S. J. Buwalda, T. Vermonden, and W. E. Hennink, Hydrogels for therapeutic delivery: Current developments and future directions, Biomacromolecules, vol.18, pp.316-330, 2017.

S. J. Buwalda, K. W. Boere, P. J. Dijkstra, J. Feijen, T. Vermonden et al., Hydrogels in a historical perspective: From simple networks to smart materials, J. Controlled Release, vol.190, pp.254-273, 2014.

T. Vermonden and B. Klumperman, The past, present and future of hydrogels, Eur. Polym. J, vol.72, pp.341-343, 2015.

E. Bakaic, N. M. Smeets, and T. Hoare, Injectable hydrogels based on poly (ethylene glycol) and derivatives as functional biomaterials, RSC Adv, vol.5, pp.35469-35486, 2015.

Y. Wu, L. Wang, B. Guo, and P. X. Ma, Injectable biodegradable hydrogels and microgels based on methacrylated poly (ethylene glycol)-co-poly (glycerol sebacate) multi-block copolymers: synthesis, characterization, and cell encapsulation, J. Mater. Chem. B, vol.2, pp.3674-3685, 2014.

J. Bakó, M. Vecsernyés, Z. Ujhelyi, I. B. Kovácsné, I. Borbíró et al., Composition and characterization of in situ usable light cured dental drug delivery hydrogel system, J. Mater. Sci.: Mater. Med, vol.24, pp.659-666, 2013.

C. D. Hermann, D. S. Wilson, K. A. Lawrence, X. Ning, R. Olivares-navarrete et al.,

N. Guldberg, Z. Murthy, B. D. Schwartz, and . Boyan, Rapidly polymerizing injectable click hydrogel therapy to delay bone growth in a murine re-synostosis model, Biomaterials, vol.35, pp.9698-9708, 2014.

S. J. Buwalda, P. J. Dijkstra, and J. Feijen, In situ forming poly(ethylene glycol)-poly(L-lactide) hydrogels via Michael addition: Mechanical properties, degradation, and protein release, Macromol. Chem. Phys, vol.213, pp.766-775, 2012.

C. Ghobril, E. K. Rodriguez, A. Nazarian, and M. W. Grinstaff, Recent advances in dendritic macromonomers for hydrogel formation and their medical applications, Biomacromolecules, vol.17, pp.1235-1252, 2016.

M. F. Abou-taleb, S. M. Elsigeny, and M. M. Ibrahim, Radiation synthesis and characterization of polyamidoamine dendrimer macromolecules with different loads of nickel salt for adsorption of some metal ion, Radiat. Phys. Chem, vol.76, pp.1612-1618, 2007.

X. Wu, S. Huang, J. Zhang, and R. Zhuo, Preparation and characterization of novel physically crosslinked hydrogels composed of poly(vinyl alcohol) and amine-terminated polyamidoamine dendrimer, Macromol. Biosci, vol.4, pp.71-75, 2004.

C. A. Holden, P. Tyagi, A. Thakur, R. Kadam, G. Jadhav et al., Polyamidoamine dendrimer hydrogel for enhanced delivery of antiglaucoma drugs, Nanomedicine, vol.8, pp.776-783, 2012.

J. Wang, H. He, R. C. Cooper, and H. Yang, In situ-forming polyamidoamine dendrimer hydrogels with tunable properties prepared via Aza-Michael addition reaction, ACS Appl. Mater. Interfaces, vol.9, pp.10494-10503, 2017.

R. S. Navath, A. R. Menjoge, H. Dai, R. Romero, S. Kannan et al., Injectable PAMAM dendrimer-PEG hydrogels for the treatment of genital infections: formulation and in vitro and in vivo evaluation, Mol. Pharmaceutics, vol.8, pp.1209-1223, 2011.

L. Xu, R. C. Cooper, J. Wang, W. A. Yeudall, and H. Yang, Synthesis and application of injectable bioorthogonal dendrimer hydrogels for local drug delivery, ACS Biomater. Sci. Eng, vol.3, pp.1641-1653, 2017.

B. Unal and R. C. Hedden, Gelation and swelling behavior of end-linked hydrogels prepared from linear poly (ethylene glycol) and poly (amidoamine) dendrimers, Polymer, vol.47, pp.8173-8182, 2006.

G. Lapienis, Star-shaped polymers having PEO arms, Prog. Polym. Sci, vol.34, pp.852-892, 2009.

T. Canal and N. A. Peppas, Correlation between mesh size and equilibrium degree of swelling of polymeric networks, J. Biomed. Mater. Res., Part A, vol.23, pp.1183-1193, 1989.

S. L. Snyder and P. Z. Sobocinski, An improved 2,4,6-trinitrobenzenesulfonic acid method for the determination of amines, Anal. Biochem, vol.64, pp.284-288, 1975.

