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Soaring flight is a remarkable adaptation to reduce movement

costs by taking advantage of atmospheric uplifts. The

movement pattern of soaring birds is shaped by the spatial

and temporal availability and intensity of uplifts, which

result from an interaction of local weather conditions with

the underlying landscape structure. We used soaring flight

locations and vertical speeds of an obligate soaring species,

the white stork (Ciconia ciconia), as proxies for uplift

availability and intensity. We then tested if static landscape

features such as topography and land cover, instead of the

commonly used weather information, could predict and map

the occurrence and intensity of uplifts across Europe. We

found that storks encountering fewer uplifts along their

routes, as determined by static landscape features, suffered

higher energy expenditures, approximated by their overall

body dynamic acceleration. This result validates the use of

static features as uplift predictors and suggests the existence of

a direct link between energy expenditure and static landscape

structure, thus far largely unquantified for flying animals. Our

uplift availability map represents a computationally efficient

proxy of the distribution of movement costs for soaring birds

across the world’s landscapes. It thus provides a base to

explore the effects of changes in the landscape structure on the

energy expenditure of soaring birds, identify low-cost

movement corridors and ultimately inform the planning of

anthropogenic developments.

1. Introduction
All animals interact with the surrounding environment, but for

some of them the role of this environment becomes particularly
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relevant in constraining or supporting their movement. This especially applies to aerial or aquatic animals,

whose movements actively modify and are, in turn, modified by the surrounding fluid [1–3]. Air does not

provide constant support against gravity and its properties vary at different temporal and spatial scales

depending on turbulence. To save energy, flying animals therefore adjust timing, routes and flight

modes to this turbulence [4], maximizing the advantage of horizontal and vertical air currents [5].

Soaring birds represent an extreme example of this adaptation. These large and heavy birds are

particularly constrained in the use of active flapping flight, as the energetic cost of flight proportionally

increases with size and weight [6]. They therefore use passive soaring-gliding flight, which is subsidized

by the vertical air currents (uplifts) and may require as little energy as resting [7,8]. Body mass, wing

loading and wing aspect ratio ultimately determine the cost of flapping flight, and with it a species’ degree

of dependence on uplifts [6,9–11]. This dependence becomes extreme in obligate soaring birds, which, due

to their large size, can only fly in good uplift conditions, minimizing the use of flapping flight [12,13].

Uplifts originate from thermal convection (thermals) and/or mechanical sources (orographic uplift)

[12,14]. Thermals originate from uneven heating of the earth’s surface, with rapidly heated areas

producing a gradient of temperature which promotes the formation of rising columns of warm air.

Orographic uplifts, by contrast, result from the deflection of horizontal wind through topographic

features, such as hills or ridges [12]. Thus, the occurrence of both thermal and orographic uplifts

depends on a combination of local weather conditions (gradient of air temperature, wind speed and

direction) and landscape features (land cover, slope inclination and aspect, roughness of the surface).

The interaction of local weather conditions and landscape features thus characterizes a complex and

turbulent atmospheric layer, where the spatial and temporal availability of uplifts constrains and

shapes the movement patterns of soaring birds, from local scale to migratory routes [3,15–17].

Over the past decade, different models have been developed to investigate the relationship between

soaring behaviour and aerial environment [8,18–21]. In many of these studies, the availability of uplifts

was indirectly inferred using several weather parameters [22–25], but in recent years, these parameters

have been replaced by thermal and orographic uplift potentials, as more direct estimators to quantify the

probability of soaring [14,18–20,26–29]. However, some studies highlighted the inaptitude of these

newly introduced variables as uplift estimators, because of the large amount of unexplained variance

remaining when predicting soaring behaviour [18,19]. In fact, thermal and orographic uplift potentials

are calculated based on different weather parameters [14,19], but because the uplift events are

characterized by turbulences at fine spatio-temporal scale [12,19] it is challenging to predict their

occurrences due to the limited spatio-temporal resolution of the available weather products.

In contrast to weather products, publicly available satellite data provide valuable static landscape

information (such as land cover and elevation) at higher spatial resolution, which could be used to predict

the occurrence of uplifts. Soaring birds need to locate uplifts in order to move across the landscape.

Consequently, landscape features that influence uplift generation, might serve as visual cues to these birds,

as they do for hang glider or paraglider pilots. By determining landscape features that birds use to locate

uplifts, we may be able to predict those uplifts that are detectable and exploited by the birds.

Static landscape features alone could therefore potentially suffice in modelling the occurrence of

uplifts, providing an answer to ‘where’, albeit not ‘when’, uplifts are likely to occur. Although the

literature on the topic is scarce, some studies hinted at the role of static features in affecting the flight

behaviour of different soaring species [25,28,30–33].

Here, we investigate to what extent static landscape features can represent the potential for generating

uplifts. We explore this in an obligate soaring bird species, the white stork Ciconia ciconia, across the entire

continent of Europe. We used first the locations of soaring and flapping behaviours of storks as an

indication of the presence or absence of uplifts, and second their vertical speed as a proxy of uplift

intensity. We then used only static features of the landscape to model and predict the spatial

distribution of uplifts and their intensity across Europe. We also evaluated the effectiveness of these two

static models by comparing their performances with the performances of two dynamic models, which

included atmospheric uplift estimators used in previous studies. Finally, we explored the cost of flight

(in terms of overall dynamic body acceleration) over the considered area, only based on the static

landscape features. Under the assumption that soaring/flapping behaviour and vertical speed of the

birds can be used as sensors of availability and intensity of uplifts, we predicted that (i) static features

of the landscape (such as topography and land cover) can be used to predict the spatial availability of

uplifts and to produce a static uplift suitability map at European scale; (ii) areas detected as suitable for

uplifts during the first step can be further characterized in terms of uplift intensity likely to be produced

in those areas; (iii) the resulting static uplift suitability map corresponds to the spatial distribution of the

energetic costs of storks flying above this landscape, and thus portrays their static energy landscape.
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Figure 1. Spatial coverage of the white storks’ migration routes, relative to the extent of the environmental layers included in the
model. Black lines correspond to individual stork GPS trajectories (a). Static uplift prediction maps produced using the uplift
suitability model (b) and the uplift intensity model (c), projected outside the geographical range of the training set. In (b),
the colour scale corresponds to uplift suitability, as predicted by the uplift suitability model; grey indicates suitable and black
unsuitable cells. White represents unclassified cells (containing missing values among the predictors). In (c), cells predicted as
suitable are further characterized by the predicted uplift intensity values. Colour scale corresponds to vertical speed ranging
from red (high) to light yellow (low). As in (b), in (c) black represents cells that are unsuitable for uplift and white indicates
unclassified cells. Latitude values outside the range of the training set were excluded from the intensity model. The two
prediction maps are available at https://dx.doi.org/10.17617/3.1u.
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2. Methods
2.1. Dataset
The GPS and tri-axial accelerometry (ACC) data used in the study were collected by the Max Planck

Institute for Ornithology (see [34,35]) and are deposited in the Movebank Data Repository (http://dx.

doi.org/10.5441/001/1.bj96m274 [36]).

The animals were equipped as fledglings with high-resolution, solar GSM-GPS-ACC loggers (e-obs

GmbH, Munich, Germany). The dataset includes 61 juvenile white storks (Ciconia ciconia) during their

first migration (figure 1a). Because storks are diurnal, loggers provided one GPS location every 5 min

between 2.00 and 20.00 GMT. If instantaneous ground speed was greater than 2 m s21, bursts of high-

resolution GPS locations (1 Hz) were recorded every 15 min for 120 or 300 s. In addition to the GPS

locations, ACC was recorded every 10 min for a duration of 3.8 s at a sampling rate of 10.54 Hz

(40 data points per axis). High-resolution GPS recordings were collected from August to September 2014.

