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Ranking distributions of an ordinal variable

Nicolas Gravel1 · Brice Magdalou2 · Patrick Moyes3

Abstract
We establish an equivalence between three criteria for comparing distributions of an 
ordinal variable taking finitely many values. The first criterion is the possibility of 
going from one distribution to the other by a finite sequence of increments and/or 
Hammond transfers. The latter transfers are like the Pigou–Dalton ones, but with-out 
the requirement that the amount transferred be fixed. The second criterion is the 
unanimity of all comparisons of the distributions performed by a class of additively 
separable social evaluation functions. The third criterion is a new statistical test 
based on a weighted recursion of the cumulative distribution. We also identify an 
exact test for the possibility of going from one distribution to another by a finite 
sequence of Hammond transfers only. An illustration of the usefulness of our 
approach for evalu-ating distributions of self-reported happiness level is also 
provided.

Keywords Inequality · Ordinal · Transfers · Dominance · Distributions

JEL Classification D3 · D63

1 Introduction

When can we say that one distribution of a cardinally meaningful variable among a 
group of agents is more equal than another? One of the greatest achievements of the 
modern theory of inequality measurement is the demonstration, made by Hardy et al.
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(1952) and popularized among economists by Kolm (1969), Atkinson (1970), Das-
gupta et al. (1973), Sen (1973) and Fields and Fei (1978) that the following three
answers to this question are equivalent:

1. When one distribution has been obtained from the other by a finite sequence of
mean-preserving transfers from a poorer to a richer agent, namely Pigou–Dalton
transfers.

2. When one distribution would be considered better than the other by all utilitarian
planners who assume that agents convert income into utility by the same concave
function.

3. When the Lorenz curve associated with one distribution lies nowhere below, and
at least somewhere above, that of the other.

This equivalence result ties together three a priori distinct aspects of inequality
measurement. The first is an elementary transformation of the distribution that cap-
tures, in a crisp fashion, the nature of the equalization at stake. The second aspect 
is the ethical principle underlying utilitarianism or, more generally, additively sepa-
rable social evaluation. The third aspect is the empirically implementable criterion 
underlying Lorenz dominance.

The current paper addresses the very same question in the case where the dis-
tributed variable is measured in an ordinal fashion. The last twenty years or so have 
indeed witnessed an extensive use of data involving distributions of variables such as 
access to basic services, educational achievements, health outcomes or self-declared 
happiness—to mention just a few—whose units of measurement are not cardinally 
meaningful. When comparing distributions of such variables, most researchers sim-
ply ignore their ordinal nature and treat them, just like income, as magnitudes that can 
be ‘summed,’ or ‘transferred’ across agents. Examples include Castelló-Clement and 
Doménech (2002, 2008) (discussing inequality indices on human capital) and Pradhan 
et al. (2003) (decomposing Theil indices applied to the heights of children under 36 
month interpreted as a measure of health). The last 15 years, however, have seen the 
emergence of a literature [see, for example, Allison and Foster (2004), Abul-Naga and 
Yalcin (2008), Apouey (2007), Zheng (2008, 2011), Kobus and Milós (2012), Kobus 
(2015), Chakravarty and Maharaj (2015), Cowell and Flachaire (2017), Bosmans et al.
(2018) and Fleurbaey and Maniquet (2019)] that takes due account of the ordinal nature 
of the available information on the attributes that affect individuals well-being when 
appraising the distributions of those attributes that form a normative standpoint.

A difficulty raised by the normative evaluation of a distribution of an ordinal variable 
is that of defining an adequate notion of inequality reduction. What does it mean for 
an ordinal variable to be ‘more equally distributed’ than another ? It is no use invoking 
the notion of Pigou–Dalton transfer for answering that question. A Pigou–Dalton 
transfer is, in effect, the operation by which an agent transfers a given quantity of 
the distributed variable to another agent. This notion of ‘given quantity’ is obviously 
meaningless when applied to a variable that is only ordinally measured.

Some forty years ago, Hammond (1976) proposed, in the context of social choice 
theory, a minimal equity principle that is explicitly concerned with distributions involv-
ing an ordinally measurable variable. According to Hammond’s principle, a change 
in the distribution that reduces the gap between two agents endowed with different



values of the variable is inequality reducing irrespective of whether or not the gain
from the poor recipient is equal to the loss from the rich giver. The purely ordinal
nature of Hammond transfers qualifies them, in our view, as highly plausible instances
of clear inequality reduction.

The main contribution of this paper is to identify a normative dominance criterion
and a statistically implementable criterion that are each equivalent to the notion of
equalization underlying Hammond transfer. It does so in the specific but empirically
important case where the ordinal variable can take only a finite number of different
values corresponding to as many categories. Such variables are sometimes referred
to as ordered categorical. Our choice of the ordered categorical variable case has
specific implications for the Hammond equity principle. Indeed, as is well known in
social choice theory [see, for example,D’Aspremont andGevers (1977),D’Aspremont
(1985), Hammond (1979) and Sen (1977)], when the ordinal variable is allowed to
vary continuously, theHammond equity principle is closely related to the lexicographic
extension of the Maximin—or Leximin—ordering. Hammond (1979) has even shown
that the Leximin ordering is the only anonymous, Pareto-inclusive and transitive rank-
ing of all vectors in R

n that is strictly sensitive to Hammond transfers.1 As shown in
this paper, this tight connection between the Leximin ordering andHammond transfers
becomes significantly looser when attention is restricted to distributions of an ordered
categorical variable.

Concerning the class of normative principles in the spirit of answer 2. above, we
stick to the tradition of comparing distributions by means of an additively separable
social evaluation function. Each category of the variable is thus assigned a numerical
value by some function, and distributions are compared on the basis of the sum, taken
over all agents, of these values. While this normative approach can be considered
utilitarian (if the value assigned to the attribute is interpreted as ‘utility’), it does not
need to be. One could also interpret the function more generally as an ‘advantage
function’ reflecting the value assigned to each category by some ethical observer. If
the variable is considered to be good for the agent, the advantage function can be
assumed to be increasing with respect to the categories. We show in this paper that, in
order for a ranking of distributions based on an additively separable social evaluation
function to be sensitive to Hammond transfers, it is necessary and sufficient for the
advantage function to satisfy a somewhat strong concavity property. Specifically, any
increase in category obtained from some initial level must increase the advantagemore
than any increase obtained at some higher category, no matter what the latter increase
is. Because of this result, we consider the ranking of distributions provided by the
unanimity of all additively separable rankings based on an advantage function that is
strongly concave in this sense.

The first empirically implementable criterion that we consider is, to the best of
our knowledge, a new one. It can be viewed as the ordinal counterpart of the gen-
eralized Lorenz criterion (Kolm 1969; Shorrocks 1983) widely used for comparing
distributions of a cardinal variable. Its construction is based on a curve that we call
the H -curve, by reference to the Hammond principle of transfers to which it is closely
related. The H -curve, easy to construct, is defined as follows. It starts by assigning to

1 A nice discussion of this result is provided by Tungodden (2000).



the lowest category the fraction of the population that belongs to it. It then proceeds
recursively, for any higher category, by adding together the relative frequency of the
population belonging to this category and twice the value assigned by the curve to
the immediately preceding category. The criterion that we propose, and that we call
H -dominance, is for the dominating distribution to have an H -curve nowhere above
and somewhere below that of the dominated one. We demonstrate that having a dis-
tribution that H -dominates another is equivalent to the possibility of going from the
latter to the former by a finite sequence of Hammond transfers and/or increments in
the variable.We also show that H -dominance coincides with the unanimity of all addi-
tively separable aggregations of advantage functions that are increasing and strongly
concave in the manner described above.

H -dominance combines equity and efficiency considerations through, respectively,
Hammond transfers and increments. Hence, it does not identify ‘inequality reduction’
only. The standard way to capture the notion of ‘inequality reduction’ in the classical
cardinal setting is by applying the generalized Lorenz criterion to two distributions
with the same mean. It is indeed well known that the Lorenz domination of one distri-
bution over another is equivalent, when the two distributions have the same mean, to
the possibility of going from the dominated to the dominating distribution by a finite
sequence of Pigou–Dalton transfers. There is obviously nomeaningful analogue to the
‘mean’ in an ordinal setting. Nevertheless, we know from the theory of majorization
[see Marshall et al. (2011)] that Lorenz dominance between two distributions of a
cardinal variable with the same mean is no more than the intersection of two inde-
pendent majorization quasi-orderings that do not assume anything about the mean:
weak supermajorization (the generalized Lorenz criterion) and weak submajorization
(a criterion, dual to the previous one).

In this paper, we parallel the route taken in Marshall et al. (2011) by exploring
a criterion, dual to H -dominance, which is based on what we call the H̄ -curve of a
distribution. This curve is constructed just like the H -curve, except that it starts from
‘above’ rather than from ‘below,’ and iteratively cumulates the survival function rather
than the cumulative distribution function. We then establish that H̄ -dominance coin-
cides with the possibility of going from the dominated to the dominating distribution
by a finite sequence of either Hammond transfers and/or decrements. Just as with
the weak submajorization and weak supermajorization criteria in the cardinal setting,
we demonstrate that the ranking of ordinal distributions generated by the intersection
of the dominance criteria H and H̄ coincides with the possibility of going from the
dominated to the dominating distribution by a finite sequence of Hammond transfers
only.

Another result established in this paper concerns the behavior of the dominance
criteria H and H̄ when the finite grid used to define the categories is ‘refined.’ We 
show that the Leximin criterion (resp. anti-Leximax) can be viewed as the limit of 
H -dominance (resp. H̄ dominance) when the number of different categories of the 
variable becomes large. It follows that the intersection of the anti-Leximax and the 
Leximin criteria is the limit of the intersection of H -and H̄ -dominance criteria when 
the number of categories becomes large. This result echoes the analysis of Gravel 
et al. (2019) in a continuous setting which shows that having a vector in Rn that 
dominates another by both the Leximin and the anti-Leximax criteria is equivalent



to the possibility of going from the dominated to the dominating vector by a finite
sequence of Hammond transfers.

The plan of the rest of the paper is as follows. The next section introduces the
notation and presents the elementary transformations, the normative criteria and the
implementation criteria we consider when the attribute can take finitely many differ-
ent values. The main results identifying the elementary transformations underlying
the dominance criteria H and H̄ are stated and proved in the third section. The fourth
section compares the discrete setting and the classical social choice setting originally
used for the Hammond equity principle and examines the behavior of the implemen-
tation criteria when the number of categories is enlarged. The fifth section illustrates
the usefulness of the criteria for comparing distributions of self-reported life satis-
faction across countries based on the Gallup World Poll for 2014. The sixth section
concludes.

2 Three perspectives for comparing distributions of an ordinal
variable

2.1 Main notation

We consider distributions of an ordinal variable among a fixed number, say n, of
agents.2 We assume that there are k (with k ≥ 3) different values that the variable can
take which can be interpreted as categories, ordered from the worst to the best. We let
C = {1, . . . , k} denote the set of categories. The fact that the variable is ordinal means
that the integers 1, . . . , k assigned to the different categories have no significance
other than reflecting the ordering of the categories (from worst to best). Hence, any
comparative statement made on two distributions in which the variable is measured
by the list of numbers 1, . . . , k would be unaffected if this list was replaced by the
list f (1), . . . , f (k), generated by any strictly increasing real-valued function f . We
adopt throughout an anonymous perspective according to which ‘the identity of the
agents’ does not matter. This enables us to describe any distribution or society s as a
particular list (ns1, . . . , n

s
k) of k nonnegative integers satisfying

∑k
h=1 n

s
h = n, where

nsh denotes the number of agents in society s who are in category h.

2.2 Elementary transformations

The definition of these transformations lies at the very heart of the problem of com-
paring alternative distributions of the variable of interest. These transformations are
intended to capture in a crisp and concise fashion intuitions about the meaning of
‘equalizing’ or ‘gaining in efficiency’ (among others). In defining the transformations
in the present context, it is important to ensure that they are consistent with the ordinal
nature of the variable. In this paper, we discuss three such transformations.

2 As is standard in distributional analysis since at least Dalton (1920), distributions involving a varying
number of agents can be compared by means of the principle of population replication. (Replicating a
distribution any number of times is a matter of social indifference).



The first, called increment, is hardly new. It captures the idea—somewhat related to
efficiency—thatmoving an agent from a category to a better one is a good thing, ceteris
paribus. We actually formulate this principle in the following minimalist fashion.

Definition 1 (Increment) We say that society s has been obtained from society s′ by
means of an increment, if there exist j ∈ {1, . . . , k − 1} such that:

nsh = ns
′
h , ∀ h �= j, j + 1 ; (1)

nsj = ns
′
j − 1 ; nsj+1 = ns

′
j+1 + 1. (2)

In words, society s has been obtained from society s′ by an increment if the move from
s′ to s is the sole result of the move of one agent from a category j to the immediately
superior category ( j + 1). The second transformation, called decrement, can simply
be viewed as the reverse operation.

Definition 2 (Decrement) We say that society s has been obtained from society s′ by
means of a decrement if and only if society s′ has been obtained from s by an increment
in the sense of Definition 1 .

The third elementary transformation, hereafter referred asHammond transfer, is the
one underlying the equity principle put forward by Hammond (1976) some forty years
ago. This principle considers that a reduction in the quantity of the variable assigned
to one agent that is compensated by an increase in the quantity of the variable assigned
to another agent is a good thing if the loser is, after and before the reduction, better
off than the winner. The formal definition of such a transfer is as follows.

Definition 3 (Hammond transfer) We say that society s is obtained from society s′ by
means of a Hammond’ transfer, if there exist categories 1 ≤ g < i ≤ j < l ≤ k such
that:

nsh = ns
′
h , ∀ h �= g, i, j, l ; (3)

nsg = ns
′
g − 1 ; nsi = ns

′
i + 1 ; (4)

nsj = ns
′
j + 1; nsl = ns

′
l − 1. (5)

While a reduction in an agent’s endowment that is compensated by an increase in
that of another agent may be viewed as the result of a ‘transfer,’ it should be noted
that, unlike standard Pigou–Dalton transfers, the increment in the agent initially in
category g is not necessarily equal to the decrement in the agent initially in category l.
Since comparing the gains and losses of an ordinal attribute is meaningless, the Ham-
mond transfer can be viewed as the natural analogue, in the ordinal setting, of the
Pigou–Dalton transfer.3

3 Observe that a Pigou–Dalton transfer is nothing else than a Hammond transfer for which the indices g, i, 
j and l of Definition 3 satisfy the additional condition that (i −g) = (l − j). See Fishburn and Lavalle (1995) 
or Chakravarty and Zoli (2012) for analysis of Pigou–Dalton transfers in a discrete setting and Abul-Naga 
(2018) for an examination, in a similar setting, of the closely related notion of Lorenz maximality.



