of our dataset were measured on the same 

leaves and encompassed a range of functions, the best model of πtlp based on the other traits 

explained no more than 30% of πtlp variation. Additionally, out-sample predictive performance 

varied across life forms or canopy strata, suggesting a limited transferability of such model. This 

may evidence the lack of direct mechanistic links between πtlp and the selected predictors, namely 

leaf area, nitrogen and potassium concentrations per leaf mass.

Leaf area displays a wide variation across species globally (Wright et al., 2017), as in our 

dataset gathered within a tropical forest community, where it was the most important predictor of 

πtlp. More drought tolerant leaves tended to be smaller than others, a trend that remained after 

removing pioneer trees that had a particularly high leaf area. Such a relationship is in agreement 

with expectations under a “fast-slow” spectrum. Displaying larger leaves allow a high light 

interception at lower twig construction cost, which, all else being equal, can confer a growth 

advantage (Wright, Falster, Pickup, & Westoby, 2006). At the same time, larger leaves typically 

have major veins of larger diameter (Sack et al., 2012), providing the water transport capacity to 

cool the leaves through transpiration and compensate for their thicker boundary layer when water 

supply is not limited (Wright et al., 2017). This is however at the cost of leaf hydraulic safety 

under water stress, which has been found to be greater in smaller leaves with a higher density of 

smaller veins (Scoffoni, Rawls, McKown, Cochard, & Sack, 2011). In agreement with our 

findings, Medeiros et al. (2019) did find a positive relationship between leaf area and πtlp across 

species within a lowland dry forest. In contrast, leaf area and πtlp were found to be unrelated across 

species within a wet montane forest (Medeiros et al., 2019) and across species ranging strongly in 

drought tolerance and native habitat (Scoffoni et al., 2011), suggesting the coordination between 

leaf area and πtlp is context-dependant. Similarly, and more generally, correlations between A
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hydraulic traits, such as πtlp, and economic traits, such as Nmass, varied across studies, with some 

finding significant relationships (Medeiros et al., 2019; Rosas et al., 2019; Zhu et al., 2018), while 

others finding no relationship (Bartlett et al., 2016; De Guzman, Santiago, Schnitzer, & Álvarez-

Cansino, 2017; Li et al., 2015; Medeiros et al., 2019; Rosas et al., 2019).

Potassium activates many enzymes that are essential for photosynthesis and respiration and 

is also important for stomatal control (Roelfsema & Hedrich, 2005), which could explain its 

association with leaf economic traits in our dataset and in previous studies (Baraloto et al., 2010; 

Fyllas et al., 2009; Wright et al., 2005). Wright et al. (2005) argued that K concentration should be 

more tightly associated with other cation concentrations such as Ca and Mg than with classic 

economic traits, since they mediate together many key metabolic processes within the leaf, such as 

stomatal conductance and cell wall development (Garten, 1976). Although Patiño et al. (2012) did 

find a stronger association among leaf cation concentrations than with economic traits for tropical 

trees, K concentration was not related to Ca or Mg concentrations in our dataset. Patiño et al. 

(2012) further hypothesized that higher cation concentration values would contribute to lowering 

leaf osmotic potentials through accumulation of osmotically-active solutes (Leigh & Wyn Jones, 

1984; Olivares & Medina, 1992), and this would result in more negative πtlp and more drought 

tolerant leaves (Bartlett, Scoffoni, & Sack, 2012). But we here found an opposite positive trend 

between bulk K concentration per leaf mass and πtlp. This relationship could be indirectly driven 

by stomatal function, as K contributes to stomatal control and a less negative πtlp is associated with 

earlier stomatal closure (Hochberg, Rockwell, Holbrook, & Cochard, 2018; Martin-StPaul, 

Delzon, & Cochard, 2017; Meinzer et al., 2016), although K is involved in a range of other 

processes within the leaf. Overall, the correlation between K concentration and πtlp is not 

straightforward, varied across life forms in our dataset (Fig. 1), and was weak overall: if leaves 

with high K concentrations all tended to be at the less drought tolerant side of our dataset gradient, 

leaves with low K concentrations had πtlp values encompassing the whole gradient. 