2.2. Segmentation of the flight behaviour

2.2.1. Soaring flight (from GPS)

We selected high-resolution GPS bursts with a duration of at least 120 s. For each location in the burst, we

calculated vertical speed and turning angle. We applied our behavioural segmentation on track segments

of 15 s (average duration of one complete soaring circle [34]). We calculated the average vertical speed

http://dx.doi.org/10.5441/001/1.bj96m274
http://dx.doi.org/10.5441/001/1.bj96m274
http://dx.doi.org/10.5441/001/1.bj96m274
https://dx.doi.org/10.17617/3.1u
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Figure 2. Example of behavioural segmentation based on the GPS data of one stork. The figure shows the classified three-
dimensional trajectory after smoothing; the red segment was identified as soaring flight, grey corresponds to gliding flight.
Data for plotting the surface are provided by the EU-DEM. The black line and the red point on the ground represent the two-
dimensional projection of the trajectory and the centroid of the soaring segment, respectively.
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and the absolute cumulative turning angle in these segments, and we used the expectation maximization

binary clustering (EmbC) algorithm to discern the flight behaviours, introducing these two metrics as

delimiters. The algorithm, implemented in the R package EmbC [37], efficiently detected changes in

the flight behaviour, distinguishing a high turning angle (circular soaring) from two low turning

angle clusters (linear flight). Based on the average vertical speed, we further differentiated the linear

flight segments into gliding (linear descending flights) and linear soaring (linear ascending flights).

Each 15 s segment along the animal trajectory was individually assigned to one of the behavioural

classes based on its specific parameters. We applied a smoother to avoid abrupt and unnatural

behavioural changes from one segment to the next along the same trajectory. Our smoother worked

as a moving window: each segment assigned to a different behaviour relative to its closest neighbours

was reclassified to match the modal value of two segments before and after the considered segment.

Given the high resolution of the GPS data, we could visually inspect and confirm the results of the

segmentation using three-dimensional plots (figure 2). We then investigated the different classified

behaviours in terms of their flight parameters, such as ground speed or vertical speed (electronic

supplementary material, S1, figure S1.1).

In the subsequent steps, we wanted to contrast the use of active versus passive flight, focusing on the

dichotomy soaring/flapping. We therefore did not differentiate between circular and linear soaring (both

classified as soaring), and we excluded gliding segments, as they are not considered as an alternative to

soaring (like flapping) but rather as its consequence [12]. In these analyses, we considered for each

individual only soaring segments with a duration longer than 30 s, and treated consecutive soaring

segments as different units only when separated by at least 60 s. The location of each soaring segment

was defined by its centroid (mean longitude and latitude).

2.2.2. Flapping flight ( from tri-axial accelerometry)

We interpolated the spatial location of each ACC burst based on the closest GPS locations using the R

package move [38]. We associated each ACC burst with the height above ground corresponding to the

GPS location closest in time (less than 30 s difference). The height above ground was calculated by

subtracting the ground elevation value from the height above the ellipsoid.

We used ACC values to identify bursts of active flight behaviour (flapping flight). Specifically, we

used overall dynamic body acceleration (ODBA), already shown to be a good proxy for energy
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expenditure in soaring birds [8,39]. We quantified ODBA and dynamic body acceleration (DBA) on the

z-axis following Wilson et al. [40] and calculated mean, sum and standard deviation, of these two

variables per burst. We then used k-means clustering to categorize the bursts into three main

behavioural classes based on the amount of activity recorded: least active, intermediate active and

most active (electronic supplementary material, S1, figure S1.2). Within the bursts of highest activity,

we wanted to isolate only the flapping behaviour marking the absence of uplifts (and to exclude, for

instance, the flapping associated with taking off ); we thus applied a height threshold of 100 m above

ground to select our flapping locations, assuming that above this height the birds were using flapping

flight only in response to the absence of uplifts.

The two flight behaviours were classified based on data collected with different instruments running

on different sampling schedules (GPS for soaring and ACC for flapping). Therefore, the amount of

soaring to flapping locations is not directly related to the amount of time storks spent on each flight

behaviour. We thus compared the amount of time spent soaring relative to the total duration of the

classified GPS segments, and the amount of time spent flapping relative to the total duration of

the classified ACC bursts.

2.3. Environmental variables and modelling frameworks

2.3.1. Static predictors

We characterized the static components of the landscape in terms of elevation (digital elevation model,

EU-DEM 2013), terrain unevenness (calculated as both topographic position index and roughness),

unevenness in the slope (steepness of a terrain feature), aspect (compass direction faced by a slope),

aspect unevenness, land cover (normalized difference vegetation index, NDVI, obtained for 2014),

land use (CORINE Land Cover; CLC 2012) and presence of anthropogenic infrastructures (Global

Urban Footprint, 2011). All raster layers are publicly available (electronic supplementary material, S2,

table S2.1). The lowest spatial resolution was 100 m (from the CLC 2012 layer), thus we averaged cell

values of higher resolution layers to match a 100 m grid. The spatial extent of the raster layers covered

the southwest European countries that enclose the distribution of the storks’ dataset. All the

environmental layers listed above were included as predictors in our statistical models after verifying

the absence of multicollinearity.

2.3.2. Dynamic predictors

We chose to include thermal and orographic uplift potentials in our analysis as atmospheric uplift

estimators [14,18,20,26,27]. The calculation of the thermal uplift potential is based on weather data

from the European Centre for Medium-range Weather Forecast Global Atmospheric Reanalysis

(ECMWF) following Bohrer et al. [19]. The calculation of the orographic uplift potential uses ECMWF

weather data and elevation from the ASTER Global Digital Elevation Model. Both thermal and

orographic uplift potential are available in Movebank with a spatial resolution of 0.758 and a temporal

resolution of 6 h. We associated them to our tracking data by using the Env-DATA Track Annotation

service [41].

2.4. Modelling framework
We organized the environmental predictors in three groups, each defining a different modelling

framework:

1. Static model: including exclusively static environmental predictors;

2. Dynamic model: including exclusively thermal and the orographic uplift potentials;

3. Combined model: including both static and dynamic predictors.

We used these sets of predictors for both the uplift suitability and the uplift intensity models.

2.5. Uplift suitability model
We used a random forest algorithm to model the effect of the three sets of environmental predictors on

the occurrence of soaring (presence of uplifts) and flapping flight (absence of uplifts), using these

contrasting behaviours as binary response variable. The algorithm is implemented in the R package
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randomForest [42]. We manipulated the ratio between presences and absences (prevalence) and tested its

effect on the model performance (see electronic supplementary material, S3). In our analysis, we included

all the available data with their original (unmanipulated) prevalence values. Using regression trees,

we trained each of the three models (static, dynamic and combined) with 90% of the dataset, and

tested them with the remaining randomly selected 10%. The data partitioning was repeated so that

each of the three models was run ten times. To evaluate and compare the predictive performance of

the three models, we considered the following accuracy measures: (i) area under the curve (AUC) of

the receiver operating characteristic (ROC); (ii) sensitivity, proportion of soaring locations correctly

classified; (iii) specificity, proportion of flapping locations correctly classified [43]; (iv) true skill statistics

(TSS: 12max(sensitivity þ specificity)) [44]. The contribution of each environmental variable to the final

prediction was evaluated using the decrease in accuracy (increase in mean standard error) and the

increase in node purity (decrease in residual sum of squares).

Next, we produced a large-scale uplift suitability map based on the static uplift suitability model.

Random forest, like other machine learning algorithms, is quite unreliable when extrapolating outside

the range of the predictors’ values provided for training. We thus omitted (set to null) all raster cells

containing environmental values outside that range, and then used each of ten runs of the static uplift

suitability model to predict the uplift suitability over the area of these manipulated raster layers. The

final raster prediction was derived from the pixel average of the ten predicted layers and classified

into a binary map using the threshold that maximized the TSS value [43].

The only temporally related environmental variable in our model was NDVI from the year 2014; this

allowed us to produce an uplift suitability map for 2014.

2.6. Uplift intensity model
We explored the relationship between the three sets of predictors (static, dynamic and combined) and

uplift intensity, additionally including latitude among the static predictors. We used the birds’ vertical

speed as a proxy of uplift intensity (vertical rate of air within a thermal), assuming a higher vertical

speed to indicate stronger uplift conditions.

As in the previous analysis, we considered only high-resolution GPS bursts. The vertical speed in this

dataset included both negative (gliding) and positive values (soaring). We examined only the positive

values (vertical speed greater than 0), because we wanted to predict uplift intensity in areas already

classified as suitable by the uplift suitability model. We associated the positive vertical speed values

of all individuals with their location and averaged them in a 100 � 100 m grid to match the spatial

resolution of the environmental raster layers. After averaging, each cell contained a value representing

the average vertical speed of all individuals during the complete temporal range in that cell. We then

removed average vertical speed values exceeding the 99.97 percentile, obtaining 76 383 observations.