2.3 Normative evaluation

We assume that alternative societies are compared by some ethical observer who uses
an additively separable criterion. Such an ethical observer would consider that society
s is normatively better than society s′ if:

k∑

h=1

nshαh ≥
k∑

h=1

ns
′
h αh (6)

holds for some list of numbers (α1, . . . , αk) ∈ A ⊆ R
k , which can be interpreted as

numerical valuations of the corresponding categories. These valuations may reflect
subjective utility (if a utilitarian perspective is adopted), but a non-welfarist interpre-
tation is also possible, which can be axiomatically justified. [See, for example, Gravel
et al. (2011).]We emphasize that the normative valuations of the categories that appear
in Inequality (6) must be distinguished from the numbers assigned to the categories in
the empirical data from which the categories are constructed. The latter numbers are
meaningless. They only serve as indexing the categories from theworst to the best. The
normative valuations (α1, . . . , αk) that appear in Inequality (6) are not meaningless.
They reflect the normative values assigned to the categories by the ethical observer. As
we will see, these normative valuations will need to satisfy rather specific properties
in order to generate ethical evaluation that are consistent with Hammond transfers.

Some care must, however, be taken in avoiding that the normative evaluation exer-
cise underlying Inequality (6) is unduly sensitive to particular choices of numbers α j .
The typical way of achieving this in dominance analysis is to require Inequality (6) to
hold over a wide class of such lists (α1, . . . , αk) of k numbers.

2.4 Implementation criteria

Three implementation criteria are considered in this paper. The first one, called
first-order (stochastic) dominance, is standard. It compares the values taken by the
cumulative distribution function F(·; s) associated with every society s and defined,
for every category i ∈ C, by:

F(i; s) =
i∑

h=1

nsh/n. (7)

with the convention—if necessary—that F(0; s) = 0. A society s would then be
considered to dominate society s′ at the first order if the inequality F(i; s) ≤ F(i; s′)
is observed for every category i ∈ {1, . . . , k − 1}.

Hereafter, wewill also refer to the survival function F̄(·; s) associatedwith a society
s, which is defined by F̄(·; s) = 1− F(·, s) or, equivalently, by F̄(k; s) = 0 and by:

F̄(i; s) =
k∑

h=i+1

nsh/n (8)



for every i = 0, ..., k − 1. Hence, F̄(i; s) is the fraction of the population in s that is
in a strictly better category than i .

The second implementation criterion, called H-dominance, is based on the follow-
ing H -curve, defined for any society s and any i ∈ C, by:

H(i; s) =
i∑

h=1

(
2i−h

)
nsh /n . (9)

We say that society s H -dominates society s′ if and only if the inequality H(i; s) ≤
H(i; s′) holds for every category i ∈ {1, . . . , k − 1}. A few remarks can be made
about the H -curve. First, it verifies:

H(1; s) = F(1; s) = ns1/n (10)

and:

H(i; s) =
i−1∑

h=1

(
2i−h−1

)
F(h; s) + F(i; s), ∀i ∈ {2, . . . , k}. (11)

Observe that Expression (11) makes it clear that first-order dominance implies H -
dominance. We also note that the different values of H(·; s) are nested. For any i ∈
{2, . . . , k}, we have:

H(i; s) = 2 H(i − 1; s) + F(i; s) − F(i − 1; s) = 2 H(i − 1; s) + nsi /n.

(12)

Hence, by successive decomposition, we obtain, for any i ∈ {2, . . . , k} :

H(i; s) =
(
2 j
)
H(i − j; s) +

j−1∑

h=0

(
2h
)
nsi−h /n, ∀ j ∈ {1, . . . , i − 1}. (13)

In plain English, H(i; s) is a (specifically) weighted sum of the fractions of the pop-
ulation in s that are in weakly worse categories than i . The weight assigned to the
fraction of the population in category h (for h ≤ i) in that sum is 2i−h . Hence, the
weights are (somewhat strongly) decreasing with respect to the categories. A nice
feature of the H -curve is its recursive construction, described in Expressions (10)
and (12), which is quite similar to that underlying the cumulative distribution curve.
Indeed, for any i ∈ {2, . . . , k}, the cumulative distribution F(·; s) can be recursively
written as F(i; s) = F(i − 1; s) + nsi /n.

The third implementation criterion examined herein, called H̄ -dominance, is dual
to H -dominance. For any society s, the H̄ -curve is defined by H̄(k; s) = 0 and:

H̄(i; s) =
k∑

h=i+1

(
2h−i−1

)
nsh /n, ∀i ∈ {1, . . . , k − 1}. (14)



We say that society s H̄ -dominates society s′ if and only if the inequality H̄(i; s) ≤
H̄(i; s′) holds for every category i ∈ {1, . . . , k − 1}. We note that the H̄ -curve is
constructed under exactly the same recursive principle as the H -curve, but starting
with the highest category, and iterating with the survival function rather than with the
standard cumulative distribution function. Indeed, we have:

H̄(k − 1; s) = F̄(k − 1; s) = nsk /n (15)

and also:

H̄(i; s) =
k−1∑

h=i+1

(
2h−i−1

)
F̄(h; s) + F̄(i; s), ∀i ∈ {1, . . . , k − 2}. (16)

Moreover the different values of H̄(·; s) are nested so that, for any i ∈ {1, . . . , k − 2},
we have:

H̄(i; s) = 2 H̄(i + 1; s) + F̄(i; s) − F̄(i + 1; s) = 2 H̄(i + 1; s) + nsi+1 /n.

(17)

Expressions (15) and (17) for H̄(·; s) echo the recursive construction of F̄(·; s), recall-
ing that F̄(i; s) = F̄(i+1; s)+nsi+1 /n. Finally, just as in Expression (13), we obtain,
for any i ∈ {1, . . . , k − 2}:

H̄(i; s) =
(
2 j
)
H̄(i + j; s) +

j∑

h=1

(
2h−1

)
nsi+h/n, ∀ j ∈ {1, . . . , k − i − 1}.

(18)

As illustrated in Sect. 5, the H and H̄ curves are easy to use and draw. As will
also be seen in the next section, the two dominance criteria that they generate serve
as perfect diagnostic test of the possibility of moving from the dominated to the
dominating distribution by Hammond transfers and increments for H -dominance,
or Hammond transfers and decrements for H̄ -dominance. Moreover, the additional
criterion provided by the intersection of H̄ - and H -dominance happens to provide an
exact test of the possibility of going from the dominating to the dominated distribution
by a finite sequence Hammond transfers only.

We end this section by pointing out the links between some of these notions of
dominance. Specifically, we show that first-order dominance of a society s′ by a
society s entails the H -dominance of society s′ by s and the H̄ -dominance of society
s by s ′. All the proofs are relegated in ‘Appendix.’

Proposition 1 Suppose s and s′ are two societies such that F(i; s) ≤ F(i; s′) for all
categories i ∈ {1, . . . , k − 1} . Then, H(i; s) ≤ H(i; s′) and H̄(i; s′) ≤ H̄(i; s) for
all i ∈ {1, . . . , k − 1}.



3 Equivalence results

This section establishes a few theorems connecting, on the one hand, normative
comparison of two societies as per Condition (6) over specific classes of collec-
tions of normative valuations (α1, . . . , αk) ∈ R

k and, on the other hand, specific
implementable criteria as well as the possibility of going from the dominated to the
dominating distribution by appropriate elementary transformations.

We start with the notions of increment and decrement. Suppose that we are compar-
ing two societies on the basis of Inequality (6) for some list (α1, . . . , αk) of normative
valuations.What propertiesmust these normative valuations satisfy for such a compar-
ison to always consider an increment (decrement) as a social improvement? It should
come as no surprise that the answer to this question is that the k valuations must belong
to the following sets:

AF = {(α1, . . . , αk) ∈ R
k | α1 ≤ · · · ≤ αk} (for increments)

and

AF̄ = {(α1, . . . , αk) ∈ R
k | α1 ≥ · · · ≥ αk} (for decrements).

Set AF (resp. AF̄ ) is the largest set of valuations of the k categories for which the
ranking of two societies as per Inequality (6) will consider an increment (resp. a
decrement) as a normative improvement. The following two propositions establish
this formally.

Proposition 2 For any two societies s and s′, s being obtained from s′ by an increment
as per Definition 1 implies Inequality (6) for all lists of real numbers (α1, . . . , αk) ∈
A, if and only if A = AF .

Proposition 3 For any two societies s and s′, s being obtained from s′ by a decrement
as per Definition 2 implies Inequality (6) for all lists of real numbers (α1, . . . , αk) ∈
A, if and only if A = AF̄ .

We now use these propositions to establish the following two theorems, the proof
of which makes use of the following technical decomposition result.

Lemma 1 For any society s and any list of valuations (α1, . . . , αk) ∈ R
k , we have:

1

n

k∑

h=1

nsh αh = αk −
k−1∑

h=1

F(h; s) [αh+1 − αh
]
, (19)

or equivalently:

1

n

k∑

h=1

nsh αh = α1 +
k−1∑

h=1

F̄(h; s) [αh+1 − αh
]
. (20)



Moreover, for all t ∈ {2, . . . , k − 1}, we have:

1

n

k∑

h=1

nsh αh = αt −
t−1∑

h=1

F(h; s) [αh+1 − αh
]+

k−1∑

h=t

F̄(h; s) [αh+1 − αh
]
.

(21)

The first theorem, which links increment to dominance as per Inequality (6) for
all lists of valuations in AF , and to first-order dominance, has been known for quite
a long time. (See, for example, Lehmann (1955) or Quirk and Saposnik (1962).) We
nonetheless provide a proof of part of it for later use in the proof of the important
Theorem 3.

Theorem 1 For any different societies s and s′, the following three statements are
equivalent:

(a) s is obtained from s′ by means of a finite sequence of increments,
(b) Inequality (6) holds for all (α1, . . . , αk) ∈ AF ,
(c) F(h; s) ≤ F(h; s′) for every category h ∈ {1, . . . , k − 1}.
The second theorem is dual to the previous one. It links decrements to both normative
dominance for setAF̄ of valuations of the k categories and (anti) first-order dominance.
The formal statement of this theorem—whose proof, similar to that of Theorem 1, is
left to the reader—is as follows.

Theorem 2 For any different societies s and s′, the following three statements are
equivalent:

(a) s is obtained from s′ by means of a finite sequence of decrements,
(b) Inequality (6) holds for all (α1, . . . , αk) ∈ AF̄ ,
(c) F̄(h; s) ≤ F̄(h; s′) for every category h ∈ {1, . . . , k − 1}.

Wenow turn toHammond transfers. Parallelingwhat was established before Propo-
sitions 2 and 3, we first seek the conditions on the numerical normative valuations of
the categories under which a comparison of two societies based on Inequality (6)
would be sensitive to Hammond transfers (as per Definition 3). It turns out that the
conditions involve the following subset H of R

k :

H =
{
(α1, . . . , αk) ∈ R

k | (αi − αg) ≥ (αl − α j ), for 1 ≤ g < i ≤ j < l ≤ k
}
.

(22)

In words, H contains all lists of normative categories’ valuations that are ‘strongly
concave’ with respect to these categories in the sense that the utility gain frommoving
from a category to a better one is always larger when moving from categories in the
bottom part of the scale than when moving within the upper part of it. The following
proposition establishes that set H of normative categories’ valuations is the largest
one for which the ranking of two societies based on Inequality (6) would consider
favorably the notion of equalization underlying Hammond transfers.



Proposition 4 For any two societies s and s′, s being obtained from s′ by a Hammond
transfer as per Definition 3 implies Inequality (6) for all lists of normative valuations
(α1, . . . , αk) ∈ A, if and only if A = H.

The intuition that set H captures a strong concavity property is, perhaps, better
seen through the following proposition, which establishes that H contains all lists of
categories’ valuations that are ‘single-peaked’ in the sense of admitting a largest value
before which they are increasing (at a strongly decreasing rate) and after which they
are decreasing (at a strongly increasing rate).

Proposition 5 A list of numbers (α1, . . . , αk) belongs toH if and only if there exists a
t ∈ {1, . . . , k} such that (αi+1 − αi ) ≥ (αt − αi+1) for all i ∈ {1, . . . , t − 1} (if any)
and (αi ′+1 − αi ′) ≤ (αi ′ − αt ), for all i ′ ∈ {t, . . . , k − 1} (if any).
Two ‘peaks’ among those identified in Proposition 5 are of particular importance. One
is when t = k, so that numbers (α1, . . . , αk) are increasing (at a strongly decreasing
rate) with respect to the categories. In this case, the elements ofH are also inAF . We
denote byAH = H ∩ AF this set of increasing and strongly concave valuations of the
categories. We then have the following immediate (and therefore unproved) corollary
of Proposition 5 (applied to t = k).

Proposition 6 A list of numbers (α1, . . . , αk)belongs toAH if andonly if (αi+1−αi ) ≥
(αk − αi+1) holds for all i ∈ {1, . . . , k − 1}.
The other extreme of the possible peaks identified in Proposition 5 corresponds to the
case where t = 1, so that the normative valuations (α1, . . . , αk) are decreasing (at a
strongly increasing rate) with respect to the categories. In this case, the elements of
H are also in AF̄ . We denote by AH̄ = H∩AF̄ this subset of the set of all strongly
concave valuations of the categories that are also decreasing with respect to these
categories. We then have the following also immediate (and unproved) corollary of
Proposition 5 (applied to t = 1).

Proposition 7 A list of numbers (α1, . . . , αk) belongs to AH̄ , if and only if it satisfies
(αi+1 − αi ) ≤ (αi − α1) for all i ∈ {1, . . . , k − 1}.

