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Abstract 1 
 2 
Populations of Iberian (Lepus granatensis), brown (Lepus europaeus) and broom (Lepus 3 
castroviejoi) hares in Northern Iberia harbour mitochondrial haplotypes from the mountain hare 4 
(Lepus timidus), a cold adapted species presently absent from the Peninsula. To understand the 5 
history of this massive past introgression, we sequenced a fragment of cytochrome b and the control 6 
region of mitochondrial DNA of L. timidus origin found in 378 specimens of these four species. 7 
Among 124 L. timidus from the Northern Palaearctic and the Alps we found substantial nucleotide 8 
diversity but little geographic differentiation. Based on the mismatch distribution, we propose this 9 
could result from an expansion at a time of temperature decrease favourable to this arctic species. 10 
The nucleotide diversity of L. timidus mtDNA found in Iberian L. granatensis, L. europaeus and L. 11 
castroviejoi (183, 70 and 1 specimens respectively) was of the same order as that in L. timidus over 12 
its range (1.9 vs. 2.3%), suggesting multiple hybridization events. The coalescence pattern of the 13 
introgressed lineage in L. granatensis indicates a recent demographic expansion which is 14 
compatible with a scenario of progressive replacement with hybridization of L. timidus by L. 15 
granatensis when temperatures started to rise and favour this temperate species. L. europaeus could 16 
have hybridized with L. timidus in Iberia or on its way to the Peninsula, and according to our data it 17 
could also have hybridized with introgressed L. granatensis. 18 
 19 

20 
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Introduction 1 
 2 
The climatic oscillations that characterized the Pleistocene imposed important range shifts on 3 
Palaearctic biota, and contributed decisively to shape their demographic history and genetic 4 
diversity (Avise et al. 1998). Cooling of the climate forced temperate species to retract into 5 
fragmented distribution ranges in Southern refugia, creating high levels of diversity and endemism 6 
in these areas (Hewitt 1996). In Europe the Balkans, Italy and the Iberian Peninsulas represent the 7 
major ice age refugia (Taberlet et al. 1999). Temperate biota normally show lower genetic diversity 8 
in the formerly glaciated regions, due to founder effects during their post-glacial expansion, unless 9 
their mobility was sufficient to ensure an admixture from the different refugia during the 10 
interglacials (Hewitt 1996; Cruzan & Templeton 2000). A different pattern could however prevail 11 
for arctic species. Generally, given the much colder climates during glacial periods and the extent of 12 
the arctic ice sheets, these species must have been pushed to lower latitudes. However, large areas 13 
of Northeast Asia are known to have remained deglaciated and are proposed as refugial areas (see 14 
Hewitt 2004). Still, these species are well adapted to cold conditions and some could have 15 
maintained large distribution areas during the ice ages across the steppe and tundra stretches that 16 
covered Europe. To many, the cooling of the climate could have represented periods of population 17 
expansion while the warmer stage may be a time of population reduction (see Hewitt 2001). 18 
Consequently, some regions must have been occupied by an alternation of arctic and temperate 19 
species as the climate oscillated. This probably set the conditions for temporal and moving overlaps 20 
of the ranges of these two types of species, competition between them, and eventually hybridization. 21 
The Iberian Peninsula seems to have been an arena for such a type of interplay between hare 22 
species. 23 
 24 
The genus Lepus is presently represented in Iberia by three species, two of which are endemic: the 25 
broom hare, Lepus castroviejoi, restricted to the Cantabrian Mountains, and the Iberian hare, Lepus 26 
granatensis, which covers the whole Iberian Peninsula except the Northeast, along the Pyrenees, 27 
where the brown hare, Lepus europaeus, prevails. Mitochondrial DNA studies (Pérez-Suárez et al. 28 
1994; Alves et al. 2003) have identified lineages that are specific to each of these species, but 29 
Alves et al. (2003) have also detected haplotypes inherited from the mountain hare, Lepus timidus, 30 
currently extinct from Iberia, in specimens of L. granatensis and L. europaeus. L. timidus is an 31 
arcto-alpine species with a wide range in the Northern part of the Palaearctic region, from the 32 
British islands to the Russian Far East, and some isolated populations in the Alps, Poland and Japan 33 
(Angerbjörn & Flux 1995). According to the fossil record it was the most common and most widely 34 
distributed hare species in Europe during the last glacial periods (Lopez-Martinez 1980). Upper 35 
Pleistocene fossil records of mountain hares have been found for instance in Central Europe, 36 
Southern France (Lopez-Martinez 1980), Northern Spain (Altuna 1970) and Ireland (Woodman et 37 
al. 1997). Recent molecular analyses demonstrated that mtDNA of L. timidus origin is widespread 38 
in the Iberian Peninsula (Melo-Ferreira et al. 2005). It predominates in L. granatensis populations 39 
from the North, but becomes rarer towards the South, where it is absent. Furthermore, it is almost 40 
fixed in Iberian L. europaeus and also present in L. castroviejoi. Even though mitochondrial 41 