We used a generalized additive model (GAM) to model uplift intensity (average vertical speed) as a

function of the three sets of environmental predictors to accommodate nonlinear relationships between

predictors and response variable. We square-root transformed vertical speed to meet the assumptions of

a Gaussian distribution of the residuals. Among the predictors, aspect was included as cyclic cubic

regression spline smooth term; NDVI, elevation (DEM), roughness and latitude were included as thin

plate regression spline smooth terms, given their nonlinear relationship with the response variable.

We rasterized the values of thermal and orographic uplift potentials included in the dynamic and

combined models to match the 100 � 100 m grid of the response variable, and included them in the

models as parametric coefficients.

We used the static uplift intensity model to produce a map of uplift intensity, and enrich the binary

information provided by the uplift suitability model in areas that were predicted as suitable. Raster cells

containing environmental values outside the range included in the dataset were omitted; because latitude

was included as predictor, the latitudinal range of the uplift intensity map was restricted to the

latitudinal range of the dataset.

The models were run in R using the package mgcv [45]. We compared the performances of the models

based on the variance explained and the AIC (Akaike Information Criterion). The relative importance of

the different predictors was evaluated comparing the AIC of models containing different combinations of

these predictors, computed separately for parametric coefficients and the smooth terms.

2.7. Static energy landscape
We quantified the relationship between the availability of uplifts along the storks’ migratory routes and

the energy spent travelling along these routes. We could thus test if the static uplift suitability map
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produced in the previous step could convey information regarding the energetic cost of travelling across

the landscape. We calculated the daily energy expenditure considering only ACC data collected when the

animals were flying (height above ground . 100 m), with GPS location and ACC burst matching in time.

We then calculated the mean ODBA per day along the path of each individual. The uplift suitability map

was used to extract the predicted probability of uplift at the locations of the ACC bursts. We then

averaged these probability values to obtain the mean daily uplift suitability, for each individual, along

its migratory path (only average values computed from at least five observations were included in the

model). We fitted a linear mixed effect regression model to the mean daily energy expenditure

(ODBA) as a function of predicted mean daily uplift suitability. The model tested the relationship

between daily uplift suitability predictions and daily ODBA based on 823 observations of 59

individuals, accounting for individual differences which were included as random effects in the

model. ODBA was square-root transformed.

The importance of the predictor in explaining the daily energy expenditure was assessed comparing

the AIC of the model with the respective null model. For the analysis, we used the R package lme4 [46].
Soc.open
sci.5:181440
3. Results
3.1. Segmentation of the flight behaviour
We identified the location of soaring and flapping flights as proxies to detect the presence and absence of

uplifts. Based on the GPS data of all individuals, we classified over 748 h of flight, of which the storks

spent 297.6 h with circular and 83.5 h with linear soaring. The proportion of time spent soaring

corresponded to 0.51 of their flight time (381.1 h) (electronic supplementary material S1, figure S1.3a);

this proportion was similar between the 59 individuals (0.52+ 0.07 (mean proportion+ s.d. per

individual)). From the ACC data, we classified 24.3 h of flight, of which 1.3 h was spent flapping

(electronic supplementary material, S1, figure S1.3b). Among all individuals, the proportion of time

spent flapping corresponded to 0.05 (0.07+0.05 per individual). The final dataset consisted of a total

of 16 840 observations of presences and absences of uplift (15 608 soaring events marking presences

and 1232 flapping events marking absences).
3.2. Uplift suitability model
We used multiple environmental predictors to model and predict the spatial distribution of uplifts

(presence and absence data). We organized the predictors in three different modelling frameworks

(static, dynamic and combined, see Methods) that we then compared in terms of predictive accuracy.

We averaged the accuracy measures of the three uplift suitability models across 10 cross-validations.

The combined model (static and dynamic features) best predicted the independent test set (AUC

of 0.86+0.02 (mean+ s.d.)), followed by the static (AUC of 0.85+ 0.02) and the dynamic (AUC of

0.70+ 0.02) models (figure 3). The overall accuracy was high in all models, but both models including

static variables (the static and combined models) outperformed the model based only on dynamic

predictors.

We then compared the ability of the models to discriminate presences and absences. The three models

returned a similarly high proportion of correctly classified soaring locations (sensitivity). They differed,

however, in terms of number of correctly classified flapping locations (specificity). Again, the combined

and the static model outperformed the dynamic model. To define the value of sensitivity and specificity,

we used a threshold that maximized the TSS value, corresponding to 0.9 in all models. At this threshold,

the static model showed a sensitivity of 0.83+0.01 and a specificity of 0.69+0.05. The complete output

of the three models can be found in electronic supplementary material, S3, table S3.1.

In the static model, DEM, roughness (topographic heterogeneity) and NDVI contributed most to the

model prediction. In the dynamic model, including only the two atmospheric uplift estimators,

the thermal uplift potential contributed to the prediction more than the orographic potential; in the

combined model, elevation, roughness and thermal uplift potential contributed most to the model (for

more details see electronic supplementary material, S3).

Using the static uplift suitability model, we produced a map of uplift suitability covering the extent of

the environmental layers (figure 1b). We classified an area of about 193 million km2, of which over

81 million km2 was predicted as suitable for uplifts (42% of the total area).
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Figure 3. ROC curves of the three uplift suitability models: static (a), dynamic (b) and combined (c). The area under the curve (AUC)
represents the accuracy of the model. The accuracy was measured on both the training set (grey solid line) and the test set (red
line). The dashed line represents a model whose accuracy is comparable to random (AUC ¼ 0.5). Sensitivity and commission rate
values were averaged across the 10 runs of each models (solid dots), and the error bars show their standard deviations.
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3.3. Uplift intensity model
We then used the uplift intensity to characterize those areas identified as suitable for uplifts by the static

suitability model. We used the vertical speed of the birds while soaring as a proxy for uplift intensity,

and we explored the relationship between uplift intensity and the three groups of environmental

predictors (static, dynamic and combined).

All three models explained very little of the total variance in vertical speed. However, here too, the

combination of static and dynamic variables provided the best predictive performance (Adj.R2 ¼ 0.03

and AIC ¼ 46 575.00 for the static model; Adj.R2 ¼ 0.03 and AIC ¼ 49 636.88 for the dynamic model;

Adj.R2 ¼ 0.08 and AIC ¼ 42 003.95 for the combined model). Although in GAMs Adj.R2 values cannot

be directly compared due to the changing degrees of freedoms caused by the use of smooth terms

[47], the difference in the AIC value among the three models supports the best performances of the

combined model. Among the parametric predictors, the categories ‘water bodies’, ‘dumps’, ‘urban

areas’ and ‘wetlands’ negatively affected uplift intensity (‘bare soil’ served as a reference), whereas

thermal and orographic uplift potentials (included in the dynamic and combined models) positively

affected uplift intensity (electronic supplementary material, S4, table S4.1). Aspect, NDVI, DEM,

roughness and latitude were included in the models as smooth terms, given their nonlinear

relationship with the response variable. Based on AIC, all these predictors contributed to explain

uplift intensity. Specifically, uplift intensity was positively affected by lower latitude values, higher

elevations (DEM . 2000 m), NDVI corresponding to bare soils or sparsely vegetated areas (between

0 and 0.4) and slope orientation towards SW-W (aspect between 2008 and 3008) (electronic

supplementary material, S4, table S4.1 and figure S4.1). Using the static intensity model, we could

further characterize our uplift suitability map by predicting uplift intensity in cells already predicted

to be suitable for uplifts (based on the static suitability model) (figure 1c).
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3.4. Static energy landscape
Finally, we quantified the relationship between the availability of uplifts along the storks’ migratory

routes and the energy spent travelling along these routes, to test if the static maps produced in the

previous steps could convey information regarding the energetic cost of travelling across the

landscape. As all uplift intensity models performed poorly in predicting the intensity of uplifts, only

the uplift suitability model was included in this step. We used a linear mixed effect regression model

to evaluate the role of the static uplift suitability model in conveying information about the energy

expenditure of the birds (measured as daily ODBA). A negative correlation between the daily uplift

suitability and the daily ODBA indicated that the birds spent more energy when flying over areas less

suitable for uplifts (ODBA ¼ 20.67+0.07 (estimate + s.e.)) (figure 4). The AIC of the models was

lower compared to that of the respective null model (DAIC uplift suitability model ¼ 254.67)

(electronic supplementary material, S5, table S5.1).
4. Discussion
Static features of the landscape proved to be highly effective in identifying areas suitable for uplifts.