We now establish what we view as the most important result of this paper: H -
dominance is the implementable test to determine whether one distribution is obtained
from another by a finite sequence of either Hammond transfers or increments. The
formal statement of this result is as follows.

Theorem 3 For any different societies s and s′, the following three statements are
equivalent:

(a) s is obtained from s′ by means of a finite sequence of Hammond transfers and/or
increments,

(b) Inequality (6) holds for all (α1, . . . , αk) ∈ AH ,
(c) H(h; s) ≤ H(h; s′) for every category h ∈ {1, . . . , k − 1}.



Although a detailed proof of the equivalence of the three statements of Theorem 3
is provided in ‘Appendix,’ the main arguments are worth presenting here. The fact that
Statement (a) implies Statement (b) is an immediate consequence of Propositions 2
and 4. These propositions actually imply that the ranking of two societies based on
Inequality (6) is sensitive to Hammond transfers (if the list of valuations (α1, . . . , αk)

belongs to H) and to increments (if (α1, . . . , αk) belongs to AF ). The proof that
Statement (b) implies Statement (c) amounts to verifying that any list of k real numbers
(αi

1, . . . , α
i
k) defined, for any i ∈ {1, . . . , k}, by:

αi
h = −(2i−h) for h = 1, . . . , i (23)

αi
h = 0 for h = i + 1, . . . , k (24)

belongs to setAH . Indeed, it is apparent fromExpression (9) that verifying the inequal-
ity:

k∑

j=1

nsjα
i
j ≥

k∑

j=1

ns
′
j α

i
j

for any list (αi
1, . . . , α

i
k) of real numbers defined as per (23) and (24) for any i is

equivalent to the H -dominance of s′ by s. Since Inequality (6) holds for all (α1, .., αk)

in set AH , it must hold in particular for those (αi
1, . . . , α

i
k) defined as per (23) and

(24) for any i . The most difficult proof, that Statement (c) implies Statement (a),
is obtained by first noting that if s first-order dominates s′, then the possibility of
going from s′ to s by a finite sequence of increments is an immediate consequence of
Theorem 1. The proof is then constructed under the assumption that s H -dominates
s′, but that no first-order dominance exists between the two societies. Hence, there
must be categories where the two cumulative distribution functions associated with
s and s′ ‘cross.’ In that case, we show that a Hammond transfer ‘above’ the first
category for which this crossing occurs can be made in such a way that the new society
thereby obtained remains H -dominated by s.We also show that thisHammond transfer
‘brings to naught’ at least one of the strict inequalities that distinguish F(·; s) from
F(·; s′). Hence, if the final distribution s is not reached after this first transfer, then the
same procedure can be applied again and again until s is reached. As the number of
inequalities that distinguish F(·, s) from F(·, s′) is finite, this proves the implication.

We now state a theorem that is the mirror image of Theorem 3, but with increments
replaced by decrements, setAH byAH̄ and H -dominance by H̄ -dominance. We omit
the proof of this theorem whose logic and construction follow those of Theorem 3.4

Theorem 4 For any different societies s and s′, the following three statements are
equivalent:

(a) s is obtained from s′ by means of a finite sequence of Hammond transfers and/or
decrements,

(b) Inequality (6) holds for all (α1, . . . , αk) ∈ AH̄ ,

4 The proof is, however, available upon request.



(c) H̄(h; s) ≤ H̄(h; s′) for every category h ∈ {1, . . . , k − 1}.
Theorem 3 (resp. 4) shows that H - (resp. H̄ -) dominance provides a perfect diag-

nostic tool to determine the possibility of going from one society to another by a finite
sequence of Hammond transfers and/or increments (resp. decrements). But what about
the possibility of going from one society to another by Hammond transfers only? It
follows clearly from Theorems 3 and 4 that where this possibility exists, the society
from which these transfers originate is dominated by the society to which these trans-
fers lead according to both H and H̄ -dominance. Hence, the possibility of going from
one society to another by a finite sequence of Hammond transfers is sufficient for the
domination of the former society by the latter as per both H and H̄ -dominance. The
next result establishes the possibility of going from one society to another by a finite
sequence of Hammond transfers also necessary for this domination.

Theorem 5 For any different societies s and s ′, the following three statements are
equivalent:

(a) s is obtained from s′ by means of a finite sequence of Hammond transfers,
(b) Inequality (6) holds for all (α1, . . . , αk) ∈ H,
(c) H(h, s) ≤ H(h, s′) and H̄(h, s) ≤ H̄(h, s′) for every category h ∈ {1, . . . , k −

1}.
The proof of this theorem, provided in ‘Appendix,’ is somewhat different from

that of Theorem 3. In effect, it is not constructive. It operates by first establishing an
equivalence betweenStatements (a) and (b) that uses abstract general results on the dual
theory for convex cones investigated byMuller and Scarsini (2012) for distributions of
continuous variables and developed byMagdalou (2018) for discrete distributions. The
second part of the proof establishes a more standard equivalence between Statements
(b) and (c). The proof of the latter equivalence makes some use of the following
technical result that extends one step further the decomposition (21) of Lemma 1.

Lemma 2 For any society s, any list of numbers (α1, . . . , αk) ∈ R
k and any t ∈

{2, . . . , k − 1}, we have:

1

n

k∑

h=1

nshαh = αt −
t−2∑

h=1

H(h; s)
⎡

⎣θh −
t−1∑

j=h+1

θ j

⎤

⎦− H(t − 1; s) θt−1

+H̄(t; s) θt +
k−1∑

h=t+1

H̄(h; s)
⎡

⎣θh −
h−1∑

j=t

θ j

⎤

⎦ (25)

where θh = (αh+1 − αh) for every h ∈ {1, . . . , k − 1}.

4 Sensitivity of the criteria to the grid of categories

As recognized in classical social choice theory [see, for example, Hammond 
(1976), Hammond (1976), Deschamps and Gevers (1978), D’Aspremont and Gevers



(1977) and Sen (1977)], Hammond transfers, when combined with the Pareto princi-
ple, are related to the lexicographic extension of theMaximin (or Leximin) criterion for
ranking various ordered lists of n numbers. For example, Theorem 4.17 in Blackorby
et al. (2005) (ch. 4; p. 123) states that the Leximin criterion is the only monotonically
increasing and anonymous ordering of R

n that is strictly sensitive to Hammond trans-
fers. In an analogous vein, Bosmans and Ooghe (2013) and Miyagishima (2010) have
shown that the Maximin criterion is the only continuous and Pareto-consistent reflex-
ive and transitive ranking of R

n that is weakly sensitive to Hammond transfers. Since
the H -dominance criterion coincides, by Theorem 3,with the possibility of going from
the dominated to the dominating society by a finite sequence of Hammond transfers
and/or increments—which are nothing more than anonymous Pareto improvements—
it is of interest to understand the connection between the H -dominance criterion and
the Leximin one. We start by defining the latter criterion in the current setting as
follows.

Definition 4 Given two societies s and s′, we say that s dominates s′ according to the
Leximin criterion, which we write s 
L s′, if and only if there exists i ∈ {1, . . . , k}
such that nsi < ns

′
i and nsh = ns

′
h for all integers h such that 1 ≤ h < i (if any).

It is clear and well known that the Leximin criterion provides a complete and
transitive ranking of all societies. By contrast, the H -dominance criterion does not
provide such a complete ranking of societies as it may leave two societies. Suppose,
for example, that there are three categories (k = 3) and three agents (n = 3) and
consider the societies s and s′ defined by:

ns1 = ns3 = 0, ns2 = 3

and by:

ns
′
1 = 1, ns2 = 0, ns3 = 2.

It is clear that s dominates s′ for the Leximin criterion. However, s and s′ cannot be
compared by the H -dominance criterion. The following proposition establishes that
the ranking of societies induced by H -dominance is a strict subrelation of 
L .

Proposition 8 Assume that n > 2. For any two societies s and s′, if H(h, s) ≤ H(h, s′)
holds for all categories h ∈ {1, . . . , k − 1}, then s 
L s′.

A key difference between our framework and that of classical social choice theory
is, of course, the discrete nature of the former. In order to connect the two frameworks,
it is useful to examine the sensitivity of the H -dominance criterion to the ‘level of
refinement’ of the finite grid over which it is defined. As it turns out, at a suitably high
level of grid refinement, the H -dominance criterion becomes indistinguishable from
the Leximin ordering. There are obviously many ways to refine a given finite grid. In
this section,we consider the following notion of t-refinement of grid C = {1, 2, . . . , k}.
Definition 5 The t-refinement of grid C = {1, 2, . . . , k} for t ∈ {0, 1, . . . }, is the set
C(t) defined by C(t) = {

i/2t : i = 1, 2, . . . , (2t )k
}
.



Notice that C(0) = C so that the initial grid corresponds to ‘zero’ refinement. The
grid obviously becomes finer as t increases, and it is clear that C(t) ⊂ C(t + 1) for all
t ∈ {0, 1, . . . }.

For any society s, and any real number x in the interval (0, k], let us denote by
ns(x) the (possibly null) number of agents in s who belong to category x . As society
s is defined on the initial grid C , clearly ns(x) = 0 for all x /∈ C and ns( j) = nsj
for any j ∈ C. Using these numbers ns(·), and applying the definition of the H -curve
provided by Eq. (9) to grid C(t), enables the t-refinement of the H-curve, denoted for
any society s by Ht (·; s), to be defined as follows:

Ht (0; s) = 0

and:

Ht
(

i

2t
; s
)

= 1

n

i∑

h=1

(
2i−h

)
ns
(
h

2t

)

, ∀i ∈ {1, 2, . . . , (2t )k}. (26)

We obviously define the notion of H -dominance of a society s′ by a society s on a t-
refined grid—referred to as Ht-dominance—as the fact that a society s has a Ht -curve
nowhere above and somewhere below that of a society s′. This definition produces a
sequence of dominance quasi-orderings indexed by t which, as it turns out, converges
to the complete ordering 
L when t becomes large.

The first notable effect of such a refinement of the grid is that it reduces the incom-
pleteness of the quasi-ordering of societies induced by the H -dominance criterion.
Specifically, the following proposition is proved in ‘Appendix.’

Proposition 9 For any two societies s and s′ and any t ∈ {0, 1, . . . }, if society s
Ht -dominates society s′ , then society s Ht+1-dominates society s′.

Hence, refining the grid increases the discriminating power of the Ht -dominance
criterion. The next theorem establishes that this increase eventually reaches a point
where the Ht -dominance criterion becomes complete and equivalent to the Leximin
ordering.

Theorem 6 For any two societies s and s′ and any initial grid C, the following two
statements are equivalent:

(a) There exists an integer t ∈ {0, 1, . . . } such that society s Ht -dominates society
s′.

(b) s 
L s′.

We conclude this section by pointing out a similar relationship between the H̄ -
dominance criterion and the Lexicographic extension of the Minimax criterion. The 
Minimax criterion compares alternative lists of n real numbers on the basis of their 
maximal elements: The lower the maximal element, the better the list. The lexico-
graphic extension of the Minimax criterion—anti-Leximax for short—extends the 
principle to the second maximal element, and to the third and so on when the maxi-
mal, the second maximal and so on of two lists are identical. While the Leximin and



the Maximin criteria can be seen as ethically favoring the ‘worst off,’ the Minimax or
the anti-Leximax criteria disfavor the ‘best off.’

The fact that H̄ -dominance converges to the anti-Leximax criterion and H -
dominance converges to the Leximin one when the grid becomes sufficiently fine
has obvious, but important, implication for the criterion defined in the preceding sub-
section as the intersection of the H - and the H̄ -dominance criteria. This intersection
of H - and H̄ -dominance must converge to the intersection of the Leximin and the
anti-Leximax criteria when the grid becomes sufficiently fine. This result is of course
in line with Gravel et al. (2019) who shows that the intersection of the Leximin and
the anti-Leximax criteria is the smallest transitive relation that is strictly sensitive to
Hammond transfers.

5 Empirical illustration

We now provide a brief illustration of our criteria for comparing distributions of indi-
viduals’ self-reported levels of life satisfaction—orhappiness—in a selectednumber of
countries in 2014. These distributions of self-reported life satisfactions feed the yearly
UN World Happiness Reports. (See https://worldhappiness.report.) The reported life
satisfaction variable results from the World Gallup Poll who asks to a sample of
respondents ‘to think of a ladder, with the best possible life for them being a 10, and
the worst possible life being a 0.’ A ladder like this is sometimes called a Cantril
ladder. The samples surveyed by the Gallup polls are representative, but somewhat
small (between 1000 and 1500 individuals per country). The data used herein are
taken from 2014 and have been obtained from the Pew Research Center (https://www.
pewresearch.org). We feel that reported happiness, even when subjectively located
on an ‘equally spaced’ Cantril ladder, conveys at best an ordinal information on the
underlying psychological trait that it measures, whatever this is. Like many readers of
the happiness measurement literature, we may actually be doubtful that the satisfac-
tion reported by an individual who locates herself (himself) on a Cantril is comparable
across individuals. But clearly, the Cantril ladder is. It is therefore of some interest to
look at the distributions of those individuals’ localizations and to compare them across
countries.

The distributions of self-reported life satisfaction (ranging from 0 to 10) in the
compared countries (we took the 29 most populated countries for which the data
were available in 2014) decreasingly ordered by the Leximin criterion are provided
in Table 1. Observe that the Leximin ranking of countries is quite different from that
based on the average value of the happiness score often discussed and commented in the
literature. It also differs from the ranking based on the median self-reported category
that is sometimes considered to be a natural measure of the ‘central tendency’ of the
distribution of an ordinal variable. [See, for example, Allison and Foster (2004).] To
some extent, the difference between the Leximin ranking of countries and those based
on the median or the average results from the ‘dictatorship of the worst-off’ effect.
Indeed, in many developing countries (and notably in Indonesia, Bangladesh, China,
India and Nigeria), there is nobody who declares a zero level of life satisfaction. These

https://worldhappiness.report
https://www.pewresearch.org
https://www.pewresearch.org
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countries are therefore ranked favorably by the Leximin criterion. The somewhat weak 
correlation between the ranking of countries based on pecuniary indicators (such as 
per capita GDP) and that based on reported life satisfaction is also worth noticing.