introgression in contact zones is not uncommon (e.g. Ferris et al. 1983; Tegelström 1987; Arnold 42 
1997; Ruedi et al. 1997; Goodman et al. 1999; Bachtrog  et al. 2006), the geographic and 43 
taxonomic ranges of this introgression are unusual, and the donor species is now extinct form the 44 
concerned region. 45 
 46 
In this work, we wanted to better understand the time scale and demographic processes 47 
characterizing the spectacular past invasion of the genomes of these three Iberian species. To do 48 
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this, we studied mtDNA sequence variation in a sample of L. timidus spanning most of its present 1 
distribution area, and compared it with the diversity of the L. timidus haplotypes found in the 2 
Iberian species. Our results are compatible with the scenario of an expansion of L. timidus prior to 3 
the Eemian interglacial, followed by a retraction to the North at the end of the Pleistocene, 4 
accompanied by replacement with hybridization by the temperate species which, as they expanded, 5 
spread the traces of hybridization to the recolonized regions. 6 
 7 
 8 
Materials and Methods 9 
 10 
 11 
Samples and laboratory methods 12 
 13 
A total of 378 individuals from four hare species from the Iberian Peninsula (L. granatensis, L. 14 
europaeus and L. castroviejoi) and Eurasia (L. timidus) was analysed (Table 1; Fig. 1). The Iberian 15 
specimens had previously been identified has having the mtDNA of L. timidus origin through a 16 
PCR-RFLP approach (Melo-Ferreira et al. 2005). 17 
 18 
Total genomic DNA was extracted from liver or ear tissue using standard methods similar to those 19 
described in Sambrook et al. (1989). A portion of the mitochondrial cytochrome b (Cytb) was 20 
amplified using primers LCYF (Alves et al. 2003) and LCYTBR (Melo-Ferreira et al. 2005), the 5’ 21 
terminal nucleotides of which correspond respectively to positions 14251 and 14919 of the 22 
reference L. europaeus mitochondrial genome (GenBank Accession No. AJ421471; Arnason et al. 23 
2002). Additionally, a fragment of the mitochondrial control region (CR) was amplified using 24 
primers LCRSEQ (5’-CACCATCAGCACCCAAAG-3’) and LepD2H (Pierpaoli et al. 1999) which 25 
start, respectively, at positions 15395 and 15947 of the reference mitochondrial genome. Both PCR 26 
products were sequenced (617 bp from the Cytb and 471 to 473 bp of the CR) using LCYF and 27 
LCRSEQ primers, respectively, following the ABI PRISM BigDye Terminator Cycle Sequencing 28 
3.1 (Applied Biosystems) standard protocol. 29 
 30 
 31 
Sequences analyses 32 
 33 
The Cytb and CR sequences were visually inspected, aligned using CLUSTAL W (Thompson et al. 34 
1994) and concatenated. MtDNA haplotypes were defined using NETWORK 4.1.0.9 35 
(http://www.fluxus-technology.com/). 36 
 37 
A Neighbor-Joining tree (using the TN93 distance; Tamura & Nei 1993) was reconstructed using 38 
MEGA 3.1 (Kumar et al. 2004; http://www.megasoftware.net) in order to detect any error in the 39 
former PCR-RFLP determination of the mitochondrial lineage (Melo-Ferreira et al. 2005). No 40 
ambiguities were detected (data not shown). 41 
 42 
When analysing intraspecific sequence data, that normally have large sample size and low genetic 43 
distances between haplotypes, the results are better expressed using a network which allows for 44 
alternative connections and for extant ancestral haplotypes in the populations (Bandelt et al. 1999). 45 
Since the introgressed specimens in Iberia and the L. timidus specimens share the mtDNA lineage, 46 
these two datasets were analyzed jointly using NETWORK 4.1.0.9 and a Median-Joining network was 47 
computed (Bandelt et al. 1999). 48 



 

 

5

 1 
The nucleotide diversity (π), θ(S) computed from the number of segregating sites, haplotype diversity 2 
(h) and mismatch distributions were determined using ARLEQUIN 3.0 (Excoffier et al. 2005). The 3 
mismatch distributions were analysed according to the Sudden Expansion Model (Rogers & 4 
Harpending 1992). This model assumes that an initial population at equilibrium with θ = θ0 grows 5 
rapidly to a new size with θ = θ1, τ units of mutational time ago, where θ = Neu and τ = 2ut (Ne = 6 
effective population size, u = mutation rate and t = time since the expansion in generations). 7 
Goodness-of-fit tests (Schneider & Excoffier 1999) of the observed to the expected distribution 8 
were computed. The confidence intervals for τ were obtained from 1000 bootstrap replicates. The 9 
conformation to a model of selective neutrality and population equilibrium by Tajima’s D (Tajima 10 
1989a) and Fu’s Fs (Fu 1997) was tested with 5000 bootstrap replicates. 11 
 12 
To further assess the demographic history of the analysed samples we determined the population 13 
growth parameter g using FLUCTUATE 1.4 (Kuhner et al. 1998), a coalescent-based method which 14 
takes into account the genealogical relationships among haplotypes. Positive values of g indicate 15 
population growth and negative values population reduction. We ran the program several times with 16 
different combinations of short and long chains to ensure consistency of the estimates. The final 17 
estimates were based on a run of 10 short chains of 1,000 steps followed by 10 long chains of 18 
20,000 steps, sampling every 10 steps. The estimates of the growth parameter g are known to be 19 
biased upwards (Kuhner et al. 1998). Therefore, we followed the conservative method used by 20 