However, neither static nor dynamic variables could predict the intensity of uplifts occurring in those

areas. The uplift suitability predicted along the birds’ migratory route using only static features,

showed a clear negative relationship with the ODBA of individuals flying over those areas, indicating

that birds encountering fewer uplifts along their routes experienced higher energy expenditures.

This overall result validates the reliability of our static uplift suitability model, and suggests the

existence of a mechanistic relationship between static landscape and energy expenditure of flying

animals. We therefore propose that the static uplift availability map produced with our model

corresponds to the birds’ cost of transport across the landscape and can thus be considered a

representation of the static energy landscape of these birds.

The possibility to describe the cost of transport in a dynamic aerial environment, only based on static

features of the landscape, supports the idea that the structure of the landscape at different spatial scales

could be considered as the ultimate cause for the uplifts to occur. For instance, a specific topography

could represent a necessary (but not sufficient) condition of uplift occurrence, or, in other words, the

potential of the landscape to produce uplifts. By contrast, local weather conditions that interact with a
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specific landscape, could be considered as the proximate cause for the occurrence of the uplift, which can

define, given a suitable landscape, the temporal scale at which the uplift will, in fact, exist.

In the case of the uplift intensity, even though models including static features performed slightly

better than those including only dynamic variables, the large amount of unexplained variance in all

models suggested that neither static nor dynamic environmental variables were good predictors for

uplift intensity. In our models, we used the birds’ vertical speed as a proxy for uplift intensity. But

birds’ vertical speed is not only affected by uplift intensity. Their relationship is modulated by the

aerodynamic performance of the bird (including wing morphology), and also by its social interactions

and motivation. The ability to adjust the vertical speed within a thermal requires experience [48,49].

The storks included in our study were all juveniles during their first migration, but even among

individuals of the same age, individual differences in flight performances exist, also in relation to the

role of the individual within the group (leader or follower) [35]. The vertical speed of the birds might

also be affected by their internal motivation to move (foraging versus migrating). During migration,

birds are expected to maximize their vertical speed and travelled distance, whereas while foraging

they might adopt different strategies, for instance attempting to maintain lower altitudes [12], which

could explain the negative effect of land use categories such as dumps or pastures in the uplift

intensity models. All these aspects could have affected the observed vertical speed of the birds and

thus caused the inconsistent relationship between uplift intensity and environmental variables in our

models. The spatial and temporal scales at which the uplift phenomenon occurs might have also

contributed to this inconsistency. Uplifts are a turbulent and unpredictable phenomenon and they can

occur at very small scale [5] as in the extreme cases of lifts produced by lines of buildings or flared

methane vents [20,50,51]. The intensity of an uplift, more than the presence of an uplift, is strongly

influenced by wind speed, wind direction and temperature, and thus more subject to the temporal

and spatial variation of these dynamic variables.

The inadequacy of the spatio-temporal resolution of dynamic uplift estimators is not new [18], and

the coarse resolution of the atmospheric data could also explain why all models including only

dynamic variables performed worse than those including static variables alone, in predicting both

uplift availability and uplift intensity. Nevertheless, the effect of some of the static variables included

in our uplift intensity models hinted at a dependence of the uplift intensity (as in the case of the

uplift availability) on the static landscape structure. This is the case, for instance, of the negative effect

of water bodies, and the positive contribution of higher elevations and NDVI values corresponding to

barren soils, on the uplift intensity. Also, lower latitude values positively affected uplift intensity; this

result suggests a stronger thermal activity at lower latitudes, but could also indicate that young storks

improved their flight performance along the route.

The static landscape features used to produce our static uplift maps are definitely not exhaustive to

describe the complex fluid medium in which flying animals move, but they could represent a sufficient

and efficient proxy (in terms of computational simplification) in areas and seasons where weather

conditions are rather stable. The prediction maps produced by our static models are based on data from

one species collected during one migratory season, but the same models could be extended to multiple

soaring species and different seasons in order to generalize predictions. Such prediction maps could be

used as base layers for further movement ecology analyses, and combining them with dynamic variables

could provide a more accurate description of the energy available at a specific moment.

Static energy landscapes can also direct our attention to the vulnerability of flying animals to changes

happening at the ground level. Anthropogenic changes in the landscape, such as deforestation,

construction of wind farms and powerlines, but also roads, lines of buildings and tree rows,

irrigation, or mining, could all be affecting the atmospheric environment, at a finer scale than the

available weather products could possibly detect. The tight dependence of soaring birds on uplift

conditions makes them particularly sensitive to changes in the landscape [19,52], in particular to

anthropogenic infrastructures [10,53,54]. Our study suggests that these small changes in the landscape

could affect the energy expenditure of these animals, and potentially their cost of transport over time.

The static structure of the landscape and the energetic implications of changes happening on the

ground should therefore be taken into account when investigating movement at larger scale, such as

migratory flyways and population connectivity, and when evaluating the impact of anthropogenic

infrastructure. Future studies should also focus on the interplay between vertical speed, uplift

intensity and environment. By disentangling the various factors affecting this relationship, we could

not only predict, based on the animal behaviour and the landscape, the quantity (availability) but also

the quality (intensity) of the uplifts, and we could provide a more accurate estimation of the energetic

cost of movement across the landscape.
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AR, Bechard MJ, Calabuig CP. 2012 Weak

http://dx.doi.org/10.5441/001/1.bj96m274
http://dx.doi.org/10.5441/001/1.bj96m274
http://dx.doi.org/10.5441/001/1.bj96m274
http://dx.doi.org/10.1126/science.288.5463.100
http://dx.doi.org/10.1038/279146a0
http://dx.doi.org/10.1038/279146a0
http://dx.doi.org/10.1086/671257
http://dx.doi.org/10.1086/671257
http://dx.doi.org/10.1371/journal.pone.0002154
http://dx.doi.org/10.1098/rstb.2015.0382
http://dx.doi.org/10.1111/j.1474-919X.1972.tb02603.x
http://dx.doi.org/10.1111/j.1474-919X.1972.tb02603.x
http://dx.doi.org/10.1038/248083b0
http://dx.doi.org/10.1371/journal.pone.0084887
http://dx.doi.org/10.1371/journal.pone.0084887
http://dx.doi.org/10.1098/rstb.1993.0164
http://dx.doi.org/10.2326/osj.16.5
http://dx.doi.org/10.1093/czoolo/61.6.951
http://dx.doi.org/10.1111/j.1474-919X.1997.tb04669.x
http://dx.doi.org/10.1111/j.1474-919X.1997.tb04669.x
http://dx.doi.org/10.1111/1365-2664.12909
http://dx.doi.org/10.1111/1365-2664.12909
http://dx.doi.org/10.1111/jav.01298
http://dx.doi.org/10.1080/03949370.2011.583692
http://dx.doi.org/10.1111/ele.12627
http://dx.doi.org/10.1038/s41598-017-05319-8
http://dx.doi.org/10.1111/j.1461-0248.2011.01713.x
http://dx.doi.org/10.1111/j.1461-0248.2011.01713.x
http://dx.doi.org/10.1098/rstb.2015.0395
http://dx.doi.org/10.1098/rsif.2015.0530
http://dx.doi.org/10.1098/rsif.2015.0530
http://dx.doi.org/10.1650/0010-5422(2003)105[0208:DUOTCB]2.0.CO;2
http://dx.doi.org/10.1650/0010-5422(2003)105[0208:DUOTCB]2.0.CO;2
http://dx.doi.org/10.1073/pnas.0801789105
http://dx.doi.org/10.1098/rspb.2011.0358
http://dx.doi.org/10.1002/ece3.4189
http://dx.doi.org/10.1016/j.ecolmodel.2015.02.010
http://dx.doi.org/10.1016/j.ecolmodel.2015.02.010
http://dx.doi.org/10.1371/journal.pone.0145402
http://dx.doi.org/10.1098/rstb.2013.0195
http://dx.doi.org/10.3390/su10051470
http://dx.doi.org/10.2193/0022-541X(2005)069%3C0150:BORHIA%3E2.0.CO;2
http://dx.doi.org/10.2193/0022-541X(2005)069%3C0150:BORHIA%3E2.0.CO;2
http://dx.doi.org/10.2193/0022-541X(2005)069%3C0150:BORHIA%3E2.0.CO;2
http://dx.doi.org/10.2193/0022-541X(2005)069%3C0150:BORHIA%3E2.0.CO;2
http://dx.doi.org/10.2193/0022-541X(2005)069%3C0150:BORHIA%3E2.0.CO;2
http://dx.doi.org/10.2193/0022-541X(2005)069%3C0150:BORHIA%3E2.0.CO;2
http://dx.doi.org/10.2193/0022-541X(2005)069%3C0150:BORHIA%3E2.0.CO;2