We now provide the rankings of distributions of these self-reported life satisfactions 
by means of Hasse diagrams based on the three criteria discussed herein. On every 
such a diagram, in which countries are again vertically ordered as per the Leximin 
criterion, dominance between two countries is indicated by a non-increasing sequence 
of lines and arcs connecting the dominating to the dominated country.

The (somewhat indecisive) Fig. 1 depicts the Hasse diagram of the first-order 
dominance ranking of the distributions of self-reported life satisfaction assessment. 
First-order dominance happens indeed to be mildly discriminant in the present case 
since it enables the conclusive ranking of only 148 pairs of countries out of the 406 
possible such pairs, a rate of comparability of about 36%. The ranking shows the strong 
position of Mexico (who dominates all countries but Indonesia, China and Vietnam) 
and the weak one of Egypt (dominated by all countries but Tanzania, Uganda, Kenya 
and Ukraine). Countries like Bangladesh and Indonesia, on the other hand, happen to 
be hardly comparable with others. Indonesia can only be connected with two countries 
that it dominates: Bangladesh and Egypt. Bangladesh, on the other hand, is dominated 
by both Indonesia and Mexico and dominates Egypt. It is not comparable with any 
other country.

Adding equality considerations in the form of Hammond transfers to the increments 
that underlie first-order dominance substantially increases substantially the fraction of 
conclusive rankings, as shown in Fig. 2. In effect, H -dominance enables the conclusive 
ranking of 329 pairs of countries (a bit more than 81% of all the possible pairs). 
Bangladesh and Indonesia—who could not be compared to most countries on the 
basis of first-order dominance—see their position greatly enhanced as a result of 
switching to H -dominance. Indonesia H -dominates indeed all countries but Mexico. 
As for Bangladesh, while it obviously remains dominated by Mexico and Indonesia, it 
dominates all other countries but Vietnam and the USA. It is noteworthy that these two 
countries are those who are the least comparable to others in terms of H -dominance. 
While their average (and median) level of reported life satisfaction is somewhat high 
(above 7), it happens to be somewhat unequally distributed.

Are there countries where reported life satisfaction is more equally distributed than 
in others in the sense of Hammond transfers only? It turns out that there are! Figure 3 
shows the Hasse diagram connecting the countries that can be compared with at least 
one other by the intersection of H and H̄ -dominance. Observe that only one country, 
Mexico, is left out of this diagram. This is not surprising since this country dominates 
almost all others by first-order dominance only. It can therefore not be compared by 
the intersection of H and H̄ -dominance. Not surprisingly, Indonesia and Bangladesh 
appear to be top performers in terms of happiness equalization. Pakistan, on the other 
hand, appears to be a country where happiness is unequally distributed as is, to a lesser 
extent, Spain.



Fig. 1 First-order dominance chart



Fig. 2 H-dominance chart



Fig. 3 Dominance ranking based on happiness-equality only



H̄

6 Conclusion

The paper has laid the groundwork for comparing distributions of an ordinal variable 
that takes finitely many values. The crux of our analysis is an easy-to-use criterion, 
called H -dominance. This criterion can be viewed as the analogue, for comparing 
distributions of an ordinally measurable attribute, of the generalized Lorenz curve used 
for comparing distributions of a cardinally measurable one. It is well known [see, for 
example, Shorrocks (1983)] that one distribution of a cardinally measurable attribute 
dominates another for the generalized Lorenz criterion if and only if it is possible 
to go from the dominated distribution to the dominating one by a finite sequence 
of increments in the attribute and/or Pigou–Dalton transfers. The main result of this 
paper—Theorem 3—establishes an analogous result for the H -dominance criterion. 
We show that the latter criterion ranks two distributions of an attribute in the same 
way as would going from the dominated to the dominating distribution by a finite 
sequence of increments and/or Hammond transfers. We also identified a dual H̄ -
dominance criterion that ranks two distributions in the same way as would going from 
the dominated to the dominating distribution by a finite sequence of decrements and/or 
Hammond transfers of the attribute. We also show that the intersection of the H - and 
the H̄ -dominance criteria coincides with the possibility of going from the dominated 
to the dominating distribution by a finite sequence of Hammond transfers only.

As illustrated with the distributions of self-declared indices of life assessment, 
the H -dominance criterion, and the Hammond principle of transfers that justifies it 
along with increments, appears to be a useful tool for comparing distributions of a 
variable that cannot be meaningfully transferred à la  Pigou–Dalton. Not only is the 
H -dominance criterion justified by clear and meaningful elementary transformations, 
it also has the advantage of being applicable to a much wider class of situations than 
the widely discussed criterion proposed by Allison and Foster (2004). The latter is 
limited to distributions that have the same median and is not associated with clear and 
meaningful elementary transformations. As shown with the empirical illustration, the 
criteria characterized in this paper are quite capable of comparing, even from the pure 
viewpoint of (Hammond-based) equality considerations, distributions with different 
medians.

We also emphasize that while we sought the criteria and transfers principles dis-
cussed here mainly so as to apply them to distributions of an ordinally measurable 
attribute, they can also be applied to a cardinally measurable attribute if the strong 
egalitarian flavor of Hammond transfers is deemed appropriate for that purpose.

Among the many possible extensions of the approach developed in this paper, two 
strike us as particularly important. First, since the H -criterion is incomplete in the 
discrete setting, it would be interesting to obtain simple inequality indices that are 
compatible with Hammond transfers and, therefore, with the intersection of H - and
-dominance. We believe that obtaining an axiomatic characterization of a family of 

such indices would not be too difficult. A good starting point would be to consider 
indices that can be written as per Expression (6) for some suitable choice of lists 
(α1, . . . , αk ) of real numbers. A second extension, obviously more difficult, would be 
to consider multidimensional attributes.



A Appendix: Proofs

A.1 Proposition 1

Let s and s′ be two societies such that F(i; s) ≤ F(i; s′)holds for all i ∈ {1, . . . , k−1}.
It follows that F(1; s) ≤ F(1; s′) and:

i−1∑

h=1

(
2i−h−1

)
F(h; s) + F(i; s) ≤

i−1∑

h=1

(
2i−h−1

)
F(h; s′) + F(i; s′),∀i ∈ {2, . . . , k}

so that, thanks to Expressions (10) and (11), H(i; s) ≤ H(i; s′) holds for all i ∈
{1, . . . , k − 1}. To establish the H̄ -dominance of s by s′, it suffices to notice that the
requirement F(i; s) ≤ F(i; s′) for all i ∈ {1, . . . , k−1} can alternatively be written as
F̄(i; s) ≥ F̄(i, s′) for all i ∈ {1, . . . , k − 1}. That implies F̄(k − 1; s) ≥ F̄(k − 1; s′)
and:

k−1∑

h=i+1

(
2h−i−1

)
F̄(h; s) + F̄(i; s)

≥
k−1∑

h=i+1

(
2h−i−1

)
F̄(h; s′) + F̄(i; s′), ∀i ∈ {1, . . . , k − 2}

so that, thanks to Expressions (15) and (16), H̄(i; s′) ≤ H(i; s) for all i ∈ {1, . . . , k−
1}.

A.2 Propositions 2 and 3

For Proposition 2, let s be a society obtained from s′ by an increment. By Definition 1,
there exists some j ∈ {1, . . . , k − 1} such that we have nsj = ns

′
j − 1 and nsj+1 =

ns
′
j+1 + 1 and that, for all h ∈ {1, . . . , k} such that h �= j, j + 1, we have nsh = ns

′
h . It

follows that:

k∑

h=1

nsh αh =
k∑

h=1

ns
′
h αh + (

α j+1 − α j
)
.

Thus, inequality
∑k

h=1 n
s
h αh ≥ ∑k

h=1 n
s′
h αh holds if and only if

(
α j+1 − α j

) ≥ 0.
As this inequality must hold for any j ∈ {1, . . . , k − 1} , this completes the proof of
Proposition 2. The argument for Proposition 3 is similar (with Definition 1 replaced
by Definition 2).

A.3 Lemma 1

Observe first that:



k∑

h=1

nsh αh =

⎧
⎪⎪⎨

⎪⎪⎩

ns1 α1
+ ns2 α2
+ · · ·
+ nsk αk,

(27)

or equivalently:

k∑

h=1

nsh αh =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ns1 α1
+ ns2 α1 + ns2 [α2 − α1]
+ ns3 α1 + ns3 [α2 − α1] + ns3 [α3 − α2]
+ · · ·
+ nsk α1 + nsk [α2 − α1] + nsk [α3 − α2] + · · · nsk

[
αk − αk−1

]
,

(28)

hence:

k∑

h=1

nsh αh =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

n α1
+ (n − ns1) [α2 − α1]
+ [

n − (ns1 + ns2)
]
[α3 − α2]

+ · · ·
+
[
n −∑k−1

h=1 n
s
h

] [
αk − αk−1

]
,

(29)

from which one obtains:

1

n

k∑

h=1

nsh αh = [α1 + (αk − α1)] −
k−1∑

h=1

F(h; s)[αh+1 − αh] (30)

= αk −
k−1∑

h=1

F(h; s)[αh+1 − αh], (31)

as required by Eq. (19). Now, by reconsidering Eq. (29) and recalling that F̄(i; s) =
1− F(i; s) =

(
n −∑i

h=1 n
s
h

)
/n for every i ∈ C, one immediately obtains Eq. (20).

We must now establish Eq. (21). For this sake, one can notice that, for any t ∈
{2, . . . , k − 1}, one has:

k∑

h=1

nsh αh =
t∑

h=1

nsh αh +
k∑

h=t+1

nsh αh . (32)

If one successively decomposes the two terms on the right hand of (32), one obtains
for the first one:

t∑

h=1

nsh αh =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ns1 α1
+ ns2 α1 + ns2 [α2 − α1]
+ ns3 α1 + ns3 [α2 − α1] + ns3 [α3 − α2]
+ · · ·
+ nst α1 + nst [α2 − α1] + nsi [α3 − α2] + · · · nst

[
αt − αt−1

]
,



One has therefore:

t∑

h=1

nsh αh =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(∑t
h=1 n

s
h

)
α1

+ [∑t
h=1 n

s
h − ns1

]
[α2 − α1]

+ [∑t
h=1 n

s
h − (ns1 + ns2)

]
[α3 − α2]

+ · · ·
+
[∑t

h=1 n
s
h −∑t−1

h=1 n
s
h

] [
αt − αt−1

]
,

or equivalently:

1

n

t∑

h=1

nsh αh =
(
1

n

t∑

h=1

nsh

)

αt −
t−1∑

h=1

F(h; s) [αh+1 − αh
]
. (33)

For the second term of (32), the successive decomposition yields:

k∑

h=t+1

nsh αh =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

nst+1 αt+1

+ nst+2 αt+1 + nst+2

[
αt+2 − αt+1

]

+ nst+3 αt+1 + nst+3

[
αt+2 − αt+1

]+ nst+3

[
αt+3 − αt+2

]

+ · · ·
+ nsk αt+1 + nsk

[
αt+2 − αt+1

]+ nsk
[
αt+3 − αt+2

]+ · · · nsk
[
αk − αk−1

]
,

This can be written as:

k∑

h=t+1

nsh αh =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(∑k
h=t+1 n

s
h

)
αt+1

+
(∑k

h=t+2 n
s
h

) [
αt+2 − αt+1

]

+
(∑k

h=t+3 n
s
h

) [
αt+3 − αt+2

]

+ · · ·
+ nsk

[
αk − αk−1

]
,

or equivalently:

1

n

k∑

h=t+1

nsh αh =
(
1

n

k∑

h=t+1

nsh

)

αt+1 +
k−1∑

h=t+1

F̄(h; s) [αh+1 − αh
]
. (34)

By summing Eqs. (33) and (34), one concludes that:

1

n

k∑

h=1

nsh αh =
(
1

n

t∑

h=1

nsh

)

αt +
(
1

n

k∑

h=t+1

nsh

)

αt+1

−
t−1∑

h=1

F(h; s) [αh+1 − αh
]+

k−1∑

h=t+1

F̄(h; s) [αh+1 − αh
]
. (35)



This equality can be further simplified, by observing that:

(
1

n

t∑

h=1

nsh

)

αt +
(
1

n

k∑

h=t+1

nsh

)

αt+1 = 1

n

(

n −
k∑

h=t+1

nsh

)

αt +
(
1

n

k∑

h=t+1

nsh

)

αt+1

= αt + F̄(t; s)[αt+1 − αt ]. (36)

Equation (21) is then obtained from the reintroduction of (36) into (35).

A.4 Theorem 1

The equivalence between Statements (a) and (c) of this theorem is well known in the
literature. We therefore only prove the equivalence between Statements (b) and (c).
Using Eq. (19) of Lemma 1, one has:

1

n

[
k∑

h=1

nsh αh −
k∑

h=1

ns
′
h αh

]

=
k−1∑

h=1

[
F(h; s′) − F(h; s)] [αh+1 − αh

]
. (37)

Hence, if F(h; s′) − F(h; s) ≥ 0 for every h ∈ C and (α1, . . . , αk) ∈ AF , then∑k
h=1 n

s
h αh ≥ ∑k

h=1 n
s′
h αh . To establish the converse implication, define, for every

i ∈ {1, . . . , k − 1}, the list of k numbers αi = (αi
1, . . . , α

i
k) to be such that αi

h = 0
for h = 1, . . . , i and αi

h = 1 for h ∈ {i + 1, . . . , k}. We note that αi ∈ AF for any
i ∈ {1, . . . , k − 1}. If Inequality (6) holds for all lists of numbers (α1, . . . , αk) ∈
AF , then one must have

∑k
h=1 n

s
h αi

h ≥ ∑k
h=1 n

s′
h αi

h for any i ∈ {1, . . . , k − 1} or,
equivalently:

(

n −
i∑

h=1

nsh

)

=
k∑

h=i+1

nsh ≥
k∑

h=i+1

ns
′
h =

(

n −
i∑

h=1

ns
′
h

)

, (38)

which, in turn, is equivalent to
∑i

h=1 n
s
h ≤ ∑i

h=1 n
s′
h , as required.