Lessa et al. (2003) and considered g to indicate population growth only if g > 3(SD) and population 21 
decline if g < -3(SD). 22 
 23 
Population pairwise ΦST were calculated and tested for significance (10000 permutations; 24 
significance level 0.05). An analysis of molecular variance (AMOVA; 10000 permutations; 25 
Excoffier et al. 1992) was then computed to test for population structure in L. timidus, grouping the 26 
samples according to their geographic location (Northern Europe, Alps, Eastern Europe and Eastern 27 
Russia). 28 
 29 
To obtain an estimate of interspecific divergence time in Lepus, Pierpaoli et al. (1999) proposed that 30 
a Cytb divergence rate of 4% per Myr, which corresponds to the basal splitting of the genus at 3 31 
Myr, is in accordance with the palaeontological data that reports the first appearance of the genus at 32 
≈ 2.5 million years ago (e.g. Lopez-Martinez 1980). In order to calibrate the rate of substitution in 33 
L. timidus, we calculated the average nucleotide TN93 distance between the two major lineages of 34 
L. timidus origin found in L. granatensis, for the Cytb fragment alone and for the concatenation of 35 
the Cytb and CR fragments. By simple proportionality, assuming that the rate of divergence for 36 
Cytb is 4% per Myr, we found that for the concatenated fragments the divergence rate is 15.8% per 37 
Myr. 38 
 39 
 40 
Results 41 
 42 
 43 
Sequence diversity 44 
 45 
After concatenating the Cytb and CR fragments, (378 individuals; 1088 to 1090 bp) we identified 46 
167 haplotypes defined by 270 polymorphic sites, of which 267 had substitutions and 5 contained 47 
insertions/deletions (Table 1; GenBank accession numbers: Cytb - ###-###; CR - ###-###; 48 
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haplotypes with frequency higher than 1 are shown in the appendix). The Cytb sequences appear to 1 
be of mitochondrial origin and not nuclear integrated copies, as the reading frame is intact and the 2 
third position base composition is typical (A 38.5%, C 32.3%, G 2.7% and T 26.5%) compared to 3 
the average in mammals (A 39%, C 36%, G 3% and T 21%; Johns and Avise 1998). A separate 4 
analysis of the Cytb and CR datasets did not show any phylogenetic incongruence (data not 5 
shown) suggesting that the CR fragment is also of mitochondrial origin. 6 
 7 
The 124 L. timidus specimens harboured 90 distinct haplotypes. Sequence diversity was high (h = 8 
0.991 ± 0.003; π = 0.023 ± 0.011; Table 2) and the haplotypes were evenly distributed, all having 9 
frequencies lower than 6%. Each of the major geographic regions that we defined separately 10 
displayed similarly high sequence diversity (Table 2).  11 
 12 
Seventy-seven different mitochondrial haplotypes of L. timidus origin were found among the 13 
Iberian species: 67 in L. granatensis; 11 in L. europaeus; and 1 in L. castroviejoi. Two haplotypes 14 
(i9 and i66) were found both in L. granatensis and L. europaeus. The introgressed L. granatensis 15 
showed high sequence diversity (Table 2), with haplotypes evenly distributed in the sample, all 16 
having a frequency lower than 7%. Haplotype diversity (h = 0.978 ± 0.003) and nucleotide diversity 17 
(π = 0.018 ± 0.009) were high, suggesting that L. timidus mtDNA introgression in this species had 18 
multiple origins. The diversity among the haplotypes of L. timidus origin found in L. europaeus was 19 
also rather high (h = 0.820 ± 0.026; π = 0.017 ± 0.008; Table 2). In this species, two haplotypes, i09 20 
and i72, occurring with a frequency of 26% and 30% respectively, are clearly predominant over the 21 
others. 22 
 23 
 24 
Network analysis and population differentiation 25 
 26 
The Median-Joining network split the introgressed haplotypes in the Iberian species in two well 27 
defined divergent haplogroups (average uncorrected p-distance = 0.030), which will be referred to 28 
as groups A and B (Fig. 2). No haplotype was shared between true L. timidus and the other species. 29 
Group A of introgressed haplotypes is found in the three Iberian species, and one haplotype is 30 
common to L. granatensis and L. europaeus. This group is not monophyletic, as the smallest clade 31 
in which it is included also comprises haplotypes form Eastern Russia, Northern Europe and the 32 
Alps. Group B of introgressed haplotypes is found in L. granatensis and L. europaeus, also with one 33 
haplotype shared between these species. The smallest monophyletic group including group B also 34 
comprises haplotypes of true L. timidus from the Alps and Northern Europe. The haplotypes from 35 
Northern Europe, Eastern Russia and the Alps were scattered throughout the network. However, 36 
many haplotypes from the Alps fell into two clusters closely related to the introgressed Iberian 37 
groups A and B, suggesting relatedness. The British Isles haplotypes form two well defined 38 
divergent clusters which correspond to the Irish and Scottish specimens.   39 
 40 
The AMOVA showed that in L. timidus 7.5% of the variation is explained by differences among 41 
major geographic groups, 28.3% among populations within groups and 64.2% within sampled 42 
populations (ΦST = 0.36, ΦSC = 0.31, ΦCT = 0.07). Pairwise ΦST distances among the L. timidus 43 
populations range from 0 to 0.805. The Scottish and Italian populations show the higher levels of 44 
differentiation relative to the others. In general, the Northern European L. timidus populations are 45 
little differentiated from the Eastern Russia ones (Table 3). The introgressed Iberian and brown hare 46 