12
royalsocietypublishing.org/journal/rsos

R.Soc.open
sci.5:181440
relationship between risk assessment studies and
recorded mortality in wind farms. J. Appl. Ecol. 49,
38 – 46. (doi:10.1111/j.1365-2664.2011.02054.x)

32. Poessel SA, Brandt J, Miller TA, Katzner TE. 2018
Meteorological and environmental variables
affect flight behaviour and decision-making of
an obligate soaring bird, the California condor
Gymnogyps californianus. Ibis 160, 36 – 53.
(doi:10.1111/ibi.12531)

33. Katzner TE, Brandes D, Miller T, Lanzone M,
Tremblay JA, Mulvihill R. 2012 Topography
drives migratory flight altitude of golden
eagles: implications for on-shore wind energy
development. J. Appl. Ecol. 49, 1178 – 1186.
(doi:10.1111/j.1365-2664.2012.02185.x)

34. Weinzierl R, Bohrer G, Kranstauber B, Fiedler
W, Wikelski M, Flack A. 2016 Wind
estimation based on thermal soaring of
birds. Ecol. Evol. 6, 8706 – 8718. (doi:10.
1002/ece3.2585)

35. Flack A, Nagy M, Fiedler W, Couzin ID, Wikelski
M. 2018 From local collective behavior to global
migratory patterns in white storks. Science 360,
911 – 914. (doi:10.1126/science.aap7781)

36. Flack A, Fiedler W, Wikelski M. 2017 Data from:
Wind estimation based on thermal soaring of
birds. Movebank Data Repository. (doi:10.5441/
001/1.bj96m274)

37. Garriga J, Palmer JRB, Oltra A, Bartumeus F.
2016 Expectation-maximization binary
clustering for behavioural annotation. PLoS ONE
11, 1 – 26. (doi:10.1371/journal.pone.0151984)

38. Kranstauber B, Smolla M, Scharf AK. 2017 move:
Visualizing and analyzing animal track data. R
package version 3.0.1. See https://cran.r-project.
org/package=move.
39. Nathan R, Spiegel O, Fortmann-Roe S, Harel R,
Wikelski M, Getz WM. 2012 Using tri-axial
acceleration data to identify behavioral modes
of free-ranging animals: general concepts and
tools illustrated for griffon vultures. J. Exp. Biol.
215, 986 – 996. (doi:10.1242/jeb.058602)

40. Wilson RP, White CR, Quintana F, Halsey LG,
Liebsch N, Martin GR, Butler PJ. 2006 Moving
towards acceleration for estimates of activity-
specific metabolic rate in free-living animals:
the case of the cormorant. J. Anim. Ecol. 75,
1081 – 1090. (doi:10.1111/j.1365-2656.2006.
01127.x)

41. Dodge S et al. 2013 The environmental-data
automated track annotation (Env-DATA) system:
linking animal tracks with environmental data.
Mov. Ecol. 1, 3. (doi:10.1186/2051-3933-1-3)

42. Liaw A, Wiener M. 2002 Classification and
regression by randomforest. R News 2, 18 – 22.

43. Franklin J. 2009 Mapping species distributions:
spatial inference and prediction. Cambridge, UK:
Cambridge University Press.

44. Allouche O, Tsoar A, Kadmon R. 2006 Assessing
the accuracy of species distribution models:
prevalence, kappa and the true skill statistic
(TSS). J. Appl. Ecol. 43, 1223 – 1232. (doi:10.
1111/j.1365-2664.2006.01214.x)

45. Woods SN. 2003 Thin-plate regression splines.
J. R. Stat. Soc. 65, 95 – 114.

46. Bates D, Maechler M, Bolker B, Walker S. 2014
lme4: Linear mixed-effects models using Eigen
and S4. R package version 1.0-6. See https://
cran.r-project.org/package=lme4.

47. Woods SN. 2017 Generalized additive models: An
introduction with R, 2nd edn. New York, NY:
Chapman and Hall/CRC.
48. Harel R, Horvitz N, Nathan R. 2016 Adult
vultures outperform juveniles in challenging
thermal soaring conditions. Sci. Rep. 6, 1 – 8.
(doi:10.1038/srep27865)

49. Rotics S et al. 2016 The challenges of the first
migration: movement and behaviour of
juvenile vs. adult white storks with insights
regarding juvenile mortality. J. Anim. Ecol.
85, 938 – 947. (doi:10.1111/1365-2656.
12525)

50. Shepard ELC, Williamson C, Windsor S. 2016
Fine-scale flight strategies of gulls in urban
airflows indicate risk and reward in city living.
Phil. Trans. R. Soc. B 371, 20150394. (doi:10.
1098/rstb.2015.0394)

51. Mandel JT, Bildstein KL. 2007 Turkey vultures
use anthropogenic thermals to extend their
daily activity period. Wilson J. Ornithol. 119,
102 – 105. (doi:10.1676/05-154.1)

52. Marques AT, Batalha H, Rodrigues S, Costa H,
Pereira MJR, Fonseca C, Mascarenhas M,
Bernardino J. 2014 Understanding bird
collisions at wind farms: an updated review
on the causes and possible mitigation
strategies. Biol. Conserv. 179, 40 – 52.
(doi:10.1016/j.biocon.2014.08.017)

53. Barrios L, Rodrı́guez A. 2004 Behavioural and
environmental correlates of soaring-bird
mortality at on-shore wind turbines. J. Appl.
Ecol. 41, 72 – 81. (doi:10.1111/j.1365-2664.
2004.00876.x)

54. De Lucas M, Janss GFE, Whitfield DP, Ferrer M.
2008 Collision fatality of raptors in wind farms
does not depend on raptor abundance. J. Appl.
Ecol. 45, 1695 – 1703. (doi:10.1111/j.1365-2664.
2008.01549.x)

http://dx.doi.org/10.1111/j.1365-2664.2011.02054.x
http://dx.doi.org/10.1111/ibi.12531
http://dx.doi.org/10.1111/j.1365-2664.2012.02185.x
http://dx.doi.org/10.1002/ece3.2585
http://dx.doi.org/10.1002/ece3.2585
http://dx.doi.org/10.1126/science.aap7781
http://dx.doi.org/10.1371/journal.pone.0151984
https://cran.r-project.org/package=move
https://cran.r-project.org/package=move
https://cran.r-project.org/package=move
http://dx.doi.org/10.1242/jeb.058602
http://dx.doi.org/10.1111/j.1365-2656.2006.01127.x
http://dx.doi.org/10.1111/j.1365-2656.2006.01127.x
http://dx.doi.org/10.1186/2051-3933-1-3
http://dx.doi.org/10.1111/j.1365-2664.2006.01214.x
http://dx.doi.org/10.1111/j.1365-2664.2006.01214.x
https://cran.r-project.org/package=lme4
https://cran.r-project.org/package=lme4
https://cran.r-project.org/package=lme4
http://dx.doi.org/10.1038/srep27865
http://dx.doi.org/10.1111/1365-2656.12525
http://dx.doi.org/10.1111/1365-2656.12525
http://dx.doi.org/10.1098/rstb.2015.0394
http://dx.doi.org/10.1098/rstb.2015.0394
http://dx.doi.org/10.1676/05-154.1
http://dx.doi.org/10.1016/j.biocon.2014.08.017
http://dx.doi.org/10.1111/j.1365-2664.2004.00876.x
http://dx.doi.org/10.1111/j.1365-2664.2004.00876.x
http://dx.doi.org/10.1111/j.1365-2664.2008.01549.x
http://dx.doi.org/10.1111/j.1365-2664.2008.01549.x


Static landscape features predict uplift locations 
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SUPPLEMENTARY MATERIAL

List of content

S1 – Segmentation of flight behaviour. Containing supporting fgures (Fig. S1.1,

Fig. S1.2 and Fig. S1.3).