A.5 Proposition 4

Suppose that society s has been obtained from society s′ by means of a Hammond
transfer as per Definition 3. This means that there are categories 1 ≤ g < i ≤ j <

l ≤ k for which one has:

k∑

h=1

nsh αh =
k∑

h=1

αh n
s′
h − αg + αi + α j − αl . (39)

Hence, if Inequality (6) holds for s and s′, one have 
∑k

h 1 n
s
h αh − 

∑k
h 1 n

s
h
′ 
αh = 

(αi − αg) − (αl − α j ) ≥ 0 for all categories 1 ≤ g <
=
i ≤ j < l ≤ 

=
k, which is 

precisely the definition of the set H.



A.6 Proposition 5

Assume that the list of numbers (α1, . . . , αk) belongs to H and, therefore, satisfies
αi −αg ≥ αl−α j for all 1 ≤ g < i ≤ j < l ≤ k. This implies in particular that αi+1−
αi ≥ αk−αi+1 for any i ∈ {1, 2, . . . , k−2}. Let t = min{i = 1, . . . , k | αi+1−αi ≤ 0}
(using the convention that αk+1 = αk). Such a t clearly exists under this convention,
because k ∈ {i = 1, . . . , k | αi+1 − αi ≤ 0}. If t = k, then the fact that αi+1 − αi ≥
αk − αi+1 holds for any i ∈ {1, 2, . . . , k − 2} implies that αi+1 − αi ≥ αt − αi+1
for all i ∈ {1, 2, . . . , t − 1} and (trivially) that αi ′+1 − αi ′ ≤ αi ′ − αt holds for all
i ′ ∈ {t, . . . , k−1} = ∅. Notice that if t = k, then one has αi+1 −αi ≥ αk −αi+1 > 0
for any i ∈ {1, 2, . . . , k−2}. (The alphas are increasing with respect to the categories.)
If t = 1, then the set {i = 1, 2, . . . , t − 1} is empty so that one must simply verify
that αi ′+1 − αi ′ ≤ αi ′ − α1, for i ′ ∈ {1, . . . , k − 1}. But this results immediately from
the definition of t (if i ′ = 1) or from applying the requirement that αi −αg ≥ αl −α j

for all 1 ≤ g < i ≤ j < l ≤ k to the particular case where g = 1, i = j = i ′
> 1 and l = i ′ + 1 (otherwise). Notice that if t = 1, then one has by definition that
0 ≥ α2 − α1 ≥ α j − α j−1 for every j ∈ {3, . . . , k} so that the alphas are decreasing
with the categories. Assume now that t ∈ {2, . . . , k − 1}. We must check first that
αi+1 − αi ≥ αt − αi+1 for all i = 1, 2, . . . , t − 1 . The case where i = t − 1 is
proved by observing that, by definition of t , one has αt − αt−1 > 0 = αt − αt . The
case where i < t − 1 (if any) is proved by applying the statement αi − αg ≥ αl − α j

for all 1 ≤ g < i ≤ j < l ≤ k to the particular case where g = i ∈ {1, . . . , t − 2}
i = j = i + 1 and l = t . To check that the inequality αi ′+1 − αi ′ ≤ αi ′ − αt holds
for all i ′ ∈ {t ′, . . . , k − 1}, simply observe that, for i ′ = t , the inequality is obtained
from the very definition of t and, for i ′ > t , it results from applying the fact that
αi − αg ≥ αl − α j for all 1 ≤ g < i ≤ j < l ≤ k to the particular case where g = t ,
i = j = i ′ and l = i ′ + 1.
Conversely, consider any list (α1, . . . , αk) for which there exists a t ∈ {1, . . . , k} such
that:

αi+1 − αi ≥ αt − αi+1 (40)

holds for all i ∈ {1, 2, . . . , t − 1} (if any) and:

αi ′+1 − αi ′ ≤ αi ′ − αt (41)

holds for all i ′ ∈ {t, . . . , k−1} (if any). Notice that applying Inequality (40) to i = t−1
implies that αt − αt−1 ≥ αt − αt = 0. Combining this recursively with Inequality
(40) implies in turn that α2 − α1 ≥ α3 − α2 ≥ · · · ≥ αt − αt−1 ≥ 0 so that the list
of numbers (α1, . . . , αk) is increasing from 1 up to t . Similarly, applying Inequality
(41) to i ′ = t implies that αt+1 − αt ≤ αt − αt = 0. Combining this recursively with
Inequality (41) satisfied for all i ′ ∈ {t, . . . , k − 1} (if any) leads to the conclusion
that αk − αk−1 ≤ αk−1 − αk−2 ≤ · · · ≤ αt+1 − αt ≤ 0 so that the list of numbers
(α1, . . . , αk) is decreasing from t up to k. Consider then any four integers g, i , j and
l satisfying 1 ≤ g < i ≤ j < l ≤ k. Five cases need to be distinguished:



(i) g ≥ t ≥ 1, then one has:

αl − α j = (αl − αl−1) + (αl−1 − αl−2) + · · · + (α j+1 − α j )

≤ α j+1 − α j (because the αh are decreasing above t)

≤ α j − αt (by Inequality (41))

= α j − αi + αi − αg + αg − αt (for any integer g, i, j)

≤ αi − αg (because the αh are decreasing above t).

(ii) g < t ≤ i ≤ j < l ≤ k. Then one has:

αl − α j = (αl − αl−1) + (αl−1 − αl−2) + · · · + (α j+1 − α j )

≤ α j+1 − α j (because the αh are decreasing above t)

≤ α j − αt (by Inequality (41))

= α j − αi + αi − αg + αg − αt (for any integer g, i, j)

≤ αi − αg (because α j − αi ≤ 0 and αg − αt ≤ 0).

(iii) g < i < t ≤ j < l ≤ k. Then one has:

αl − α j = (αl − αl−1) + (αl−1 − αl−2) + · · · + (α j+1 − α j )

≤ α j+1 − α j (because the αh are decreasing above t)

≤ α j − αt (by Inequality (41))

≤ 0 (because the αh are decreasing above t)

≤ αi − αg (because the αh are increasing below t).

(iv) g < i ≤ j < t ≤ l ≤ k. Then one has:

αi − αg = (αi − αi−1) + (αi−1 − αi−2) + · · · + (αg+2 − αg+1) + (αg+1 − αg)

≥ αg+1 − αg (because the αh are increasing below t)

≥ αt − αg+1 (by Inequality (40))

= αt − αl + αl − α j + α j − αg+1 (for any g + 1 ≤ j < l ≤ k)

≥ αl − α j (because αt − αl ≥ 0 and α j − αg+1 ≥ 0).

(v) l < t ≤ k In this case, one has:

αi − αg = (αi − αi−1) + (αi−1 − αi−2) + · · · + (αg+2 − αg+1) + (αg+1 − αg)

≥ αg+1 − αg (because the αh are increasing below t)

≥ αt − αg+1 (by Inequality (40))

= αt − αl + αl − α j + α j − αg+1 (for any g + 1 ≤ j < l ≤ k)

≥ αl − α j (because the αh are increasing below t).



Hence, any list of k numbers (α1, . . . , αk) or which there exists a t ∈ {1, . . . , k} such
that Inequalities (41) and (40) belongs toH.

A.7 Theorem 3

A.7.1 Statement (a) implies Statement (b)

Suppose s has been obtained from s′ by means of an increment. It then follows
from Proposition 2 that Inequality (6) holds for all ordered lists of k real numbers
(α1, . . . , αk) in the set AF . This inequality holds therefore in particular for all such
lists that belong to AH ⊂ AF . If, on the other hand, s has been obtained from s′ by
means of a Hammond transfer, we know from Proposition 4 that Inequality (6) holds
for all ordered lists of k real numbers (α1, . . . , αk) in the setH and, therefore, for all
ordered list of k real numbers in the set AH ⊂ H. The implication then follows from
any finite repetition of these two elementary implications.

A.7.2 Statement (b) implies Statement (c)

Assume that Inequality (6) holds for all (α1, . . . , αk) ∈ AH. For any i ∈ {1, . . . , k},
define the ordered list of k numbers (αi

1, . . . , α
i
k) by:

αi
h = −(2i−h), for h ∈ {1, . . . , i}

αi
h = 0, for h ∈ {i + 1, . . . , k}.

Let us first show that the ordered list (αi
1, . . . , α

i
k) of real numbers thus defined belongs

to AH for every i ∈ C. Thanks to Proposition 6, this amounts to show that these real
numbers satisfy:

αi
h+1 − αi

h ≥ αi
k − αi

h+1 (42)

for every h ∈ {1, . . . , k − 1}. If h ≥ i + 1, then one has:

αi
h+1 − αi

h = 0 − 0 = αi
k − αi

h+1

so that Inequality (42) holds for that case. If h = i , then

αi
i+1 − αi

i = 0 + 20 > 0 − 0 = αi
k − αi

i+1

so that (42) holds also for that case. If finally h < i , then one has:

αi
h+1 − αi

h = −2i−h−1 + 2i−h

= 2i−h−1

= 0 − (−2i−h−1)

= αi
k − αi

h+1



so that (42) holds for this case as well. Since the ordered list (αi
1, . . . , α

i
k) of real

numbers belongs toAH for every i ∈ C, Inequality (6) must hold for any such ordered
list of numbers. Hence, for every i ∈ C, Inequality

∑k
h=1 n

s
h αi

h ≥ ∑k
h=1 n

s′
h αi

h is
equivalent to:

i∑

h=1

(2i−h)nsh ≤
i∑

h=1

(2i−h)ns
′
h

which is nothing else than the condition for H -dominance, as expressed by Eq. (9).

A.7.3 Statement (c) implies Statement (a)

Assume that H(i; s) ≤ H(i; s′) for all i ∈ {1, . . . , k−1}.We know fromProposition 1
that F(i; s) ≤ F(i; s′) for all i ∈ {1, . . . , k − 1} implies that H(i; s) ≤ H(i; s′) for
all i ∈ {1, 2, . . . , k − 1}. If it is the case that, for all i ∈ {1, . . . , k − 1}, one has
both H(i; s) ≤ H(i; s′) and F(i; s) ≤ F(i; s′), we conclude from Theorem 1 that
s can be obtained from s′ by means of a finite sequence of increments and the proof
is done. In the following, we therefore assume that H(i; s) ≤ H(i; s′) holds for all
i ∈ {1, 2, . . . , k − 1} but that there exists some g ∈ {1, . . . , k − 1} for which one has
F(g; s) − F(g; s′) > 0.
Step 1 Define then the index h by:

h = min
{
g | F(g; s) − F(g; s′) > 0

}
. (43)

Given that index h, one can also define the index l by:

l = min
{
g > h | F( j; s) − F( j; s ′) ≤ 0,∀ j ∈ {g, g + 1, ..., k}} . (44)

Such a l exists because F(k; s) − F(k; s′) = 0. Notice that, by definition of l, one
has:

F(l − 1; s) − F(l − 1; s′) > 0 and F(l; s) − F(l; s′) ≤ 0, (45)

Hence, one has [using the definition of F provided by (7)], that nsl < ns
′
l . We now

establish the existence of a unique i ∈ {1, . . . , h − 1} such that:

F(i; s) − F(i; s′) < 0 and F(g; s) − F(g, s′) = 0,∀g < i . (46)

Indeed, by assumption, we have H(g; s) ≤ H(g; s′) for all g = 1, 2, . . . , k − 1. It
follows that, thanks toExpression (10), Inequality H(1; s) ≤ H(1; s′) is equivalent to:

F(1; s) < F(1; s′), (47)

or:

F(1; s) = F(1; s′). (48)



If Case (47) holds, then the existence of some i ∈ {1, . . . , h−1} for which Expression
(46) holds is established (in that case, i = 1). Now assume that Case (48) holds.
Since H(2; s) ≤ H(2; s ′) also holds, we must have H(2; s) < H(2; s′) or H(2; s) =
H(2; s′) which is, respectively, equivalent—thanks to Expression (11)—to:

2F(1; s) + F(2; s) < 2F(1; s′) + F(2; s′), (49)

or:

2F(1; s) + F(2; s) = 2F(1; s′) + F(2; s′). (50)

Again, if we are in Case (49), we can conclude [since F(1; s) = F(1; s′)] that
F(2; s) < F(2; s′), which establishes the existence of some i ∈ {1, . . . , h − 1}
for which Expression (46) holds (in that case, i = 2). If we are in Case (50), we
iterate in the same fashion using the definition of H provided by (11). We notice that
the index i for which (46) holds must be strictly smaller than h, as defined in (43),
because assuming otherwise will contradict the fact that H(g; s) ≤ H(g; s ′) holds for
all g ∈ {1, . . . , k − 1}. We finally note that, because of the definition of F provided
by (7), the definition of the index i just provided entails that:

nsi < ns
′
i , and nsg = ns

′
g , ∀g ∈ {1, . . . , i − 1}. (51)

Step 2 Given the indices h and l as defined in (43) and (44), respectively, we now
proceed by defining a new society—s1 say—obtained from s′ bymeans of aHammond
transfer and such that H(g; s) ≤ H(g; s1) ≤ H(g; s′), for every g ∈ {1, . . . , k − 1},
with a strict inequality between s1 and s′ for at least one g. For this sake, we define
the numbers δ1, δ2 and δ by:

δ1 = n[F(i; s′) − F(i; s)], δ2 = n[F(l − 1; s) − F(l − 1; s′)] and δ = min(δ1, δ2).

(52)

We note that, by the very definition of the index i , one has δ1 = ns
′
i −nsi > 0.We notice

also that, thanks to (45) and the definition of the index l, one has 0 < δ2 ≤ ns
′
l − nsl .

Define then the society s1 by:

ns
1

g = ns
′
g , ∀ g �= i, i + 1, l ;

ns
1

i = ns
′
i − δ ; ns

1

i+1 = ns
′
i+1 + 2δ ; ns

1

l = ns
′
l − δ ; (53a)

It is clear that s1 has been obtained from s′ by δ Hammond transfers as per Definition 3
where the indices g, i, j and l of this definition are, here, i , i+1, i+1 and l, respectively.
After simple manipulation and the definition of s1 in (53), we observe that:



F(g; s1) − F(g; s′) =

⎧
⎪⎪⎨

⎪⎪⎩

0 for g ∈ {1, . . . , i − 1},
−δ/n for g = i,
+δ/n for g ∈ {i + 1, . . . , l − 1},
0 for g ∈ {l, . . . , k}.