populations are well differentiated from the native L. timidus (ΦST from 0.822 to 0.859). The 47 
differentiation between the introgressed L. granatensis and L. europaeus is moderate (0.102). 48 
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 1 
 2 
Demographic analyses 3 
 4 
The mismatch analysis of the sequences from true L. timidus showed a unimodal distribution of the 5 
number of pairwise differences that fitted the expectation under the Sudden Expansion Model (Fig. 6 
3a). The main expansion event was estimated to have occurred at τ = 28.2 (95% CI 22.4-31.2). 7 
 8 
The timidus-like haplotypes in L. granatensis show a bimodal distribution of pairwise differences, 9 
rejecting, as expected, the Sudden Expansion Model (Fig. 3b). The observation of two clearly 10 
separated sublineages in this species suggests independent origins of the introgressed clades. The 11 
mismatch distribution for each lineage analysed separately is unimodal, not rejecting the 12 
expectation under the Sudden Expansion Model, showing that the group A main expansion event 13 
occurred at τ = 5.7 (95% CI 3.0-14.0; Fig. 3c) while in group B it occurred at τ = 6.0 (95% CI 3.4-14 
13.6; Fig. 3d). In L. europaeus, the mismatch distribution shows three peaks at 0, 15, and 33 15 
pairwise differences, rejecting the tested model (Fig. 3e). When analysing separately groups A and 16 
B (Figs. 3f and 3g respectively), we found that for the latter the rapid expansion model is not 17 
rejected, with an estimated τ = 6.0 (95% CI 1.6-13.0). In L. europaeus group A however, it was not 18 
possible to perform the goodness-of-fit test, since the least square procedure to fit model 19 
distribution and observed distribution did not converge after 1800 steps. 20 
 21 
Tajima’s D values were negative in L. granatensis groups A and B, group A of L. europaeus, and in 22 
L. timidus, except for the analysis of the Alpine haplotypes (Table 2). However, none of the values 23 
was significantly different from zero (p > 0.05). Fu’s Fs values were negative except in L. 24 
europaeus (both groups A and B) and the Alpine and Eastern European L. timidus (Table 2). This 25 
parameter was significant (p < 0.02) in L. granatensis group B, in L. timidus as a whole and in the 26 
Northern European sample. Negative values of these parameters can be due to selection, but also 27 
population expansion, bottleneck or heterogeneity of mutation rates (Tajima 1989b; Aris-Brosou & 28 
Excoffier 1996; Fu 1997). In fact, the Fs index is particularly sensitive to population expansion (Fu 29 
1997; Ramos-Onsins & Rozas 2002), and thus at least in some cases, these results are concordant 30 
with those of the mismatch analysis. 31 
 32 
The estimates of the growth parameter g show that both lineages in L. granatensis underwent a 33 
population growth, but this was not the case in L. europaeus. In true L. timidus the overall sample 34 
and the partitions indicate growth, except for the Alpine population (Table 2). 35 
 36 
 37 
Discussion 38 
 39 
 40 
L. timidus population history and genetic structure 41 
 42 
Although our sample of L. timidus covers most of the species range, from the Atlantic to the Pacific 43 
and from Scandinavia and the British Isles to the Alps, little geographic structure of mtDNA 44 
variation is apparent on the haplotype network of Fig. 2. Only 7.5% of the molecular variance lies 45 
in differences between the major geographic regions, most of the variance (64.2%) being 46 
attributable to intra-population diversity. The ΦST value (0.36) found among populations covering 47 
such a large area is low when compared to that found in other mammals such as wolf (0.69; Vilà et 48 
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al. 1999), roe deer (0.44; Randi et al. 2004) or brown hares (0.42; Kasapidis et al. 2005). Likewise, 1 
the pairwise ΦST values between some Northern European and Eastern Russian populations are 2 
generally low (for example Sweden and Finland vs. Amurskaya Territory and Kamchatka 3 
Peninsula; Table 3), indicating little differentiation. Although hares are mobile species, the 4 
relatively low differentiation over such large distances is unlikely to exclusively reflect ongoing 5 
gene flow, but rather suggests a common history of colonization. In fact, we have seen that Fu’s Fs 6 
statistics, the growth parameter (Table 2) and the mismatch distribution (Fig. 3a) are compatible 7 
with an expansion of this species, that we have dated at 164 000 years BP (130 000-181 000 years 8 
BP, 95% CI), i.e. before the last interglacial (130 000 to 116 000 years BP; Kukla et al. 2002), in 9 
agreement with earlier more restricted studies (Waltari & Cook 2005), and with a previous estimate 10 
(135 000 BP; Pierpaoli et al. 1999). L. timidus being an arctic species, the glacial periods have 11 
logically affected it differently from the temperate species. It would appear logical that the 12 
expansion of this species occurred when temperatures were dropping, rather than during the 13 
warming of an interglacial period as is proposed for several arctic taxa (Hewitt 2001; Flagstad & 14 
Røed 2003; Dalén et al. 2005). As a result, during the last glacial period L. timidus could have 15 
maintained a large and continuous distribution south of the ice rim, and ice-age palaeontological 16 
remains of L. timidus have been found throughout Europe (e.g. Altuna 1970; Lopez-Martinez 1980; 17 