S2 – Environmental  variables.  Containing more details  about  the procedure we

used to handle the static environmental  layers; Tab. S2.1 table with environmental

variables sources; Tab. S2.2 table containing the old legend and the reclassifed legend

of the Corine Land Cover classes.

S3 – Uplift suitability model.  Containing additional fgures (Fig. S3.1, S3.2, S3.3)

and tables (Tab. S3.1) supporting the results. It also contains the detailed procedure

and results of the random forest tuning and prevalence test.

S4 – Uplift intensity model.  Containing the output of the three GAMs (Tab. S4.1)

and supporting fgure (Fig. S4.1).

S5 -  Static  energy landscape. Containing  the  output  table  of  the  linear  mixed

model (Tab. S5.1).
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S1 – Segmentation of the flight behaviour

Supporting figures for segmentation

Figure S1.1 - Characterization of the different flight behavioural classes according to different
flight parameters: cross-country speed (A), ground speed (B), vertical speed (C) and absolute
turning angle (D).
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Figure S1.2 - Example of segmentation of the flight behaviour detected from the ACC data of
one individual of white stork. Figure (A) shows the different empirical values of the average
ODBA among the three activity levels. Figure (B) shows how the three activity categories are
different in terms of dynamic body acceleration measured on the three ACC axes (plot’s x axis)
and on the Z axis (plot’s y axis).
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Figure S1.3 -  Time allocation among flight behaviours. The barplots show the proportion of
time  white  storks  spent  performing  different  flight  behaviours  (proportions  obtained  by
cumulating the time spent by all individuals on the different behaviours). (A) Proportion of time
(classifed using GPS locations) spent soaring (circular or linear soaring, red bar) or using other
flight types (grey bar) calculated relative to the duration of all classifed GPS segments (748 h).
(B) Proportion of time (classifed using ACC recordings) spent flapping (blue bar) or using other
flight  types  (grey  bar)  relative  to  the  duration  of  all  classifed  ACC  bursts  (24.3 h).  The
information shown in fgures (A)  and (B)  cannot be directly compared due to  the different
sampling schedules of GPS and ACC.
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S2 – Environmental variables

Static environmental variables

For descriptive purposes we group the environmental layers in two categories - surface

features and land cover.  All environmental layers are publicly available (Tab. S2.1).

Surface features.  In order to characterize the surface features we used the publicly

available elevation map EU-DEM (based on SRTM and ASTER Global Digital Elevation

Model) [1] and we computed slope, aspect and roughness (topographic heterogeneity)

using the R package raster [2]. The native spatial granularity of the elevation map is 1

arcsec (about 25 m near the Equator) but we aggregated the raster cells to match the

100 m resolution of the land cover map. Slope and aspect were computed according to

Horn [3]. The roughness was calculated as the difference between the maximum and

the minimum value of a cell and its 8 surrounding cells. Unevenness in the aspect, the

slope and the elevation (this last  one also called Topographic Position Index) were

computed as the difference between the value of a cell and the mean value of its 8

surrounding cells. Highly correlated layers were excluded from the model  to avoid

multicollinearity (this was the case of the slope because of the high correlation with

the roughness).

Land  cover. We  characterized  the  land  cover  using  the  Normalized  Difference

Vegetation Index (NDVI), CORINE Land Cover categories (CLC) and the Global Urban

Footprint (GUF). The NDVI product is available as Spectral Indices product of Landsat 7

[4] with a spatial  granularity of 30 m; the raster cells  were resized to 100 m. We

computed a summer (from June 1st to September 30th) NDVI composite for 2014 to

match the temporal resolution of our tracking data. For the composite we extracted

the higher monthly NDVI value of each cell and we averaged the resulting maximum

monthly values. Extracting the maximum monthly value instead of the average value

allowed us to avoid low values of NDVI that could be associated with errors in the
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cloud  cover  mask  of  the  Landsat  NDVI  product.  The  CORINE  Land  Cover  2012  is

available from the European Environmental Agency [5] with a native spatial resolution

of 100 m. We used the level 3 categories with few modifcations (Table S2.2).  The

Global Urban Footprint is a binary thematic map with values of 1 for built-up areas

(man-made building structures) and 0 for non-built-up areas. The dataset is available

with a native spatial resolution of 0.4 arc seconds (about 12 m near the Equator) [6].

We resized  the  raster  cells  to  100  m computing  the  mean for  each  9  by  9  cells

(proportion of built-up areas/100 m cell).

Table S2.1 - Environmental data sources.

Environmental layer source

Digital elevation model (DEM)
EU-DEM  (based  on  SRTM  and  ASTER  Global
Digital  Elevation  Model)  from  European
Environmental Agency [1].

Roughness Derived from DEM

Topographic Position Index Derived from DEM

Slope Derived from DEM

Slope unevenness Derived from Slope

Aspect Derived from DEM

Aspect unevenness Derived from Aspect

Normalized Difference Vegetation Index (NDVI)
Landsat 7 Spectral Indices [4]. Available from

U.S. Geological Service Bulk Download [9].
Data period June-September 2014.

CORINE Land Cover (CLC) CLC 2012 from European Environmental
Agency [5].

Global urban footprint (GUF) Produced by Deutschen Zentrums für Luft und
Raumfahrt, 2011 [6].

Thermal uplift potential
Movebank.org – Env-Data annotation service

[7] based on ECMWF weather reanalysis,
computed following Bohrer et al. [8].

Orographic uplift potential

Movebank.org – Env-Data annotation service
[7] based on ECMWF weather reanalysis and
ASTER DEM, computed following Bohrer et al.

[8].
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Table S2.2: Original and reclassifed legend of the CORINE Land Cover categories.

Reclassified categories Reclassified code CLC 2012 Legend

Dumps 1 8
Artifcial vegetated areas 2 10-11
Arable lands 3 12-14
Permanent crops 4 15-17
Pastures 5 18
Heterogeneous agricultural areas 6 19-22
Forest 7 23-25
Shrubs 8 26-29
Glaciers, snow 9 34
Inland wetlands, marshes 10 35-36
Marine wetlands, salines, inter-tidal flats 11 37-39
Water courses, rivers 12 40
Water bodies, lakes 13 41
Coastal lagoons, estuaries 14 42-43
Sea, ocean 15 44
Urban areas 16 1-6,9
Bare soil 17 7,30-33
No data or unclassifed NA 48-50,255
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S3 –  Uplift suitability model

Model tuning and evaluation

Different parameter values can be modifed by the user in order to tune the random

forest algorithm and improve its performances (such as number of variables chosen at

each split, forest size and tree depth). In addition, in the feld of species distribution

modelling, the proportion of data belonging to different classes in the dataset used to

train the model has an important effect on different accuracy measures on the model

output of different machine learning algorithms [10,11]. For these reasons, we tuned

the static and the dynamic landscape models, choosing the optimal values of mtry

(number of variables chosen at each split) with respect to Out-of-Bag error estimate,

using the package’s inbuilt function tuneRF. Additionally, we tried different values of

ratio soaring to flapping locations (named hereafter prevalence, for similarity with the

defnition used in species distribution modelling). 