Again, after simple manipulation, one deduces that:

H(g; s1) − H(g; s′) =

⎧
⎪⎪⎨

⎪⎪⎩

0 for g ∈ {1, . . . , i − 1},
−δ/n for g = i,
0 for g ∈ {i + 1, . . . , l − 1},
− (

2g−l
)
δ/n for g ∈ {l, . . . , k}.

(54)

Recalling that δ > 0 thanks to Expression (52), Expression (54) thus confirms that
H(g; s1) ≤ H(g; s′), for every g ∈ {1, . . . , k − 1}, with strict inequalities for g ∈
i ∪ {l, . . . , k}. Let us now verify that H(g; s) ≤ H(g; s1), for all g ∈ {1, . . . , k − 1}.
Because [H(·, s) − H(·, s1)] = [H(·, s) − H(·, s′)] − [H(·, s1) − H(·, s′)], we first
notice that Expression (54) entails that:

H(g, s) − H(g, s1) =

⎧
⎪⎪⎨

⎪⎪⎩

H(g, s) − H(g, s′) for g ∈ {1, . . . , i − 1},
H(g, s) − H(g, s′) + δ/n for g = i,
H(g, s) − H(g, s′) for g ∈ {i + 1, . . . , l − 1},
H(g, s) − H(g, s′) + (

2g−l
)
δ/n for g ∈ {l, . . . , k}.

(55)

The fact that H(g; s) − H(g, s′) ≤ 0 holds for all g ∈ {1, . . . , k − 1} entails that
H(g; s) − H(g; s1) ≤ 0 for all g ∈ {1, 2, . . . , i − 1} ∪ {i + 1, . . . , l − 1}. Consider
now the case g = i . Using (12), we know that:

H(i; s) − H(i, s′) = 2 [H(i − 1; s) − H(i − 1; s′)] + (nsi − ns
′
i )/n. (56)

By definition of i , one has F(g; s) − F(g; s′) = 0 for all g < i , so that the first term
in the right-hand side of Eq. (56) is 0. Recalling then from (52) that δ1 = ns

′
i −nsi > 0

and that δ = min(δ1, δ2), it follows that:

nsi − ns
′
i + δ ≤ 0.

By combining Eqs. (55) and (56), we conclude that:

H(i, s) − H(i, s1) = H(i, s) − H(i, s′) + δ/n = (nsi − ns
′
i + δ)/n ≤ 0. (57)

Consider finally the case where g ∈ {l, . . . , k − 1}. By using Eq. (12), and recalling
that δ2 = n[F(l − 1; s) − F(l − 1; s′)], one has:

H(l; s) − H(l; s′) = 2[H(l − 1; s) − H(l − 1; s′)] + [F(l; s) − F(l; s′)] − δ2 /n.

(58)



Combining (58) with the last line of (55), and remembering that δ ≤ δ2, one obtains:

H(l, s) − H(l, s1) = 2[(H(l − 1; s) − H(l − 1; s′)] + [F(l; s) − F(l; s′)]
+(δ − δ2)/n ≤ 0. (59)

Finally, using successive applications of Eq. (12), one obtains, for any g ∈ {l +
1, . . . , k − 1}:

H(g; s) − H(g; s′) = (
2g−l+1)[H(l − 1; s) − H(l − 1; s′)]

+
g−1∑

j=l

(
2g− j−1)[F( j; s) − F( j; s′)]

+F(g; s) − F(g; s′) − (
2g−l)δ2/n

≤ 0

since F( j; s) ≤ F( j; s′) for all j ∈ {l, l + 1, ..., k}. Combined with the last line of
(55) and the fact that δ ≤ δ2, this completes the proof that H(g; s) − H(g; s1) ≤ 0
for all g ∈ {1, . . . , k − 1}. Hence, we have found a society s1 obtained from society
s′ by means of a non-trivial Hammond transfers that is H -dominated by s.
Step 3 We now show that, in moving from s′ to s, one has ‘brought to naught’ at
least one of the differences

∣
∣F(h; s) − F(h; s′)

∣
∣ that distinguishes s from s′. That

is to say, we establish the existence of some g ∈ {1, . . . , k − 1} for which one has∣
∣F(g; s) − F(g; s1)∣∣ = 0 and

∣
∣F(g; s) − F(g; s′)

∣
∣ > 0. This is easily seen from the

fact that, in the construction of s1, one has either:

δ = δ1 = ns
′
i − nsi . (60)

or:

δ = δ2 = n[F(l − 1; s) − F(l − 1; s′)]. (61)

If we are in Case (60), one has F(i; s) − F(i; s1) = 0 and F(i; s) − F(i; s′) < 0, by
definition of the index i . If we are in Case (61), then F(l − 1; s) − F(l − 1; s1) =
F(l−1, s)−F(l−1, s′)+δ2/n = 0, and F(l−1, s)−F(l−1, s′) > 0, by definition
of the index l.

Now, if s = s1, then the proof is complete. If s is distinct from s1 but s first-order
dominates s1, then we conclude that society s can be obtained from society s′ by
means of a finite sequence of one Hammond transfer and a collection of increments
(using Theorem 1). If s is distinct from s1 and s does not first-order dominate s1, then
we can find three categories i, h and l just as in the preceding steps and construct
a new distribution—say s2—that can be obtained from distribution s1 by means of
an (integer number of) Hammond transfers and that is H -dominated by s and so on.
More generally, after a finite number—t say—of iterations, we will find a distribution
st obtained from s′ by means of t Hammond transfers such that s H -dominates st .
In that case, we will have either s = st or s first-order dominates st . Since there



are finitely many differences of the kind
∣
∣F(g; s) − F(g; s′)

∣
∣ to bring to naught, the

number t must be finite. This completes the proof.

A.8 Lemma 2

Step 1 Using (19) in Lemma 1, we have, for any society s:

1

n

k∑

h=1

nsh αh = αk −
k−1∑

h=1

F(h; s) [αh+1 − αh
]
. (62)

In order to simplify the notation we let, in this proof, Fh = F(h; s) and θh = (αh+1 −
αh) so that:

1

n

k∑

i=1

nsh αh = αk −
k−1∑

h=1

Fh θh . (63)

Letting ϑh = θh −∑k−1
j=h+1 θ j for all h ∈ {1, . . . , k−2} and ϑk−1 = θk−1, we rewrite

each term of the sum
∑k−1

h=1 Fh θh in (63) as follows:
For h = 1:

F1 θ1 = F1

⎡

⎣θ1 −
k−1∑

j=2

θ j

⎤

⎦+ F1 θ2 + F1 θ3 + · · · + F1 θk−1

= F1

⎡

⎣θ1 −
k−1∑

j=2

θ j

⎤

⎦+ F1

⎡

⎣θ2 −
k−1∑

j=3

θ j

⎤

⎦+ 2 F1 θ3 + · · · + 2 F1 θk−1

= F1

⎡

⎣θ1 −
k−1∑

j=2

θ j

⎤

⎦+ F1

⎡

⎣θ2 −
k−1∑

j=3

θ j

⎤

⎦+ 2 F1

⎡

⎣θ3 −
k−1∑

j=4

θ j

⎤

⎦+ · · · + 4 F1 θk−1

= · · ·
= F1 ϑ1 + F1 ϑ2 + 2 F1 ϑ3 + (

22
)
F1 ϑ4 + · · · +

(
2k−3

)
F1 ϑk−1. (64)

For h = 2:

F2 θ2 = F2

⎡

⎣θ2 −
k−1∑

j=3

θ j

⎤

⎦+ F2 θ3 + F2 θ4 + · · · + F2 θk−1

= F2

⎡

⎣θ2 −
k−1∑

j=3

θ j

⎤

⎦+ F2

⎡

⎣θ3 −
k−1∑

j=4

θ j

⎤

⎦+ 2 F2 θ4 + · · · + 2 F2 θk−1

= F2

⎡

⎣θ2 −
k−1∑

j=3

θ j

⎤

⎦+ F2

⎡

⎣θ3 −
k−1∑

j=4

θ j

⎤

⎦+ 2 F2

⎡

⎣θ4 −
k−1∑

j=5

θ j

⎤

⎦+ · · · + 4 F2 θk−1



= · · ·
= F2 ϑ2 + F2 ϑ3 + 2 F2 ϑ4 + (

22
)
F2 ϑ5 + · · · +

(
2k−4

)
F2 ϑk−1. (65)

More generally, we have Fk−1 θk−1 = Fk−1 ϑk−1 and:

Fh θh = Fh ϑh + Fh

k−1∑

j=i+1

(
2 j−i−1

)
ϑ j , ∀i ∈ {1, . . . , k − 2}. (66)

Hence, one can write:

F1 θ1 = F1 ϑ1 + F1 ϑ2 + 2 F1 ϑ3 + (
22
)
F1 ϑ4 + ··· + (

2k−4
)
F1 ϑk−2 + (

2k−3
)
F1 ϑk−1

F2 θ2 = F2 ϑ2 + F2 ϑ3 + 2 F2 ϑ4 + ··· + (
2k−5

)
F2 ϑk−2 + (

2k−4
)
F2 ϑk−1

F3 θ3 = F3 ϑ3 + F3 ϑ4 + ··· + (
2k−6

)
F3 ϑk−2 + (

2k−5
)
F3 ϑk−1

F4 θ4 = + F4 ϑ4 + ··· + (
2k−7

)
F4 ϑk−2 + (

2k−6
)
F4 ϑk−1···

Fk−2 θk−2 = Fk−2 ϑk−2 + Fk−2 ϑk−1
Fk−1 θk−1 = Fk−1 ϑk−1

(67)

Remembering that ϑk−1 = θk−1 and ϑh = θh −∑k−1
j=h+1 θ j for all h ∈ {1, . . . , k−2},

one can use Eq. (11) and sum vertically the decomposition (67) to obtain:

k−1∑

h=1

Fh θh =
k−2∑

h=1

H(h; s)
⎡

⎣θh −
k−1∑

j=h+1

θ j

⎤

⎦+ H(k − 1; s) θk−1. (68)

Since 1
n

∑k
h=1 n

s
h αh = αk −∑k−1

h=1 Fh θh , one obtains finally:

1

n

k∑

h=1

nsh αh = αk −
k−2∑

h=1

H(h; s)
⎡

⎣θh −
k−1∑

j=h+1

θ j

⎤

⎦− H(k − 1; s)θk−1. (69)

Step 2. In a symmetric fashion, one obtains from Eq. (20) in Lemma 1:

1

n

k∑

h=1

nsh αh = α1 +
k−1∑

h=1

F̄(h; s) [αh+1 − αh
]
. (70)

Letting F̄h = F̄(h; s) and θh = (αh+1 − αh), we have:

1

n

k∑

h=1

nsh αh = α1 +
k−1∑

h=1

F̄h θh . (71)

Now, letting β1 = θ1 and βh = (θh −∑h−1
j=1 θ j ) for all h ∈ {2, . . . , k−1}, we propose

to rewrite
∑k−1

h=1 F̄h θh in (71) as follows:



For h = k − 1:

F̄k−1 θk−1 = F̄k−1

⎡

⎣θk−1 −
k−2∑

j=1

θ j

⎤

⎦+ F̄k−1 θk−2 + F̄k−1 θk−3 + · · · + F̄k−1 θ1

= F̄k−1

⎡

⎣θk−1 −
k−2∑

j=1

θ j

⎤

⎦+ F̄k−1

⎡

⎣θk−2 −
k−3∑

j=1

θ j

⎤

⎦

+2 F̄k−1 θk−3 + · · · + 2 F̄k−1 θ1

= F̄k−1

⎡

⎣θk−1 −
k−2∑

j=1

θ j

⎤

⎦+ F̄k−1

⎡

⎣θk−2 −
k−3∑

j=1

θ j

⎤

⎦

+2 F̄k−1

⎡

⎣θk−3 −
k−4∑

j=1

θ j

⎤

⎦+ · · · + 4 F̄k−1 θ1

= · · ·
= F̄k−1 βk−1 + F̄k−1 βk−2 + 2 F̄k−1 βk−3

+
(
22
)
F̄k−1 βk−4 + · · · +

(
2k−3

)
F̄k−1 β1. (72)

For h = k − 2:

F̄k−2 θk−2 = F̄k−2

⎡

⎣θk−2 −
k−3∑

j=1

θ j

⎤

⎦+ F̄k−2 θk−3 + F̄k−2 θk−4 + · · · + F̄k−2 θ1

= F̄k−2

⎡

⎣θk−2 −
k−3∑

j=1

θ j

⎤

⎦+ F̄k−2

⎡

⎣θk−3 −
k−4∑

j=1

θ j

⎤

⎦

+2 F̄k−2 θk−4 + · · · + 2 F̄k−2 θ1

= F̄k−2

⎡

⎣θk−2 −
k−3∑

j=1

θ j

⎤

⎦+ F̄k−2

⎡

⎣θk−3 −
k−4∑

j=1

θ j

⎤

⎦

+2 F̄k−2

⎡

⎣θk−4 −
k−5∑

j=1

θ j

⎤

⎦+ · · · + 4 F̄k−2 θ1

= · · ·
= F̄k−2 βk−2 + F̄k−2 βk−3 + 2 F̄k−2 βk−4

+
(
22
)
F̄k−2 βk−5 + · · · +

(
2k−4

)
F̄k−2 β1. (73)

More generally, one has F̄1 θ1 = F̄1 β1 and:

F̄h θh = F̄h βh + F̄h

h−1∑

j=1

(
2h− j−1

)
β j , ∀h ∈ {2, . . . , k − 1}. (74)



Hence, one can conclude that:

F̄k−1 θk−1 = F̄k−1 βk−1 + F̄k−1 βk−2 + 2 F̄k−1 βk−3 + (
22
)
F̄k−1 βk−4 + ··· + (

2k−4
)
F̄k−1 β2 + (

2k−3
)
F̄k−1 β1

F̄k−2 θk−2 = F̄k−2 βk−2 + F̄k−2 βk−3 + 2 F̄k−2 βk−4 + ··· + (
2k−5

)
F̄k−2 β2 + (

2k−4
)
F̄k−2 β1

F̄k−3 θk−3 = F̄k−3 βk−3 + F̄k−3 βk−4 + ··· + (
2k−6

)
F̄k−3 β2 + (

2k−5
)
F̄k−3 β1

F̄k−4 θk−4 = + F̄k−4 βk−4 + ··· + (
2k−7

)
F̄k−4 β2 + (

2k−6
)
F̄k−4 β1···

F̄2 θ2 = F̄2 β2 + F̄2 β1

F̄1 θ1 = F̄1 β1

(75)

Using (16), and summing vertically the previous equation, one obtains:

k−1∑

h=1

F̄h θh = H̄(1; s) θ1 +
k−1∑

h=2

H̄(h; s)
⎡

⎣θh −
h−1∑

j=1

θ j

⎤

⎦ . (76)

Since 1
n

∑k
h=1 n

s
h αh = α1 +∑k−1

h=1 F̄h θh , we finally obtain:

1

n

k∑

h=1

nsh αh = α1 + H̄(1; s) θ1 +
k−1∑

h=2

H̄(h; s)
⎡

⎣θh −
h−1∑

j=1

θ j

⎤

⎦ . (77)

Step 3. From Eq. (21) in Lemma 1, one has, for any t ∈ {2, . . . , k − 1}:

1

n

k∑

h=1

nsh αh = αt −
t−1∑

h=1

Fhθh +
k−1∑

h=t

F̄hθh . (78)

By using Eq. (68) and replacing category k by category t in this equation, we obtain:

t−1∑

h=1

Fhθh =
t−2∑

h=1

H(h; s)
⎡

⎣θh −
t−1∑

j=h+1

θ j

⎤

⎦+ H(t − 1; s) θt−1. (79)

Symmetrically, replacing category 1 by category t in Eq. (76) enables one to write::

k−1∑

h=t

F̄h θh = H̄(t; s) θt +
k−1∑

h=t+1

H̄(h; s)
⎡

⎣θh −
h−1∑

j=t

θ j

⎤

⎦ . (80)

Combining Eqs. (78), (79) and (80), one gets finally the desired result.