Leaf and wood economic spectra are typically independent in tropical forests (Baraloto et 

al., 2010; Díaz et al., 2016; Fortunel et al., 2012), so it can a priori make sense to use leaf traits 

exclusively to predict another leaf trait. However, hydraulic functions may be more integrated 

through plant organs than carbon economy. Indeed, several studies reported a coordination of 

hydraulic traits across plant organs in some tropical forest sites (Li et al., 2018; Meinzer, Johnson, 

Lachenbruch, McCulloh, & Woodruff, 2009; Meinzer et al., 2008; Nolf et al., 2015) and in global 

syntheses (Bartlett, Klein, Jansen, Choat, & Sack, 2016). Other hydraulic traits than πtlp are A
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however difficult or long to measure in the field, or prone to artefact measurements in tropical 

plants (Cochard et al., 2013), and thus remain under-documented in tropical forest communities 

(Bartlett et al., 2016; Choat et al., 2012). Together with our results, this calls for more direct 

measurements of πtlp and other physiological traits, especially in tropical forests (Blackman, 2018; 

Brodribb, 2017; Griffin‐Nolan et al., 2018; Paine, Deasey, & Duthie, 2018; Yang, Cao, & 

Swenson, 2018).

Conclusions

Our results illustrate that the integration of traits across function within plant communities can be 

weaker than assumed according to globally established trait spectra across species. Using global 

spectra to constrain plant trait combinations in vegetation models may thus result in overlooking 

some existing trait combinations and simulating communities that occupy a narrower trait space 

than actually observed in situ (Asner, Knapp, Anderson, Martin, & Vaughn, 2016; Laughlin, 2014; 

Li et al., 2015). This may hinder models’ ability to robustly simulate ecosystem functioning 

(Cardinale et al., 2009; Mokany et al., 2016). In absence of clear mechanistic links, the strength of 

between-trait correlations is context-dependent. Disentangling hard biophysical constraints from 

context-dependent selection in shaping empirically observed trait covarition is important to 

understand and predict community diversity and ecosystem functioning. 
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Tables

Table 1. Study traits and their functional significance. For each trait is provided the symbol, units, mean, maximum and minimum as well as the 

coefficient of variation (CV) across the dataset (n=134 individuals). The different hypotheses regarding each trait relationship with πtlp, as well as 

their physiological or ecological underpinnings is provided: (+), (-) and (ns) denote a hypothesized positive, negative or an absence of relationship, 

respectively, with in bold the one supported by our results. 

Trait Abbre-

viation

Units Mean 

(min, 

max)

CV 

(%)

Functional significance Hypothesized relationships with πtlp

Leaf mass 

per area

LMA g m-2 84.15 

(27.80, 

397.94)

56.0 Invested biomass per leaf area deployed; 

depicts a trade-off between light interception 

efficiency and leaf persistence (Poorter, 

Niinemets, Poorter, Wright, & Villar, 2009) 

(-) ‘fast-slow’ hypothesis1 (Medeiros et al., 

2019; Zhu et al., 2018)

(ns) absence of mechanistic link (Bartlett, 

Scoffoni, & Sack, 2012; Maréchaux et al., 2015)

Leaf area LA cm2 333.94 

(10.72, 

5213.18)

257.1 Driver of light capture efficiency and leaf 

boundary layer, which is thinner for smaller 

leaves, facilitating sensible heat exchange 

with the surrounding air and leaf cooling 

(Wright et al., 2017)

(+) ‘fast-slow’ hypothesis (Medeiros et al., 2019)

(ns) absence of mechanistic link

Nitrogen 

concentration 

Nmass mg g-1 20.26 

(7.50, 

28.7 N-rich compounds are essential to 

photosynthesis and metabolic processes 

(+) ‘fast-slow’ hypothesis

(-) drought resistant strategies combine higher 
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per leaf mass 39.30) (Evans, 1989). leaf drought tolerance (more negative πtlp) and 

higher nutrient concentration to enhance water 

conservation during photosynthesis (Meinzer et 

al., 2017; Wright & Westoby, 2002)

(ns) absence of mechanistic link

Nitrogen 

concentration 

per leaf area

Narea g m-2 1.58 

(0.59, 

5.97)

45.6 “ “

Phosphorus 

concentration 

per leaf mass

Pmass mg g-1 0.77 

(0.30, 

2.03)

41.0 P-rich compounds are essential to 

photosynthesis and metabolic processes 

(Reich, Oleksyn, & Wright, 2009).