Woodman et al. 1997). Of course more recent expansions must also have occurred in the Northern 18 
Palaearctic that was covered with ice during the last glacial maximum. This would explain the low 19 
levels of allozyme and mitochondrial differentiation among European mountain hares found by 20 
Suchentrunk et al. (1999) and Ben Slimen et al. (2006) respectively. Moreover, Thulin et al. 21 
(1997a), given the close phylogenetic associations between Scandinavian and non-Scandinavian 22 
mtDNA haplotypes, suggested that recent colonization from multiple areas explains the origin of 23 
the Scandinavian mountain hares. On the other hand, fragmentation and shrinking of the species 24 
range during warmer times could have induced partial differentiation of isolated populations by 25 
drift, especially in enclaves such as mountain chains. We note that the Italian population (our largest 26 
sample from the Alps) is significantly differentiated from all other populations (Table 3), 27 
presumably as result of this effect. The Scottish population also appears significantly different from 28 
most others (Table 3). The Scottish haplotypes clearly appear separated from the others in the 29 
network from Fig. 2, except one (t30) that clusters with the Irish samples. However these sampled 30 
specimens were from the Isle of Mull, Western Scotland, where Irish hares have been introduced 31 
earlier (see Angerbjörn & Flux 1995). As has been observed before (Pierpaoli et al. 1999), the Irish 32 
haplotypes are more related to the continental ones than to those from Scotland. 33 
 34 
 35 
Multiple L. timidus mtDNA introgression in Iberia 36 
 37 
None of the L. timidus mtDNA haplotypes found in the Iberian Peninsula is found elsewhere. This 38 
translates into elevated pairwise ΦST between the introgressed L. granatensis and L. europaeus and 39 
the true L. timidus populations (Table 3). It is also striking that the nucleotide diversity among the 40 
L. timidus haplotypes in the Iberian Peninsula (17-19%) is comparable to that encountered over the 41 
whole range of the donor species, L. timidus (23%; Table 2). This high diversity mainly results from 42 
the introgressed haplotypes belonging to two divergent lineages (Fig. 2). These two observations 43 
together suggest that some of the variation seen in L. granatensis and L. europaeus pre-existed the 44 
introgression, which thus occurred through multiple hybridization events. They also suggest that 45 
some evolution occurred after the introgression, to produce the high differentiation from the donor 46 
populations. This rules out the possibility that the introgression in the Iberian Peninsula results from 47 
a single accidental hybridization, followed by an expansion of the introgressed haplotype. Evidence 48 
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for single hybridization would have strengthened the idea that the introgression was driven by 1 
selection given its extraordinary extent over half of the Peninsula and three different species as 2 
shown by our previous study (Melo-Ferreira et al. 2005). Thus, in a sense, the great diversity of the 3 
introgressed haplotypes renders a test of the selection hypothesis more delicate, and we must 4 
attempt to reconstruct more precisely the history of the introgression. 5 
 6 
Both in L. granatensis or in L. europaeus, the introgressed haplotypes belong to two groups (which 7 
we named A and B) that are closely related to the two major haplotype clusters found in the present 8 
Alpine population of L. timidus (Fig. 2). This indicates that the L. timidus population that 9 
bequeathed its mtDNA to the Iberian hares was related to the ones that retreated up the Alps when it 10 
became warmer, which makes geographical sense. 11 
Most of the introgressed haplotypes found in L. granatensis fall into the two compact and well 12 
separated groups A and B, which would mean that at least two main waves of L. timidus 13 
hybridization occurred in Iberia. We can thus try to date each introgression wave by assuming that it 14 
was followed by a simple demographic expansion. Both timidus-like groups in L. granatensis show 15 
signs of an increase in population size, and the mismatch distributions are compatible with recent 16 
expansions at 33 000 years BP for group A (95% CI 17 000 - 81 000 years) and 35 000 years BP for 17 
group B (95% CI 20 000 - 79 000 years), a time when L. timidus presence in Iberia has been 18 
documented by fossil records (Sesé & Sevilla 1996). The maximum extent of the glaciers in the 19 
Pyrenees during the last glacial period occurred more than 30 000 years BP (García-Ruiz et al. 20 
2003; Peña et al. 2004). A later advance coincides with the global last glacial maximum around 21 
20,000 years BP but was less extensive than the previous one (García-Ruiz et al. 2003). Thus the 22 
sudden demographic expansion detected in the introgressed groups of L. granatensis could 23 
correspond to the date when L. timidus reached its southernmost extension in the Northern Iberian 24 
Peninsula, before it retreated and gave ground to L. granatensis as the latter expanded from its 25 
Southern refuge with the climate getting milder. Currat and Excoffier (2004) have simulated such 26 
situations of competitive replacement of one species by the expansion of another, and found that 27 
even rare hybridization events could suffice to initiate extensive introgression of the invading 28 