The role of prevalence on the model performances is controversial. Different studies

suggested that certain accuracy measures (such as kappa) are sensitive to prevalence

and that prevalence should be taken into account when evaluating the model  [12,13],

but few unclear suggestions have been made about whether the number of presences

and absences should be manipulated in order to maximize the model performances

[10,11,13].  This  lack  of  clarity  is  probably  due  to  multiple  reasons,  such  as  the

algorithm used, the difference between using real absences or pseudo-absences, the

difficulty  to  differentiate  between  biases  in  the  measures  used  to  evaluate  the

performance and biases in the performances itself, and fnally to the uncertain effect

of data manipulation on the ecological interpretation of the result (for instance when

dealing with rare and specialist species versus abundant and generalist ones, and the

need to compare the predicted prevalence with the observed prevalence).  For this

reasons we decided not to manipulate the prevalence in our analysis but to perform a
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prevalence manipulation test. The prevalence manipulation test was performed on 100

trees.  Before  running  the  model  with  different  prevalence  values,  the  complete

dataset was randomly partitioned in test set (20% of the data) and train set (80% of

the  data),  separately  for  soaring  (presences)  and  flapping  (absences)  locations  in

order to maintain the same ratio of presences to absences in both the original dataset

and the test set; from the train set we then manipulated the number of presences to

meet the values of  prevalence (n.  presences/n.  absences) we wanted to test.  The

same data partitioning procedure was repeated 10 times. The data partition used to

test  the  model  was  separated  from  the  training  set  before  manipulating  the

prevalence in the training set; in this way we could ensure a constant size for the test

set during the evaluation of each prevalence value. During the models’ evaluation we

considered  the  following  accuracy  measures:  AUC  or  area  under  the  ROC  curve,

sensitivity  and  specifcity;  sensitivity  and  specifcity  are  threshold  dependent

measures and the chosen values correspond to a threshold that maximize the sum of

specifcity and sensitivity (True Skill Statistics or TSS). 

The results of the tuning procedure showed an increase in the model accuracy (AUC

and TSS) with increasing prevalence. Sensitivity and specifcity showed variable values

at different values of prevalence, but they both showed a slight positive trend and the

difference between the two slightly decreased, with increasing prevalence (Fig. S3.1).

In contrast, the threshold that maximized the TSS increased, being around 0.5 with a

prevalence equal to 2, and around 0.9 with a prevalence of 12, which is in agreement

with  the fact  that  the best  performances  in  our  model  were  associated with  high

thresholds. This didn’t affect our model accuracy, but its robustness. In fact, all models

including  the  original  presence/absence  ratio  (12.66),  the  threshold  at  which  the

number  of  flapping  locations  correctly  classifed  matched  the  number  of  soaring

locations correctly classifed was really close to 1, between 0.9 and 0.95; a threshold
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of 0.9 favoured the identifcation of soaring (with higher commission rate) whereas a

threshold of 0.95 favoured the identifcation of flapping (with higher omission rate).

This means that this model prediction, although accurate, can be considered sensitive

compared to a prediction obtained with a lower threshold, and a small change in the

threshold leads to really different predicted results. For this reason, if the sample size

of the least represented class allows it, we recommend the use of balanced classes in

species distribution and habitat suitability modelling, by randomly subsampling the

more represented class to about twice the size of the least represented class, to be

able to choose a more centered threshold and increase model robustness. 

Figure S3.1 - Prevalence test. Effect of different prevalence values (ratio soaring to flapping
locations) on different accuracy measures (A), and on the threshold that has to be chosen in
order to maximize True Skill Statistics, calculated as (Sensitivity + Specifcity) – 1 (B).
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Table S3.1 - Random forest evaluation of the three uplift suitability models, based on the test
set and averaged across the ten cross-validations.

Table  S3.1  A  -  Static  uplift  suitability  model,  based  only  on  static  features  (AUC±sd  =
0.851±0.022).

Threshold Sensitivity Specifcity Commission Error Omission Error TSS

0 1 (0) 0.001 (0.003) 0.999 (0.003) 0 (0) 0.001 (0.003)
0.05 1 (0) 0.061 (0.022) 0.939 (0.022) 0 (0) 0.061 (0.022)
0.1 1 (0) 0.097 (0.033) 0.903 (0.033) 0 (0) 0.097 (0.033)
0.15 1 (0) 0.122 (0.025) 0.878 (0.025) 0 (0) 0.122 (0.025)
0.2 1 (0) 0.162 (0.044) 0.838 (0.044) 0 (0) 0.162 (0.044)
0.25 1 (0) 0.185 (0.05) 0.815 (0.05) 0 (0) 0.185 (0.05)
0.3 1 (0) 0.187 (0.049) 0.813 (0.049) 0 (0) 0.187 (0.049)
0.35 1 (0) 0.211 (0.047) 0.789 (0.047) 0 (0) 0.21 (0.047)
0.4 0.999 (0.001) 0.257 (0.046) 0.743 (0.046) 0.001 (0.001) 0.255 (0.046)
0.45 0.997 (0.002) 0.341 (0.054) 0.659 (0.054) 0.003 (0.002) 0.338 (0.054)
0.5 0.997 (0.002) 0.356 (0.059) 0.644 (0.059) 0.003 (0.002) 0.352 (0.059)
0.55 0.996 (0.002) 0.36 (0.06) 0.64 (0.06) 0.004 (0.002) 0.356 (0.06)
0.6 0.994 (0.002) 0.367 (0.058) 0.633 (0.058) 0.006 (0.002) 0.361 (0.058)
0.65 0.992 (0.002) 0.376 (0.058) 0.624 (0.058) 0.008 (0.002) 0.368 (0.058)
0.7 0.988 (0.003) 0.393 (0.056) 0.607 (0.056) 0.012 (0.003) 0.38 (0.056)
0.75 0.977 (0.005) 0.414 (0.054) 0.586 (0.054) 0.023 (0.005) 0.391 (0.054)
0.8 0.956 (0.003) 0.468 (0.06) 0.532 (0.06) 0.044 (0.003) 0.424 (0.06)
0.85 0.914 (0.006) 0.55 (0.051) 0.45 (0.051) 0.086 (0.006) 0.464 (0.051)
0.9 0.827 (0.009) 0.685 (0.048) 0.315 (0.048) 0.173 (0.009) 0.512 (0.045)
0.95 0.625 (0.014) 0.862 (0.041) 0.138 (0.041) 0.375 (0.014) 0.487 (0.036)
1 0.113 (0.01) 0.991 (0.009) 0.009 (0.009) 0.887 (0.01) 0.103 (0.011)
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Table S3.1 B - Dynamic uplift suitability model, based only on thermal and orographic uplift 
potentials (AUC±sd = 0.695±0.024).

Threshold Sensitivity Specifcity Commission Error Omission Error TSS

0 1 (0) 0 (0) 1 (0) 0 (0) 0 (0)
0.05 1 (0) 0 (0) 1 (0) 0 (0) 0 (0)
0.1 1 (0) 0 (0) 1 (0) 0 (0) 0 (0)
0.15 1 (0) 0.002 (0.004) 0.998 (0.004) 0 (0) 0.002 (0.004)
0.2 1 (0) 0.004 (0.004) 0.996 (0.004) 0 (0) 0.004 (0.004)
0.25 1 (0) 0.007 (0.005) 0.993 (0.005) 0 (0) 0.007 (0.005)
0.3 1 (0) 0.018 (0.012) 0.982 (0.012) 0 (0) 0.018 (0.012)
0.35 1 (0) 0.025 (0.016) 0.975 (0.016) 0 (0) 0.025 (0.016)
0.4 0.999 (0) 0.03 (0.016) 0.97 (0.016) 0.001 (0) 0.03 (0.016)
0.45 0.999 (0.001) 0.039 (0.013) 0.961 (0.013) 0.001 (0.001) 0.039 (0.013)
0.5 0.998 (0) 0.053 (0.008) 0.947 (0.008) 0.002 (0) 0.051 (0.008)
0.55 0.996 (0.001) 0.069 (0.015) 0.931 (0.015) 0.004 (0.001) 0.065 (0.014)
0.6 0.994 (0.001) 0.096 (0.016) 0.904 (0.016) 0.006 (0.001) 0.09 (0.017)
0.65 0.99 (0.002) 0.127 (0.017) 0.873 (0.017) 0.01 (0.002) 0.117 (0.018)
0.7 0.984 (0.003) 0.157 (0.026) 0.843 (0.026) 0.016 (0.003) 0.141 (0.026)
0.75 0.973 (0.005) 0.203 (0.033) 0.797 (0.033) 0.027 (0.005) 0.176 (0.033)
0.8 0.954 (0.006) 0.276 (0.039) 0.724 (0.039) 0.046 (0.006) 0.23 (0.04)
0.85 0.919 (0.009) 0.358 (0.047) 0.642 (0.047) 0.081 (0.009) 0.277 (0.049)
0.9 0.844 (0.008) 0.487 (0.045) 0.513 (0.045) 0.156 (0.008) 0.331 (0.045)
0.95 0.459 (0.018) 0.737 (0.033) 0.263 (0.033) 0.541 (0.018) 0.196 (0.039)

1 0.026 (0.005) 0.985 (0.014) 0.015 (0.014) 0.974 (0.005) 0.011 (0.015)
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Table S3.1 C - Combined uplift suitability model, based on both static and dynamic predictors 
(AUC±sd =  0.862±0.016).