“

Phosphorus 

concentration 

per leaf area

Parea g m-2 0.06 

(0.02, 

0.34)

59.6 “ “

Potassium 

concentration 

per leaf mass

Kmass mg g-1 7.28 

(2.45, 

17.93)

48.0 Enzyme activator in metabolic reactions, has 

an important role in stomatal movement, and 

contribute to osmoregulation (Leigh & Wyn 

Jones, 1984; Roelfsema & Hedrich, 2005).

 (+) ‘fast-slow’ hypothesis (Baraloto et al., 2010)

(-) higher cation concentration values contribute 

to lowering leaf osmotic potentials resulting in 

more negative πtlp (Olivares & Medina, 1992; 
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Patiño et al., 2012)

(ns) absence of mechanistic link

Potassium 

concentration 

per leaf area

Karea g m-2 0.60 

(0.11, 

7.04)

109.2 “ “

Calcium 

concentration 

per leaf mass

Camass mg g-1 8.29 

(0.99, 

37.54)

75.9 Enzyme activator in metabolic reactions, has 

an important role in stomatal movement and 

cell wall development (Demarty, Morvan, & 

Thellier, 1984; Roelfsema & Hedrich, 

2005).

“

Calcium 

concentration 

per leaf area

Caarea g m-2 0.68 

(0.05, 

3.56)

96.6 “ “

Magnesium 

concentration 

per leaf mass

Mgmass mg g-1 2.65 

(0.35, 

15.41)

78.1 Enzyme activator in metabolic reactions, has 

an important role in chrophyll and lipid 

production, and contribute to 

osmoregulation (Garten, 1976; Leigh & 

Wyn Jones, 1984).
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Magnesium 

concentration 

per leaf area

Mgarea g m-2 0.22 

(0.03, 

1.16)

93.2 “ “

Carbon 

isotope ratio

δ13C ‰ -33.16 (-

37.87, -

27.92)

6.5 Informs pattern of carbon use, varies with C 

source and fractionation during assimilation; 

is positiviely related to water use efficiency 

(Farquhar et al., 1989).

(-) ‘fast-slow’ hypothesis (Medeiros et al., 2019; 

Rosas et al., 2019)

(+) leaves with more negative πtlp have a more 

anisohydric behaviour and prioritize carbon gain 

over water use efficiency when soil water 

availability is not limited (Meinzer et al., 2017)

(ns) absence of mechanistic link

Carbon 

concentration 

per leaf mass

Cmass % 45.59 

(40.46, 

50.22)

4.8 Key component of leaf structural (e.g. 

lignin) and non-structutral (e.g. proteins) 

compounds

(-) ‘fast-slow’ hypothesis (Medeiros et al., 2019)

(ns) absence of mechanistic link

Time-

integrated 

CO2 

assimilation 

rate per mass

𝐴𝑚𝑎𝑠𝑠 mol g-1 

s-1

0.10 

(0.06, 

0.14)

15.8 (Farquhar et al., 1980; Franks et al., 2009) (+) ‘fast-slow’ hypothesis (Medeiros et al., 2019)

(-) drought resistant strategies combine higher 

leaf drought tolerance (more negative πtlp) and 

higher assimilation rate to enhance water 

conservation during photosynthesis (Meinzer et 

al., 2017; Wright & Westoby, 2002) 
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(ns) absence of mechanistic link

Time-

integrated 

CO2 

assimilation 

rate per area

𝐴𝑎𝑟𝑒𝑎 mol m-2 

s-1

8.23 

(2.29, 

26.45)

46.0 (Farquhar et al., 1980; Franks et al., 2009) “

Time-

integrated 

stomatal 

conductance 

to water 

vapour

𝑔𝑤 mol m-2 

s-1

0.16 

(0.05, 

0.71)

50.7 (Farquhar et al., 1980; Franks et al., 2009) (+) ‘fast-slow’ hypothesis (Medeiros et al., 

2019), with less negative πtlp being related to 

higher maximal gw (Henry et al., 2019) and 

higher gw overall in a wet environment 

(-) More negative πtlp is related to increasing 

anisohydry and greater leaf turgor, allowing 

sustained greater gw under drying conditions 

(Maréchaux et al., 2018; Meinzer et al., 2016) 

and overall (Meinzer et al., 2017)

Leaf water 

potential at 

turgor loss 

point

πtlp MPa -1.75 (-

2.73, -

1.06)