species by genes of the disappearing species. Hybridization is likely to occur mostly when the 29 
invading species is still rare, and experiences some difficulties in finding conspecific mating 30 
partners, thus eventually raising the introgressed haplotypes to relatively high frequencies on the 31 
invasion front. Subsequent demographic expansion of these initially rare colonisers could further 32 
amplify this effect, potentially driving the introgressed genes to high frequencies ahead of the 33 
invasion front. This expansion process is likely to leave a trace on the coalescent. This scenario 34 
appears plausible to explain the introgression in L. granatensis, in which we observe these two 35 
predicted patterns, high frequency of introgressed haplotypes and a star-like coalescent. The fact 36 
that the introgressed haplotypes do not form monophyletic groups but are intermingled with 37 
lineages found in other distant populations shows that several independent hybridizations have 38 
occurred on this front of replacement of L. timidus by L. granatensis.  39 
 40 
Our data on L. europaeus seem to indicate a shared history of introgression with L. granatensis 41 
since representatives of the same lineages are found in both species. However, although it is quite 42 
clear that L. granatensis has always been in the Iberian Peninsula, to which it is endemic, the brown 43 
hare is thought to have arrived to Western Europe after the last glacial maximum, based on 44 
palaeontological and molecular data (Lopez-Martinez 1980; Pierpaoli et al. 1999). Did L. europaeus 45 
reach Iberia before L. timidus had disappeared, and replace it in the Pyrenean foothills, just as L. 46 
granatensis did further south? This is not certain. If alternatively we suppose that it arrived in Iberia 47 
after L. timidus went extinct there, then it must have hybridized with L. timidus before reaching 48 
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Iberia. This is conceivable since it must have cut across, or come close to, the range of L. timidus on 1 
its way. In Sweden, native L. timidus hybridize with introduced L. europaeus (Thulin et al. 1997b; 2 
Thulin & Tegelström 2002), and such crosses are also observed in captivity (Gustavsson & Sundt 3 
1965). In both cases mating occurs only in the direction required to account for the observed 4 
introgression, i.e. L. timidus females with L. europaeus males. However, recently, reciprocal 5 
transfer of mtDNA between these two species was described in Russia (Thulin et al. 2006) and the 6 
Alps (Suchentrunk et al. unpublished data). L. europaeus could also have borrowed its alien 7 
mtDNA from L. granatensis after or during its arrival in Iberia, and after the extinction of L. 8 
timidus. Two introgressed haplotypes are shared by these two Iberian species and suggest 9 
exchanges between them. Recently Estonba et al. (2006), using microsatellites, could not find any 10 
sign of hybridization between L. granatensis and L. europaeus. However, a reduced number of 11 
specimens (19 L. granatensis and 39 L. europaeus) was analysed in this work and the contact area 12 
was not comprehensively sampled. Further, our preliminary data also using microsatellites (to be 13 
published elsewhere) clearly demonstrate ongoing hybridization between these species in the 14 
Pyrenean foothills. The introgressed haplotypes of group A found in L. europaeus are in fact quite 15 
close to those in L. granatensis. However some of those in group B are not, thus making it more 16 
doubtful that L. granatensis be the sole source of L. timidus haplotypes in L. europaeus. 17 
 18 
 19 
The time-frame of the demographic events 20 
 21 
The estimates of time-frame that we propose for the demographic events rely on a number of 22 
approximations. A first and strong assumption is that mtDNA diversity mostly reflects purely 23 
demographic processes. However, a recent meta-analysis of animal mtDNA variation (Bazin et al. 24 
2006) has shown a lack of relationship between population size and nucleotide diversity for 25 
mtDNA, and given evidence that this is the result of recurrent selective sweeps on mtDNA, as 26 
predicted and modelled by Gillespie (2000, 2001). Our demographic inferences would clearly be 27 
invalidated if such events occurred in the recent history of L. timidus. A second approximation was 28 
to extrapolate by simple proportionality the rate of substitution of the Cytb, calibrated by Pierpaoli 29 
et al. (1999), to the CR. It is known that the CR has several mutational hotspots and thus mutations 30 
are more likely to be superimposed over log timescales (Sigurðardóttir et al. 2000). A third 31 
approximation was to take the rate of evolutionary substitution thus determined as an estimate of the 32 
mutation rate. It has been broadly observed that rate estimates obtained from population-level 33 
studies are generally higher that those obtained in phylogenetic (species-level) studies 34 
(Sigurðardóttir et al. 2000; Ho et al. 2005). Ho et al. (2005) show that the relationship between the 35 
age of calibration and the rate of change can be described by a vertically translated exponential 36 
decay curve, concluding that for timescales less than about 1-2 Myr the application of phylogenetic 37 
substitution rates lead to overestimate the divergence times.  If we take, for example, the average p-38 
distance between groups A and B in L. granatensis, 0.031, which using our rate means 196 000 39 