Threshold Sensitivity Specifcity Commission Error Omission Error TSS

0 1 (0) 0.001 (0.003) 0.999 (0.003) 0 (0) 0.001 (0.003)
0.05 1 (0) 0.051 (0.019) 0.949 (0.019) 0 (0) 0.051 (0.019)
0.1 1 (0) 0.075 (0.032) 0.925 (0.032) 0 (0) 0.075 (0.032)
0.15 1 (0) 0.107 (0.027) 0.893 (0.027) 0 (0) 0.106 (0.027)
0.2 1 (0) 0.133 (0.024) 0.867 (0.024) 0 (0) 0.133 (0.024)
0.25 1 (0) 0.157 (0.02) 0.843 (0.02) 0 (0) 0.157 (0.02)
0.3 1 (0) 0.169 (0.024) 0.831 (0.024) 0 (0) 0.169 (0.024)
0.35 1 (0) 0.192 (0.023) 0.808 (0.023) 0 (0) 0.191 (0.023)
0.4 0.999 (0) 0.234 (0.03) 0.766 (0.03) 0.001 (0) 0.234 (0.03)
0.45 0.999 (0.001) 0.287 (0.041) 0.713 (0.041) 0.001 (0.001) 0.285 (0.04)
0.5 0.998 (0.001) 0.319 (0.032) 0.681 (0.032) 0.002 (0.001) 0.317 (0.032)
0.55 0.998 (0.001) 0.341 (0.037) 0.659 (0.037) 0.002 (0.001) 0.339 (0.036)
0.6 0.997 (0.001) 0.356 (0.034) 0.644 (0.034) 0.003 (0.001) 0.352 (0.033)
0.65 0.995 (0.001) 0.375 (0.037) 0.625 (0.037) 0.005 (0.001) 0.37 (0.036)
0.7 0.992 (0.002) 0.392 (0.038) 0.608 (0.038) 0.008 (0.002) 0.384 (0.038)
0.75 0.983 (0.003) 0.417 (0.039) 0.583 (0.039) 0.017 (0.003) 0.4 (0.038)
0.8 0.962 (0.005) 0.471 (0.036) 0.529 (0.036) 0.038 (0.005) 0.433 (0.033)
0.85 0.92 (0.008) 0.557 (0.038) 0.443 (0.038) 0.08 (0.008) 0.477 (0.035)
0.9 0.829 (0.014) 0.706 (0.036) 0.294 (0.036) 0.171 (0.014) 0.535 (0.036)
0.95 0.609 (0.014) 0.878 (0.032) 0.122 (0.032) 0.391 (0.014) 0.488 (0.022)
1 0.055 (0.004) 1 (0) 0 (0) 0.945 (0.004) 0.055 (0.004)
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Supporting figures for the models’ output

Figure S3.2 -  Accuracy of  the  three uplift  suitability  models,  static  (A),  dynamic  (B)  and
combined (C),  in terms of  sensitivity (proportion of  soaring locations correctly classifed, in
green) and specifcity (proportion of flapping locations correctly classifed, in red) at different
thresholds values. The solid points represent the value of Sensitivity and Specifcity, averaged
across the ten runs of each model, at a threshold that maximize the value of the True Skill
Statistics. 
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A - Static model
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B - Dynamic model
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C - Combined model

Figure S3.3 - Variable importance. Contributions of the different variables to the static (A),
dynamic (B) and combined (C) uplift suitability models, measured in terms of mean decrease in
accuracy (left) and decrease in node impurity (right).
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S4 –  Uplift intensity model

Table S4.1 - Summary of the three uplift intensity models (generalized additive models).

Response: sqrt(Vertical Speed)

Static 
Uplift intensity model

Dynamic
Uplift intensity model

Combined 
Uplift intensity model

Parametric coefficients:
Estimate (C.I.)

Intercept 0.898 (0.866, 0.929) 0.765 (0.759, 0.771) 0.719 (0.688, 0.751)
Aspect unevenness 0.0001 (0.00000, 0.0001) 0.0001 (0.00000, 0.0001)
DEM unevenness 0.001 (-0.0002, 0.002) 0.001 (-0.0004, 0.002)
Slope unevenness 0.005 (0.002, 0.008) 0.005 (0.002, 0.008)
GUF 0.013 (-0.001, 0.028) 0.022 (0.008, 0.037)
CLC 1 - dumps -0.155 (-0.310, -0.0004) -0.039 (-0.190, 0.112)
CLC 2 - art. veg. areas 0.063 (0.023, 0.103) 0.055 (0.015, 0.094)
CLC 3 - arable lands -0.018 (-0.049, 0.014) -0.019 (-0.050, 0.012)
CLC 4 - perm. crops -0.023 (-0.055, 0.009) -0.016 (-0.047, 0.016)
CLC 5 - pastures -0.034 (-0.068, 0.0001) -0.028 (-0.062, 0.005)
CLC 6 - het. agr. areas -0.017 (-0.049, 0.015) -0.012 (-0.044, 0.019)
CLC 7 - forest 0.014 (-0.018, 0.046) 0.009 (-0.022, 0.041)
CLC 8 - Shrubs 0.024 (-0.008, 0.057) 0.022 (-0.011, 0.054)
CLC 10 - wet. marshes -0.050 (-0.088, -0.012) -0.026 (-0.064, 0.012)
CLC 11 - marine wet. salines 0.002 (-0.032, 0.036) 0.007 (-0.027, 0.040)
CLC 12 - rivers -0.020 (-0.070, 0.029) -0.026 (-0.075, 0.023)
CLC 13 - wat. bodies lakes -0.102 (-0.152, -0.051) -0.093 (-0.143, -0.044)
CLC 14 - coast. lagoons est. 0.060 (0.014, 0.105) 0.069 (0.024, 0.114)
CLC 15 - sea 0.006 (-0.450, 0.462) -0.004 (-0.449, 0.441)
CLC 16 - urban areas -0.013 (-0.046, 0.020) -0.017 (-0.049, 0.016)
Therm. uplift pot. 0.124 (0.119, 0.129) 0.161 (0.156, 0.166)
Orog. uplift pot. 0.042 (0.029, 0.056) 0.063 (0.049, 0.077)

Smooth terms:
F (Effective df)

s(Aspect) 4.057 (3.040) 2.080 (2.545)
s(DEM) 49.019 (6.978) 40.020 (6.901)
s(Ruggedness) 1.863 (4.443) 4.510 (4.875)
s(NDVI) 18.068 (6.710) 21.650 (4.277)
s(Latitude) 60.916 (8.881) 91.420 (8.885)

Observations 76383 78307 74946

Adjusted R2 0.032 0.032 0.083
AIC (df) 46575.00 (54.745) 49636.88 (4) 42003.95 (53.19181)
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A       B

Figure S4.1 - Non linear relationship between some of the environmental predictors included
as  smooth  terms  in  the  static  uplift  intensity  model  (generalized  additive  model)  and the
response variable (vertical speed). In (A) the effect of NDVI and aspect, whereas in (B) the
effect of DEM and latitude on the vertical speed. In lighter colours, combination of variables’
values that predict a higher vertical speed.
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S5 – Static energy landscape

Table 5.1 - Output of the Linear Mixed Model analysing the mean daily ODBA as a function of
the mean daily uplift suitability (as predicted by the static uplift suitability model).

Response variable: 
sqrt(Mean Daily ODBA)

Fixed effects:
Estimate (C.I.)

Intercept 3.548 (0.166)
Mean daily uplift suitability -2.252 (0.189)

Random effects:
Variance (St. Dev., Corr.)
Intercept 0.990 (0.995)
Mean daily uplift suitability 1.248 (1.117, -1.00)
Residual 0.055 (0.234)

Observations 823
Groups (Individuals) 59
AIC 46.233
AIC (null model) 114.254
ΔAIC = AIC – AICnull -68.021
Marginal R² 0.306
Conditional R² 0.426
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