19.9 Point at which leaf cells lose turgor and the 

leaf wilts; more negative values indicate 

more drought tolerant leaves (Bartlett, 

Scoffoni, & Sack, 2012).
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1Hypothesis named upon Reich (2014) whereby biophysical constraints on plant structure and function impose coordinated trade-offs across traits at 

the whole plant scale and regarding all resources, resulting in species operating along a spectrum of ‘fast’ (acquisitive) to ‘slow’ (conservative) 

strategies, with ‘fast’ strategies having traits that allow rapid acquisition of resources at the detriment of tissue persistence under various conditions 

and the opposite for ‘slow’ strategies.  
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Table 2. Pairwise correlations among the studied leaf traits. Pearson correlation coefficients are shown in bold type when significant, following 

Bonferroni-corrected alpha values (P < 0.0003). Note that LMA, LA, Narea, Pmass, Parea, Kmass, Karea, Camass, Caarea, Mgmass, Mgarea,  and πtlp were log-𝑔𝑤

transformed to meet the assumption of normality. Since negative, πtlp values were converted to positive values for log transformation, but signs of 

correlation coefficients correspond to the correlation sign for untransformed data.

LA Nmass Narea Pmass Parea Kmass Karea Camass Caarea Mgmass Mgarea δ13C Cmass 𝐴𝑚𝑎𝑠𝑠 𝐴𝑎𝑟𝑒𝑎 𝑔𝑤 πtlp

LMA 0.06 -0.50 0.77 -0.40 0.67 -0.26 0.60 -0.11 0.48 -0.07 0.57 0.59 0.40 -0.07 0.94 0.42 -0.17

LA 0.33 0.27 0.24 0.26 0.15 0.17 0.16 0.18 0.32 0.30 -0.02 -0.11 0.33 0.15 0.17 0.43

Nmass 0.15 0.72 0.09 0.37 -0.11 0.20 -0.12 0.18 -0.17 -0.05 -0.14 0.50 -0.33 -0.28 0.42

Narea 0.08 0.83 -0.04 0.59 0.01 0.45 0.02 0.50 0.65 0.35 0.31 0.84 0.28 0.10

Pmass 0.41 0.53 0.11 0.24 -0.02 0.09 -0.17 0.11 -0.09 0.72 -0.15 -0.27 0.44

Parea 0.17 0.69 0.08 0.46 0.00 0.42 0.67 0.32 0.52 0.81 0.20 0.18

Kmass 0.61 0.01 -0.14 -0.03 -0.19 -0.01 -0.10 0.18 -0.20 -0.15 0.32

Karea -0.08 0.28 -0.09 0.31 0.48 0.24 0.09 0.60 0.29 0.12

Camass 0.82 0.58 0.41 -0.13 -0.50 0.29 -0.02 0.10 0.19

Caarea 0.47 0.69 0.23 -0.21 0.21 0.53 0.33 0.07

Mgmass 0.78 -0.18 -0.55 0.18 -0.01 0.14 0.17

Mgarea 0.22 -0.21 0.11 0.58 0.38 0.03

δ13C 0.50 0.09 0.60 -0.38 -0.06

Cmass -0.02 0.38 -0.10 -0.20

𝐴𝑚𝑎𝑠𝑠 0.26 0.14 0.24
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Table 3. Loading scores of 18 functional traits in the PCA on the whole dataset (n=134 

individuals). Traits abbreviations are given in Table 1. Significant principal components (as 

determined by comparison with a broken stick model) and trait loadings with absolute values >0.5 

are bolded. Since negative, πtlp values were converted to positive values for log transformation, but 

signs of πtlp loadings correspond to the correlation sign for untransformed data.