A.9 Theorem 5

A.9.1 Statement (a) implies Statement (b)

That results immediately from the definition of the set H (using Proposition 4).



A.9.2 Statement (b) implies Statement (a)

The proof builds on the dual theory for convex cones, recently investigated by Muller
and Scarsini (2012), but adapted to our fully discrete framework. An more detailed
description of the proof—stated here for completeness—can be found in Magdalou
(2018). (See in particular the discussion on p. 17.) First, we define by E the set of all
lists α = (α1, . . . , αk) ∈ R

k which assign numerical evaluations αh to each category
h ∈ C, and such that there exist i, j ∈ C with αi �= α j . We then denote by M the
set of all lists m = (m1, . . . ,mk) ∈ R

k such that
∑k

h=1mh = 0. For all m ∈ M and
all α ∈ E , we define the bilinear mapping b(·, ·) by b(m, α) = −∑k

h=1mhαh . The
pair (M, E) is thus, under the bilinear mapping b(·, ·), a dual pair, what we denote
(M, E; b). The dual pair (M, E; b) is moreover strict and is the sense that for each
0 �= m ∈ M, there is an α ∈ E with b(m, α) �= 0 and, for each 0 �= α ∈ E , there is a
m ∈ M with b(m, α) �= 0.

We then recall that any two societies s and s′ are characterized by the lists ns =
(ns1, . . . , n

s
k) and ns

′ = (ns
′
1 , . . . , ns

′
k ), respectively, which indicate the number of

agents in each category in C, and such that
∑k

h=1 n
s
h = ∑k

h=1 n
s′
h = n. We define by

T ⊂ M the set of all lists (ns − ns
′
) such that s can be obtained from s′ by means of

only one Hammond transfer.
Consider now two particular societies s and s′ and assume that Statement (b) is true,

so that inequality
∑k

h=1 n
s
hαh ≥ ∑k

h=1 n
s′
h αh , or equivalently b(ns−ns

′
, α) ≤ 0, holds

for all lists α ∈ H. We have to establish that s can be obtained from s′ by means of a
finite sequence of Hammond transfers. Consider first the set of all constant listsα ∈ H,
such that αi+1 = αi for all i ∈ {1, . . . , k − 1}. The only information provided by this
subclass of H is that

∑k
h=1 n

s
h = ∑k

h=1 n
s′
h , which is actually known by assumption.

Hence, we restrict attention to the set H̃ of all lists α ∈ H, such that there exist i, j ∈ C
with αi �= α j .

The polar cone of H̃ ⊂ E under the duality (M, E; b), which is denoted by H̃◦, is
defined by:

H̃◦ =
{
m ∈ M | b(m, α) ≤ 0, ∀α ∈ H̃

}
. (81)

By definition, (ns − ns
′
) ∈ M. Because we have assumed that b(ns − ns

′
, α) ≤ 0

holds for all α ∈ H, this also holds for all α ∈ H̃ (as H̃ ⊂ H). Hence, we also have
(ns − ns

′
) ∈ H̃◦. Now, the polar cone of the set T ⊂ M under the duality (M, E; b),

which is denoted by T ◦, is defined by:

T ◦ = {α ∈ E | b(m, α) ≤ 0, ∀m ∈ T } . (82)

Thanks to Proposition 4, one immediately deduces that H̃ = T ◦. Because (ns −ns
′
) ∈

H̃◦ and H̃ = T ◦, one concludes that (ns −ns
′
) ∈ T ◦◦, where T ◦◦ is the bipolar cone

of T .
We then let Do(T ) = co{λm | λ ∈ R+, m ∈ T }, where co indicates the convex hull of 
the set. As T is a discrete and finite set, Do(T ) is closed. By applying the bipolar



theorem, one deduces thatT ◦◦ = Do(T ). One also remarks that, by definition,T ⊂ Z
k

where Z is the set of integers. Thus, (ns − ns
′
) ∈ Do(T )∩Z

k . By applying the notion
of minimal Hilbert basis [see Magdalou (2018)], it can be shown that, actually, there
exists a positive and finite integer t such that (ns −ns

′
) = ∑t

h=1 λhmh , wheremh ∈ T
and λh ∈ Z+—with Z+ the nonnegative orthant of Z—for all h ∈ {1, . . . , t}. That
concludes the proof.

A.9.3 Statement (b) implies Statement (c)

Assume that the inequality
∑k

h=1 n
s
hαh ≥ ∑k

h=1 n
s′
h αh holds for all lists (α1, . . . , αk) ∈

H. This implies in particular that the inequality holds for all (α1, . . . , αk) ∈ AH (as
AH ⊂ H). It then follows from Theorem 3 that society s H -dominates society s′.
Similarly, the fact that the inequality

∑k
h=1 n

s
hαh ≥ ∑k

h=1 n
s′
h αh holds for all lists

(α1, . . . , αk) ∈ H implies in particular that it holds for all (α1, . . . , αk) ∈ AH̄ (as
AH̄ ⊂ H). Hence, thanks to Theorem 4, society s H -dominates society s′ . We
conclude that society s both H -dominates and H̄ -dominates society s′.

A.9.4 Statement (c) implies Statement (b)

Assume that H(h, s) ≤ H(h, s′) and H̄(h, s) ≤ H̄(h, s′) for every category
h ∈ {1, . . . , k − 1}. Thanks to Proposition 5, we have to show that

∑k
h=1 n

s
hαh ≥

∑k
h=1 n

s′
h αh must hold as well for (α1, . . . , αk) ∈ R

k for which there exists an integer
t ∈ {1, . . . , k} such that (αi+1 − αi ) ≥ (αt − αi+1), for all i ∈ {1, . . . , t − 1} (if
any) and (αi ′+1 − αi ′) ≤ (αi ′ − αt ), for all i ′ ∈ {t, . . . , k − 1} (again if this set is
non-empty).

Consider that such a t exists. If t = k, we know from Proposition 6 that
(α1, . . . , αk) ∈ AH . Because by assumption H(h, s) ≤ H(h, s′) for every category
h ∈ {1, . . . , k − 1} we know, thanks to Theorem 3, that Inequality

∑k
h=1 n

s
hαh ≥

∑k
h=1 n

s′
h αh holds. Symmetrically, if t = 1, it follows from Proposition 7 that

(α1, . . . , αk) ∈ AH̄ . Because by assumption H̄(h, s) ≤ H̄(h, s′) for every cate-
gory h ∈ {1, . . . , k−1}we know, thanks to Theorem 4, that Inequality

∑k
h=1 n

s
hαh ≥

∑k
h=1 n

s′
h αh holds again. Finally, consider that t ∈ {2, . . . , k − 1}. By definition of t ,

we have:

θt−1 ≥ 0, and

⎡

⎣θh −
t−1∑

j=h+1

θ j

⎤

⎦ ≥ 0,∀h ∈ {1, . . . , t − 2} ; (83)

θt ≤ 0, and

⎡

⎣θh −
h−1∑

j=t

θ j

⎤

⎦ ≤ 0,∀h ∈ {t + 1, . . . , k − 1}. (84)

Letting θh = (αh+1 − αh) for every h ∈ {1, . . . , k − 1} we know, thanks to the
decomposition result of Lemma 2, that:



1

n

[
k∑

h=1

nsh αh −
k∑

h=1

ns
′
h αh

]

=
t−2∑

h=1

[
H(h; s′) − H(h; s)]

⎡

⎣θh −
t−1∑

j=h+1

θ j

⎤

⎦

+ [
H(t − 1; s′) − H(t − 1; s)] θt−1

+ [
H̄(t; s) − H̄(t; s ′)

]
θt

+
k−1∑

h=t+1

[
H̄(h; s) − H̄(h; s′)

]
⎡

⎣θh −
h−1∑

j=t

θ j

⎤

⎦ .

(85)

Since by assumption H(h, s) ≤ H(h, s′) and H̄(h, s) ≤ H̄(h, s′) for every category
h ∈ {1, . . . , k − 1}, combining this information with Eqs. (83) and (84) leads to the
required conclusion that Expression (85) is nonnegative.

A.10 Proposition 8

Assume that s and s′ are two distinct societies for which H(h, s) ≤ H(h, s′) holds
for all categories h ∈ {1, . . . , k − 1}. It follows from the recursive definition of the
H -curve provided by Eqs. (10) and (12) that the smallest i ∈ {1, 2, . . . , k} for which
nsi �= ns

′
i is such that nsi < ns

′
i . But this implies that s 
L s′.

A.11 Proposition 9

Step 1. As a preliminary of the proof, we first notice that, for any society s defined
on the grid C(t), one has, for any t ∈ {0, 1, . . . }:

ns
(
2 i + 1

2t+1

)

= 0, (86)

and:

Ht+1
(
2 i + 1

2t+1 ; s
)

= 2 Ht+1
(

i

2t
; s
)

. (87)

Indeed, we notice that:

C(t) =
{
1

2t
,
2

2t
, . . . ,

(2t )k

2t

}

, and C(t + 1) =
{

1

2t+1 ,
2

2t+1 , . . . ,
(2t+1)k

2t+1

}

,

(88)

and that:

i

2t
= 2 i

2t+1 , ∀ ∈ {1, 2, . . . , (2t )k}. (89)



Equation (86) then follows from the fact that ns(x) = 0 for all x /∈ C(t), while
Eq. (87) is an immediate consequence of Eqs. (86) and (89) and the fact that, thanks
to Expression (12), one has:

Ht+1
(
2 i + 1

2t+1 ; s
)

= 2 Ht+1
(

2 i

2t+1 ; s
)

+ ns
(
2 i + 1

2t+1

)

/n, ∀i ∈ {0, 1, . . . , (2t )k − 1}.

Step 2. We now observe that, for any society s:

Ht+1
(

i

2t
; s
)

=
i−1∑

h=1

(
22(i−h)−1

)
Ht

(
h

2t
; s
)

+ Ht
(

i

2t
; s
)

, ∀i ∈ {0, 1, . . . , (2t )k}.

(90)

Indeed, from Eq. (26) applied to the grid C(t + 1), we know that:

Ht+1 (x; s) = 1

n

j∑

h=1

(
2 j−h

)
ns
(

h

2t+1

)

,

for any x ∈ C(t + 1), and j = x2t+1 . Applying this to x = i/2t for any i ∈
{1, . . . , (2t )k} yields:

Ht+1
(

i

2t
; s
)

= 1

n

2i∑

h=1

(
22i−h

)
ns
(

h

2t+1

)

. (91)

Expression (90) can then be obtained from (91) and the following observations (made
only for i = 1, 2, 3, but easily extendable to any other i). For i = 1, 2, 3, and recalling

that ns
(

h
2t+1

)
= 0 as soon as h is uneven, Expression (91) writes indeed as:

Ht+1
(
1

2t
; s
)

= 1

n

[

2ns
(

1

2t+1

)

+ ns
(

2

2t+1

)]

= 1

n
ns
(

2

2t+1

)

= 1

n
ns
(
1

2t

)

, (92)

Ht+1
(
2

2t
; s
)

= 1

n

[

8ns
(

1

2t+1

)

+ 4ns
(

2

2t+1

)

+ 2ns
(

3

2t+1

)

+ ns
(

4

2t+1

)]

= 1

n

[

4ns
(

2

2t+1

)

+ ns
(

4

2t+1

)]

= 1

n

[

4ns
(
1

2t

)

+ ns
(
2

2t

)]

, (93)

Ht+1
(
3

2t
; s
)

= 1

n

[

32ns
(

1

2t+1

)

+ 16ns
(

2

2t+1

)

+ 8ns
(

3

2t+1

)



+ 4ns
(

4

2t+1

)

+ 2ns
(

5

2t+1

)

+ ns
(

6

2t+1

)]

= 1

n

[

16ns
(

2

2t+1

)

+ 4ns
(

4

2t+1

)

+ ns
(

6

2t+1

)]

= 1

n

[

16ns
(
1

2t

)

+ 4ns
(
2

2t

)

+ ns
(
3

2t

)]

. (94)

Now, applying Eq. (26) to the grid C(t), one has:

Ht
(
1

2t
; s
)

= 1

n
ns
(
1

2t

)

(95)

Ht
(
2

2t
; s
)

= 1

n

[

2ns
(
1

2t

)

+ ns
(
2

2t

)]

(96)

Ht
(
3

2t
; s
)

= 1

n

[

4ns
(
1

2t

)

+ 2ns
(
2

2t

)

+ ns
(
3

2t

)]

, (97)

so that Expression (90) for i = 1, 2, 3 results from combining (92)–(94) with (95)–
(97).
Step 3. In order to prove the result, consider two societies s and s′ and assume that
society s Ht dominates society s′ so that:

Ht
(

i

2t
; s
)

≤ Ht
(

i

2t
; s′
)

holds for all i ∈ {1, . . . , (2t )k}. Taking any such i , one has in particular:

Ht
(
h

2t
; s
)

≤ Ht
(
h

2t
; s′
)

for any h ∈ {1, . . . , i}. Hence, using (90):

Ht+1
(

i

2t
; s
)

≤ Ht+1
(

i

2t
; s′
)

for all i ∈ {1, . . . , (2t )k} which implies, thanks to (87), that society s H t+1-dominates 
society s′.