M. Risbud, D. Saheb, J. Jog, and R. Bhonde, Preparation, characterization and in vitro biocompatibility evaluation of poly(butylene terephthalate)/wollastonite composites, Biomaterials, vol.22, pp.1591-1597, 2001.

M. E. Dolman, K. M. Van-dorenmalen, E. H. Pieters, R. W. Sparidans, M. Lacombe et al.,

L. Szokol, G. Orfi, N. Kéri, G. Bovenschen, W. E. Storm et al., Dendrimer-based macromolecular conjugate for the kidney-directed delivery of a multitargeted sunitinib analogue, Macromol. Biosci, vol.12, pp.93-103, 2012.

K. Samanta, P. Jana, S. Bäcker, S. Knauer, and C. Schmuck, Guanidiniocarbonyl pyrrole (GCP) conjugated PAMAM-G2, a highly efficient vector for gene delivery: the importance of DNA condensation, Chem. Commun, vol.52, pp.12446-12449, 2016.

A. Janaszewska, M. Studzian, J. F. Petersen, M. Ficker, V. Paolucci et al.,

B. Tomalia and . Klajnert-maculewicz, Modified PAMAM dendrimer with 4-carbomethoxypyrrolidone surface groups-its uptake, efflux, and location in a cell, Colloids Surf., B, vol.159, pp.211-216, 2017.

K. Nishi, K. Fujii, Y. Katsumoto, T. Sakai, and M. Shibayama, Kinetic aspect on gelation mechanism of tetra-PEG hydrogel, Macromolecules, vol.47, pp.3274-3281, 2014.

Y. Zhuang, H. Shen, F. Yang, X. Wang, and D. Wu, Synthesis and characterization of PLGA nanoparticle/4-arm-PEG hybrid hydrogels with controlled porous structures, RSC Adv, vol.6, pp.53804-53812, 2016.

S. J. Buwalda, B. Nottelet, and J. Coudane, Robust & thermosensitive poly(ethylene glycol)-poly(?caprolactone) star block copolymer hydrogels, Polym. Degrad. Stab, vol.137, pp.173-183, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02387396

S. J. Buwalda, P. J. Dijkstra, L. Calucci, C. Forte, and J. Feijen, Influence of amide versus ester linkages on the properties of eight-armed PEG-PLA star block copolymer hydrogels, Biomacromolecules, vol.11, pp.224-232, 2010.

S. M. Hodgson, S. A. Mcnelles, L. Abdullahu, I. A. Marozas, K. S. Anseth et al., Reproducible dendronized PEG hydrogels via SPAAC cross-linking, Biomacromolecules, vol.18, 2017.

P. Dey, T. Schneider, L. Chiappisi, M. Gradzielski, G. Schulze-tanzil et al., Mimicking of chondrocyte microenvironment using in situ forming dendritic polyglycerol sulfate-based synthetic polyanionic hydrogels, Macromol. Biosci, vol.16, pp.580-590, 2016.

H. Yang, P. Tyagi, R. S. Kadam, C. A. Holden, and U. B. Kompella, Hybrid dendrimer hydrogel/PLGA nanoparticle platform sustains drug delivery for one week and antiglaucoma effects for four days following one-time topical administration, ACS Nano, vol.6, pp.7595-7606, 2012.

F. Brandl, F. Kastner, R. M. Gschwind, T. Blunk, J. Teßmar et al., Hydrogel-based drug delivery systems: comparison of drug diffusivity and release kinetics, J. Controlled Release, vol.142, pp.221-228, 2010.

J. Li, X. Li, X. Ni, X. Wang, H. Li et al., Self-assembled supramolecular hydrogels formed by biodegradable PEO-PHB-PEO triblock copolymers and ?-cyclodextrin for controlled drug delivery, Biomaterials, vol.27, pp.4132-4140, 2006.

B. Jeong, Y. H. Bae, D. S. Lee, and S. W. Kim, Biodegradable block copolymers as injectable drugdelivery systems, Nature, vol.388, pp.860-862, 1997.

K. A. Watkins and R. Chen, pH-responsive, lysine-based hydrogels for the oral delivery of a wide size range of molecules, Int. J. Pharm, vol.478, pp.496-503, 2015.

V. X. Truong, K. M. Tsang, G. P. Simon, R. L. Boyd, R. A. Evans et al., Photodegradable gelatin-based hydrogels prepared by bioorthogonal click chemistry for cell encapsulation and release, Biomacromolecules, vol.16, pp.2246-2253, 2015.

J. Sytze, *. Buwalda-1, A. Bethry, S. Hunger, S. Kandoussi et al., Faculté de Pharmacie, 15 avenue Charles Flahault, BP14491, 34093 Montpellier cedex 5, France 1 Present address: MINES ParisTech, Center for Materials Forming (CEMEF), UMR CNRS 7635