years of divergence, and apply the correction suggested by Ho et al. (2005) both for CR and Cytb, 40 
we obtain a 2 to 3-fold decrease in the divergence times (85 000 and 62 000 years respectively). Of 41 
course this is just indicative of the potential quantitative effect of this phenomenon, since the 42 
correction proposed by Ho et al. (2005) is based on primate data, but this suggests that both the L. 43 
timidus demographic expansion and the introgression in Iberia could be more recent than we 44 
estimated. In Iberia some fossil records of L. timidus are as recent as 17 000 to 10 000 years BP 45 
(Altuna 1970; Sesé 2005). However, these data are scarce and there is great uncertainty in 46 
distinguishing Lepus species on the basis of palaeontological records (see Sesé 2005). The fossil 47 
record is much better for other arctic species such as the grouse (Lagopus mutus), and a comparison 48 
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can help us reconstruct the history of L. timidus in Iberia. The rich grouse fossil record shows it was 1 
very abundant in the North of the Iberian Peninsula during the Upper Pleistocene and maintained 2 
populations there during the several glacial and interglacial periods (Tyrberg 1995). Interestingly, 3 
its present distribution worldwide is strikingly similar to that of L. timidus, the only major 4 
difference being that it is still present in Northern Iberia, in some parts of the Pyrenees. Therefore it 5 
is plausible that the contact and hybridization between L. granatensis and L. timidus remained until 6 
the Holocene. 7 
 8 
 9 
Conclusion 10 
 11 
We have clearly made significant progress in our understanding of the history of L. timidus and of 12 
the spectacular introgression of its mitochondria in the Iberian Peninsula in this study. The observed 13 
data are compatible with a scenario of competitive expansion and replacement of a cold adapted 14 
species by a better adapted species during a climatic change. The scenario is coherent in terms of 15 
geographical and time scales, at least in the case of L. granatensis. The extension of the same 16 
scenario to L. europaeus remains somewhat uncertain, but the fact that the phenomenon occurred in 17 
both species and to a certain extent also in L. castroviejoi (which we have not discussed in detail 18 
due to the limited sampling) should still invite us to consider the hypothesis that selection could 19 
have favoured this massive introgression. At the present time this idea appears difficult to test using 20 
solely the available data, because selection is expected to leave the same kind of trace on the 21 
coalescent as the demographic processes that we put forward and that appears plausible. If mtDNA 22 
introgression is neutral, one expects to observe the same consequences of these demographic 23 
processes on the coalescent of the aboriginal mtDNA lineages and the nuclear genes of the 24 
introgressed populations as was seen on the introgressed lineages. This will be the object of future 25 
work. 26 
 27 
 28 
 29 
 30 
 31 
 32 
 33 
 34 
 35 
 36 
 37 
 38 
 39 
 40 
 41 
 42 
 43 
 44 
 45 
 46 
 47 
 48 
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Figure Legends 13 
 14 
Fig. 1 – Species ranges of L. granatensis, L. europaeus, L. castroviejoi and L. timidus in Eurasia 15 
according to Flux & Angermann (1990) and Mitchell-Jones et al. (1999). Sample locations are 16 
shown (see also Table 1). 17 
 18 
Fig. 2 – Median-Joining network of the haplotypes found in L. timidus and introgressed in the 19 
Iberian hare species. Branches are generally proportional to the number of differences between 20 
haplotypes. Dots on branches indicate the mutational steps when more than 1. 21 
 22 
Fig. 3 – Observed (bars) and expected (solid lines) mismatch distributions of: a) L. timidus 23 
haplotypes; b) introgressed L. granatensis haplotypes; c) L. granatensis introgressed Group A 24 
haplotypes; d) L. granatensis introgressed Group B haplotypes; e) introgressed L. europaeus 25 
haplotypes; f) L. europaeus introgressed Group A haplotypes; g) L. europaeus introgressed Group 26 
B haplotypes. Values of the expansion parameters are shown when sudden population expansion 27 
assumption was not rejected. 28 
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Table 1: Sampled species, sample localities, their size (n) and the haplotypes detected in each 
locality. 
 
 
Species No. Code Locality n Haplotypes 
 Iberian Peninsula   
gra 1 IBGRA Iberian Peninsula 183 i1 to i67 
eur 2 IBEUR Iberian Peninsula 70 i9, i66, i68 to i76 
cas 3 IBCAS Cantabrian Mountains 1 i77 
 Northern Europe   

4 SWE Sweden 20 t1 to t20 
5 NOR Norway 3 t21 to t23 
6 FIN Finland 6 t24 to t29 
7 SCO Scotland 15 t30 to t36 
8 IRE Ireland 3 t37 to t39 
Alps     
9 FRA France 3 t40 to t42 
10 SWI Switzerland 3 t43, t44 
11 AUS Austria 3 t45 
12 ITA Italy 38 t40, t41, t46 to t63 
Eastern Europe   
13 URA Urals 3 t64 to t66 
14 RUS Western Russia 1 t67 
Eastern Russia   
15 AMU Amurskaya territory 4 t68 to t71 
16 KAM Kamchatka Peninsula 4 t72 to t74 
17 KOL Kolyma river basin 7 t75 to t81 
18 MAG Magdan city 5 t82 to t84 
19 PRI Primorve territory 3 t85 to t87 

tim 

20 YAK Yakutsk city 3 t88 to t90 
 
 
gra: L. granatensis; eur: L. europaeus; cas: L. castroviejoi; tim: L. timidus 
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Table 2: Estimates of sequence diversity, neutrality tests and growth rate in native L. timidus and in 