PC1 PC2 PC3 PC4 PC5

Eigenvalue 5.53 3.74 3.04 1.37 1.19

% of variance explained 30.7 20.8 16.9 7.6 6.6

Cumulative variance 30.7 51.5 68.4 76.0 82.6

Loadings of traits

LMA -0.88 0.46 -0.09 -0.07 0.00

LA -0.29 -0.50 -0.01 -0.28 0.30

Nmass 0.14 -0.74 0.40 0.17 0.17

Narea -0.89 -0.01 0.20 0.07 0.14

Pmass -0.02 -0.76 0.53 0.15 0.04

Parea -0.89 -0.17 0.34 0.05 0.03

Kmass 0.03 -0.45 0.50 -0.49 -0.50

Karea -0.70 0.00 0.34 -0.46 -0.42

Camass -0.17 -0.61 -0.53 0.27 -0.21

Caarea -0.66 -0.28 -0.52 0.20 -0.18

Mgmass -0.17 -0.56 -0.63 0.08 -0.13

Mgarea -0.69 -0.18 -0.58 0.03 -0.11

δ13C -0.63 0.21 0.44 0.45 -0.28

Cmass -0.29 0.52 0.55 0.15 0.21

𝐴𝑚𝑎𝑠𝑠 -0.32 -0.62 0.26 0.17 0.43

𝐴𝑎𝑟𝑒𝑎 -0.95 0.24 -0.01 0.00 0.14

𝑔𝑤 -0.39 0.05 -0.44 -0.58 0.44

πtlp -0.06 -0.60 0.18 -0.27 0.05
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Table 4. Performance of the model selected to predict the leaf water potential at turgor loss point 

based on the other studied leaf traitsa.

R2 0.30

RMSE 0.28

Slope (95% confidence interval)* 1.13 (0.85, 1.40)

In-sample 

performance

Intercept (95%confidence interval)* 0.22 (-0.27, 0.71)

Median of RMSE5-fold (Q5, Q95)** 0.29 (0.29, 0.30)Random 

grouping Median of RMSE10-fold (Q5, Q95)** 0.29 (0.28, 0.29)

Median of RMSEliana (Q5, 

Q95)***

0.31 (0.22, 0.39)

Median of RMSEtree (Q5, 

Q95)***

0.42 (0.31, 0.54)Life 

forms

Median of RMSEund.sp (Q5, 

Q95)***

0.14 (0.10, 0.21)

Median of RMSEund (Q5, 

Q95)****

0.25 (0.22, 0.29)

Cross-

validation
Non-

random 

grouping

Canopy 

strata Median of RMSEcanopy (Q5, 

Q95)****

0.35 (0.32, 0.40)

a Selected model: log(-πtlp) = 1.069 – 0.049log(LA) – 0.008Nmass – 0.072 log(Kmass)

*Slope and intercept (and their 95% confidence interval) of the linear regression between 

measured and predicted πtlp values as shown in Fig. 2.

**Median, and Q5 and Q95 quantiles, of the distribution of RMSE5-fold and RMSE10-fold across 100 

random partitions of the dataset into five and ten equal-sized groups respectively for cross-

validation. Histograms of the full distributions are provided in Fig.S6.

***Median, and Q5 and Q95 quantiles, of the distribution of RMSEliana, RMSEtree, RMSEund.sp 

across 100 random samplings of 15 among 70 trees, and 15 among 49 lianas. Such procedure 

aimed at performing cross-validation with three equal-sized groups, one for each life form, and 

hence being able to compare the RMSE distributions across life forms. Histograms of the full 

distributions are provided in Fig.S6.

****Median, and Q5 and Q95 quantiles, of the distribution of RMSEund and RMSEcanopy across 100 

random samplings of 42 among 92 canopy individuals. Such procedure aimed at performing cross-A
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validation with two equal-sized groups, one for each canopy strata, and hence being able to 

compare the RMSE distributions across canopy strata. Histograms of the full distributions are 

provided in Fig.S6.
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Figures

Fig. 1. Pairwise relationships between leaf water potential at turgor loss point and eleven other leaf 

traits across 134 tropical plants in an Amazonian rainforest. See Table 1 for trait abbreviations and 

significance. Green dots: trees (including canopy trees and saplings); red dots: lianas (including 

canopy lianas and saplings); blue dots: understory species. Black lines are standardized major axis 

relationships that are significant across individuals and after Bonferroni correction (P < 0.0003; 

Table 2; Warton et al., 2012), dashed lines are relationships that are marginally significant across 

individuals (0.0003 < P < 0.5). In case of significantly different slopes across life forms, coloured 

lines represent significant relationships within life forms. See Fig. S4 with colours corresponding 

to canopy strata instead of life forms.

Fig. 2. Measured vs. predicted πtlp values across the dataset (n=134 individuals) for the selected 

model. The black continuous line shows the fitted linear regression, and the dotted line shows the 

1:1 line. See Table 4 for quantifications of the model performance. Green dots: trees (including 

canopy trees and saplings); red dots: lianas (including canopy lianas and saplings); blue dots: 

understory species. See Fig. S7 with colours corresponding to canopy strata instead of life forms.
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Fig. 2
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