A.12 Theorem 6

The proof that Statement (a) of the theorem implies Statement (b) is established in 
Proposition 8 (by using t = 0). In order to prove the converse implication, consider two 
arbitrary societies s and s′ such that s 
L s′. Because of Proposition 9, we only have 
to show that there exists a nonnegative integer t for which s H t -dominates s′ holds or, 
equivalently thanks to Theorem 3, that s can be obtained from s′ by means of a finite



sequence of increments and/or Hammond transfers on the grid C(t). Since s 
L s′,
there is byDefinition 4 an index i ∈ {1, 2, . . . , k} such that nsh = ns(h) = ns

′
(h) = ns

′
h

for all h ∈ {1, 2, . . . , i−1} and nsi = ns(i) < ns
′
(i) = ns

′
i . Given this index i , consider

a society s′′ such that:

ns
′′
h = nsh, ∀h ∈ {1, . . . , i} ;

ns
′′
i+1 =

k∑

h=i+1

nsh ;

ns
′′
h = 0, ∀h ∈ {i + 2, . . . , k}.

Notice that
∑k

h=1 n
s′′
h = n and that F(i; s) ≤ F(i; s′′) for all i ∈ {1, . . . , k} so that,

by Theorem (1), s can be obtained from s′′ bymeans of a finite sequence of increments.
We also observe that:

ns
′
h = ns

′′
h , ∀h ∈ {1, . . . , i − 1} ; (98)

ns
′
i − ns

′′
i > 0 ; ns

′
i+1 − ns

′′
i+1 < 0 ; (99)

ns
′
h ≥ ns

′′
h = 0, ∀h ∈ {i + 2, . . . , k}. (100)

Define, for any h ∈ C, the number δh by:

δh = ns
′
h − ns

′′
h .

It is clear that δh so defined is an integer (which may be positive or negative). Since∑k
h=i n

s′
h = ∑k

h=i n
s′′
h , one can write:

δi + δi+1 = −
k∑

h=i+2

δh . (101)

Since, by (100), δh ≥ 0 for all h ∈ {i + 2, . . . , k}, one observes that δi + δi+1 ≤ 0.
We consider two cases.
Case 1: δi +δi+1 = 0. In that case, we conclude from (101) that

∑k
h=i+2 δh = 0 and,

thanks to (100), that ns
′
h = ns

′′
h for all h ∈ {i +2, . . . , k} . Hence, one has ns′h = ns

′′
h for

all h = {1, . . . , i − 1}∩ {i + 2, . . . , k} and δi = ns
′
i − ns

′′
i = ns

′′
i+1 − ns

′
i+1 > 0. Hence,

s′′ can be obtained from s′ by means of δi increments from i to i + 1. We conclude
that s first-order dominates s′′, but also s′′ first-order dominates s′, which implies that
s Ht -dominates s′ for all t ∈ {0, 1, . . . }.
Case 2: δi + δi+1 < 0. In that case, we deduce from (101) that there is an h ∈
{i + 2, . . . , k} such that δh > 0 or, equivalently, that ns

′
h > ns

′′
h = 0. From (98)–

(100), one immediately observes that s′′ can be obtained from s′ by means of δi
increments from category i to category i + 1, and (−δi+1) decrements (δi+1 is a
negative integer), from each category h > i + 1 for which ns

′
h > 0 to category

i + 1. However, more decrements than increments are required ((−δi+1) > δi , so



that increments and decrements cannot be matched one by one to produce Hammond
transfers—and only Hammond transfers—in order to obtain, on the initial grid C,
s′′ from s′. Yet, we can match the increments with the decrements if an appropriate
refinement of the grid between i and i + 1 can be performed. First, staying on the
initial grid C, and starting from s′, we can combine (δi −1) increments (from i to i +1)
to the same number of decrements starting from one or several categories h above i +1
and bringing the agents from these categories to i + 1 . This generates immediately
(δi − 1) Hammond transfers. In order to complete the move from s′ to s by means of 
Hammond transfers, we need to match the last [δi − (δi − 1)] =  1 increment from i to
i + 1 with the remaining [(−δi+1) − (δi − 1)] > 1 decrements that are required from 
each category h > i + 1 where the number of agents remains strictly positive to the
category i + 1. Whatever is the number [(−δi+1) − (δi − 1)] > 1, it is clearly possible 
to refine the grid C in such a way as to obtain at least [(−δi+1) − (δi − 1)] adjacent
categories between i and i + 1. Once this refinement is obtained, one can then proceed
in decomposing the last increment from i to i + 1 into  [(−δi+1) − (δi − 1)] “small”
increments between adjacent intermediate categories, each of which being matched
with a decrement from each category h > i + 1 for which there is a strictly positive
number of agents. Hence, it is possible to achieve s′′ from s by using Hammond
transfers only (provided that a suitable refinement of the grid be performed). Hence,
there exists a nonnegative integer t such that s′′ can be obtained from s′ by means of
exactly (−δi+1) Hammond transfers on the grid C(t) (recalling that a transformation
on the grid C is also a transformation on the grid C(t)). We then conclude that society
s first-order dominates society s′′ which in turn H t -dominates society s′ and this
completes the proof.

References

Abul-Naga, R.: Measurement of inequality with finite number of pay states: the majorization set and its
applications. Econ. Theory 65, 99–123 (2018). https://doi.org/10.1007/s00199-016-1011-2

Abul-Naga, R., Yalcin, T.: Inequality measurement for ordered response health data. J. Health Econ. 27,
1614–1625 (2008)

Allison, R.A., Foster, J.E.: Measuring health inequality using qualitative data. J. Health Econ. 23, 505–524
(2004)

Apouey, B.: Measuring health polarization with self-assessed health data. Health Econ. 16, 875–894 (2007) 
Atkinson, A.B.: On the measurement of inequality. J. Econ. Theory 2, 244–263 (1970)
Blackorby, C., Bossert, W., Donaldson, D.: Population Issues in Social Choice Theory. Cambridge Univer-

sity Press, Cambridge (2005)
Bosmans, K., Ooghe, E.: A characterization of maximin. Econ. Theory Bull. 1, 151–156 (2013) 
Bosmans, K., Lauwers, L., Ooghe, E.: Prioritarian poverty comparisons with cardinal and ordinal attributes.

Scand. J. Econ. 120, 925–942 (2018)
Castelló-Clement, A., Doménech, R.: Human capital inequality and economic growth: some new evidence.

Econ. J. 112, C187–C200 (2002)
Castelló-Clement, A., Doménech, R.: Human capital inequality, life expectancy and economic growth.

Econ. J. 118, 653–677 (2008)
Chakravarty, S., Maharaj, B.: Generalized Gini polarization indices for an ordinal dimension of human

well-being. Int. J. Econ. Theory 11, 231–246 (2015)
Chakravarty, S., Zoli, C.: Stochastic dominance relations for integer variables. J. Econ. Theory 147, 1331–

1341 (2012)
Cowell, F.A., Flachaire, E.: Inequality with ordinal data. Economica 84, 290–321 (2017)

https://doi.org/10.1007/s00199-016-1011-2


Dalton, H.: The measurement of the inequality of incomes. Econ. J. 30, 348–361 (1920)
Dasgupta, P., Sen, A.K., Starrett, D.: Notes on the measurement of inequality. J. Econ. Theory 6, 180–187

(1973)
D’Aspremont, C.: Axioms for social welfare orderings. In: Hurwicz, L., Schmeidler, D., Sonnenschein,

H. (eds.) Social Goals and Social Organization, pp. 19–76. Cambridge University Press, Cambridge
(1985)

D’Aspremont, C., Gevers, L.: Equity and the informational basis of social choice. Rev. Econ. Stud. 46,
199–210 (1977)

Deschamps, R., Gevers, L.: Leximin and utilitarian rules: a joint characterization. J. Econ. Theory 17,
143–163 (1978)

Fields, G., Fei, J.: On inequality comparisons. Econometrica 46, 305–316 (1978)
Fishburn, P.C., Lavalle, I.H.: Stochastic dominance on unidimensional grids. Math. Oper. Res. 20, 513–525

(1995)
Fleurbaey, M., Maniquet, F.: Well-being measurement with non-classical goods. Econ. Theory 68, 765–786

(2019). https://doi.org/10.1007/s00199-018-1143-7
Gravel, N., Marchant, T., Sen, A.: Comparing societies with different numbers of individuals on the basis

of their average advantage. In: Fleurbaey, M., Salles, M., Weymark, J.A. (eds.) Social Ethics and
Normative Economics: Essays in Honour of Serge-Christophe Kolm, pp. 261–277. Springer, Berlin
(2011)

Gravel, N., Magdalou, B., Moyes, P.: Inequality measurement with an ordinal and continuous variable. Soc.
Choice Welf. 52, 453–475 (2019)

Hammond, P.J.: Equity, Arrow’s conditions and Rawls’s difference principle. Econometrica 44, 793–803
(1976)

Hammond, P.J.: Equity in two person situations: some consequence. Econometrica 47, 1127–1135 (1979)
Hardy, G.H., Littlewood, J.E., Polya, G.: Inequalities, 2nd edn. Cambridge University Press, Cambridge

(1952)
Kobus, M.: Polarization measurement for ordinal data. J. Econ. Inequal. 13, 275–277 (2015)
Kobus, M., Milós, P.: Inequality decomposition by population subgroups for ordinal data. J. Health Econ.

31, 15–21 (2012)
Kolm, S.C.: The optimal production of social justice. In: Guitton, H., Margolis, J. (eds.) Public Economics.

Macmillan, London (1969)
Lehmann, E.L.: Ordered family of distributions. Ann. Math. Stat. 26, 399–419 (1955)
Magdalou, B.: An model of social welfare improving transfers. Center for Environmental Economics –

Montpellier, Working paper no. 2018-13 (2018)
Marshall, A.W., Olkin, I., Arnold, B.C.: Inequalities: Theory of Majorization and Its Applications, 2nd edn.

Springer, New York (2011)
Miyagishima, K.: A characterization of the maximin social ordering. Econ. Bull. 30, 1278–1282 (2010)
Muller, A., Scarsini, M.: Fear of loss, inframodularity and transfers. J. Econ. Theory 147, 1490–1500 (2012)
Pradhan,M., Sahn, D.A., Younger, S.D.: Decomposingworld health inequality. J. Health Econ. 22, 271–293

(2003)
Quirk, J.D., Saposnik, R.: Admissibility and measurable utility functions. Rev. Econ. Stud. 29, 140–146

(1962)
Sen, A.K.: On Economic Inequality. Clarendon, Oxford (1973)
Sen, A.K.: On weights and measures: informational constraints in social welfare analysis. Econometrica

45, 1539–1572 (1977)
Shorrocks, A.F.: Ranking income distributions. Economica 50, 3–17 (1983)
Tungodden, B.: Egalitarianism: Is Leximin the only option? Econ. Philos. 16, 229–245 (2000)
Zheng, B.: A note on measuring inequality with ordinal data. In: Bishop, J., Zheng, B. (eds.) Research in

Economic Inequalities, vol. 16, pp. 177–188. Bingley, Emerald (2008)
Zheng, B.: A new approach to measure socioeconomic inequality in health. J. Econ. Inequal. 9, 555–577

(2011)

https://doi.org/10.1007/s00199-018-1143-7


Affiliations

Nicolas Gravel1 · Brice Magdalou2 · Patrick Moyes3

Brice Magdalou
brice.magdalou@umontpellier.fr

Patrick Moyes
patrick.moyes@u-bordeaux.fr

1 Centre de Sciences Humaines & Aix-Marseille Université, CNRS, EHESS, ECM, AMSE, 2,
Dr. A.P.J. Abdul Kalam Road, Delhi 110011, India

2 CEE-M. Univ. Montpellier, CNRS, INRAE, SupAgro, Montpellier, France

3 GREThA, CNRS, UMR 5113, Université de Bordeaux, Avenue Léon Duguit, 33608 Pessac,
France

123

http://orcid.org/0000-0002-1032-6085

	Ranking distributions of an ordinal variable
	Abstract
	1 Introduction
	2 Three perspectives for comparing distributions of an ordinal variable
	2.1 Main notation
	2.2 Elementary transformations
	2.3 Normative evaluation
	2.4 Implementation criteria

	3 Equivalence results
	4 Sensitivity of the criteria to the grid of categories
	5 Empirical illustration
	6 Conclusion
	A Appendix: Proofs
	A.1 Proposition 1
	A.2 Propositions 2 and 3
	A.3 Lemma 1
	A.4 Theorem 1
	A.5 Proposition 4
	A.6 Proposition 5
	A.7 Theorem 3
	A.7.1 Statement (a) implies Statement (b)
	A.7.2 Statement (b) implies Statement (c)
	A.7.3 Statement (c) implies Statement (a)

	A.8 Lemma 2
	A.9 Theorem 5
	A.9.1 Statement (a) implies Statement (b)
	A.9.2 Statement (b) implies Statement (a)
	A.9.3 Statement (b) implies Statement (c)
	A.9.4 Statement (c) implies Statement (b)

	A.10 Proposition 8
	A.11 Proposition 9
	A.12 Theorem 6

	References