L. granatensis, L. europaeus and L. castroviejoi with L. timidus mtDNA haplotypes. 
 
 
Group ni nh h π (%) θ(s) per site (%) Tajima's D Fu's Fs Growth rate 
Iberian species 
gra, eur and cas 254 77 0.974 (0.003) 1.9 (0.9) 1.7 (0.4) - - - 
gra 183 67 0.978 (0.003) 1.8 (0.9) 1.7 (0.4) - - - 
eur 70 11 0.820 (0.026) 1.7 (0.8) 1.0 (0.3) - - - 
gra, lineage A 103 34 0.963 (0.006) 0.7 (0.4) 1.2 (0.3) -1.43 -7.95 152.9 (50.8)† 
gra, lineage B 80 33 0.946 (0.013) 0.6 (0.3) 1.0 (0.3) -1.30 -12.07* 232.2 (52.3)† 
eur, lineage A 37 4 0.673 (0.050) 0.1 (0.1) 0.1 (0.1) -0.05 0.44 611.4 (1035.2) 
eur, lineage B 33 7 0.587 (0.096) 0.6 (0.3) 0.5 (0.2) 0.31 4.71 -244.6 (108.9) 
Native mountain hare 
Total 124 90 0.991 (0.003) 2.3 (1.1) 2.9 (0.7) -0.70 -23.86* 203.5 (15.0)† 
Northern Europe 47 39 0.987 (0.009) 2.0 (1.0) 2.5 (0.7) -0.73 -11.29* 143.1 (22.0)† 
Alps 47 24 0.955 (0.015) 1.9 (1.0) 1.6 (0.5) 0.70 0.82 23.4 (30.8) 
Eastern Europe 4 4 1.000 (0.177) 1.6 (1.1) 1.6 (0.9) -0.17 0.95 288.6 (65.1)† 
Eastern Russia 26 23 0.991 (0.013) 2.1 (1.1) 2.3 (0.8) -0.32 -4.35 236.2 (27.2)† 
 
 
gra: L. granatensis; eur: L. europaeus; cas: L. castroviejoi; tim: L. timidus; ni = number of analysed 
individuals; nh = number of observed mtDNA haplotypes; h = haplotype diversity; π = nucleotide 
diversity; θ(s) , computed from the number of segregating sites (Tajima 1983). Standard deviations 
(SD) are shown in brackets. The significant values are indicated by an asterisk. † indicates g > 
3(SD). 
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Table 3: Pairwise ΦST values for the populations († indicates values not significantly different from 
zero). See Table 1 for population codes. Only populations with sample size >= 4 individuals are 
shown. 
 
 
  SWE FIN SCO ITA AMU KAM KOL MAG IBPGRA 
SWE          
FIN 0.052†         
SCO 0.337 0.312        
ITA 0.165 0.222 0.446       
AMU 0.094 -0.023† 0.307 0.232      
KAM 0.291 0.404 0.718 0.332 0.382†     
KOL 0.037† 0.020† 0.393 0.192 -0.024† 0.176†    
MAG 0.461 0.609 0.805 0.505 0.640 0.610 0.377   
IBPGRA 0.822 0.827 0.842 0.826 0.827 0.834 0.823 0.843  
IBPEUR 0.830 0.841 0.862 0.835 0.841 0.848 0.834 0.859 0.102 
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Appendix 16 
 17 
Haplotypes with frequencies higher than 1: 18 
Lepus granatensis: i1, 10; i2, 6; i4, 4; i5, 1; i6, 4; i7, 2; i8, 5; i9, 2; i10, 3; i11, 2; i12, 5; i15, 3; i16, 19 
6; i17, 2; i18, 6; i19, 3; i20, 9; i22, 3; i23, 3; i24, 2; i25, 2; i26, 5; i27, 2; i30, 3; i36, 2; i37, 7; i40, 3; 20 
i41, 3; i42, 4; i43, 3; i45, 11; i46, 2; i48, 3; i50, 2; i54, 4; i56, 2; i57, 12; i60, 2; i65, 2. 21 
Lepus europaeus: i9, 18; i68, 8; i69, 2; i70, 9; i72, 21; i73, 3; i74, 2; i75, 3; i76, 2;  22 
Lepus timidus: t30, 2; t31, 4; t35, 2; t36, 4; t40, 2; t41, 2; t43, 2; t45, 3; t46, 7; t47, 2; t48, 3; t51, 2; 23 
t52, 5; t53, 4; t54, 2 ; t72, 2 ; t82, 2; t83, 2. 24 




