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Abstract: In this paper, I study the ability of group members to cooperate against an incumbent in a

repeated rent-seeking game and where group members and the incumbent have di¤erent valuations of the

prize. I �rst consider that group members use Nash Reversion Strategies (NRS) to support cooperative

behavior and show that full cooperation within the group is more easily sustained as a Stationary Subgame

Perfect (Nash) Equilibrium (SSPE) as either group size, or the heterogeneity in the valuation of the prize,

increases. In turn, I show that full cooperation within the challenger group can also be sustained as a

Weakly Renegotiation-Proof Equilibrium (WRPE). Yet, an increase in group size makes it more di¢ cult to

sustain within-group cooperation but an increase in the relative valuation of the prize by group members

still facilitates group cooperation.
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1 Introduction

Most of economic, social and political activities involve groups (countries, political parties, �rms, admin-

istrative units, etc....) with shared common interests within groups and, potentially, con�icting interests

across groups. The e¤ectiveness of a group in carrying out its objective then crucially depends on how

it deals with its collective action �or free-rider �problem. Olson�s (1965) celebrated theory argues that

this problem makes larger groups less e¤ective than smaller groups and that, ultimately, collective action

must break down when group size becomes very large.1 The di¢ culties facing large groups seem to be also

persistent in a dynamic setting. Despite the potential of trigger strategies to induce mutual cooperation in

a repeated game (Axelrod, 1981), the common wisdom is that cooperation becomes more di¢ cult to sustain

as the size of the collectivity increases (e.g., Hardin, 1982; Olson, 1982; Sandler, 1992; Taylor, 1982).

A limitation of the traditional collective action theory, is that it analyses the collective action problem

within a single group isolated form the rest of society. However, in many situations, collective action is

often undertaken to counter similar actions by competing groups. Collective action might also be necessary

for defending collective resources against an external entity or may also be undertaken for challenging the

dominant position of an incumbent. In this paper, I analyze the logic of ongoing collective action in a

repeated game setting in which an interest group �called the challenger group � invests some e¤orts to

take over an incumbent for the award of a collective prize. The incumbent is referred to as such in that it

does not have any collective action problem to solve. Also, the collective prize has the characteristics of a

(pure) public good and all members of the challenger group have the same valuation of the prize, which

can be di¤erent from that of the incumbent. One might think for example of several green NGOs making

lobbying e¤orts in order to induce governments to pass a law on environmental protection in a speci�c

production sector. The coveted public good could also be something more political as in the case of a

parliamentary coalition challenging the power of the incumbent party.

In this paper, I will use a simple model where the challenger group�s probability of winning the prize is

given by the classic function introduced by Tullock (1980). In this context, I �rst investigate the e¤ectiveness

of Nash Reversion Strategies (NRS), à la Friedman (1971), to support full cooperation within the group.

These strategies prescribe that any deviation from the cooperative level of e¤ort is met with permanent

reversion to the non-cooperative outcome. The di¢ culty of supporting cooperation within the group is then

measured by the lowest discount factor supporting the optimal level of group e¤ort as a subgame perfect

outcome. I show that cooperation within the group is more easily sustained as either the relative valuation

of the prize by group members or group size increases. This last result is in contrast with the common

wisdom that group-size is detrimental to the e¤ectiveness of trigger strategies to support cooperation. The

intuition is that the Nash punishment threat becomes relatively more e¤ective as group size increases. Next,

I investigate whether full cooperation within the group can be sustained as a Weakly Renegotiation-Proof

Equilibrium (WRPE), in the sense of Farrell and Maskin (1989). With perfect and frictionless renegotiation,

full cooperation can indeed be sustained as a WPRE even in very large groups although it becomes more

di¢ cult to sustain as group size increases. However, an increase in the relative valuation of the prize by

group members still makes it easier to sustain within-group cooperation. Thus, overall, I �nd only partial

support for the Olson�s theory.

1For a review of the literature on collective action theory à la Olson (1965), see Pecorino (2015).

2



My analysis is related to the literature on tacit cooperation in repeated games applied to public eco-

nomics. McMillan (1979) was the �rst to apply NRS to a supergame model of private provision of a public

good but without investigating the impact of an increase in the number of agents. In a prisoner�s dilemma

game with n players, Bendor and Mookherjee (1987) show that punishment strategies are not very valuable

to sustain an e¢ cient outcome in large groups when there is imperfect monitoring. Pecorino (1999) focuses

on the e¤ect of an increase in the number of contributors on their ability �as measured by the critical value

of the discount parameter �to overcome free-riding in a model of private provision of a pure public good.

He cannot derive monotonicity results but shows that cooperation can be maintained when the number of

contributors goes to in�nity for several speci�cations of the individual payo¤ function. Haag and Laguno¤

(2007) analyze a collective action game played by a collection of heterogeneous individuals in terms of time

preferences. They show that homogeneous and larger groups are more cooperative on average for a large

class of collective action games.

All these works analyze the collective action problem within a group isolated from the rest of society. In

contrast, in the present analysis, group action aims at contesting similar action by a unitary opponent. In

another paper (Cheikbossian, 2012), I analyze the ability of group members to cooperate in rent-seeking for

a private prize �fully divisible among group members �in a context of competition between two groups of

unequal size. The two groups face a collective action problem and all individuals have the same valuation

of the prize. I then show that the set of parameters for which cooperation can be sustained within the

larger group as a subgame perfect outcome is as large as that for which cooperation can be sustained in

the smaller group. Again, in the present analysis, I consider that one group only has a collective action

problem to solve but the two entities have di¤erent valuations for the public prize. More importantly, I

consider that group members can renegotiate in case within-group cooperation breaks down.

The present analysis is thus also related to the literature on the concept of �weak-renegotiation proofness�

applied to oligopoly models and to the issue of international agreements. Using Farrell and Maskin (1989)�s

solution concept of WRPE for two-players games, Farrell (2000) shows that full collusion as a WRPE is

impossible in repeated Bertrand competition when there are more than three �rms, or more than nine �rms

in repeated Cournot competition (with linear demand and cost functions). Barrett (1999) develops a model

of international cooperation where each country has a binary choice between cooperating or defecting and

also shows that cooperation can only be supported by a �small�number of countries. In a similar model,

Asheim et al. (2006) show that two international agreements can do better than a single one for involving a

larger number of countries in an agreement. Still in a model where players have a binary choice, Froyn and

Hovi (2008) show that full participation can be sustained as WRPE provided that only a limited number

of countries are permitted to punish a defection. Finally, Asheim and Holtsmark (2009) show that this

result carries over a more general model where players or countries have a continuum of (emission) choices.

Yet, they consider a very simple model since the Nash equilibrium of the stage game is an equilibrium

in dominant strategies. In other words, the optimal choice of one player does not depend on the choices

made by the other players. Furthermore, all players can participate to the cooperative agreement. In my

analysis, there exist strategic interactions in that a change in a group member�s action induces a change in

the equilibrium actions not only of the other group members but also of the opponent.
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2 The model

2.1 The stage game

I start by specifying the details of the stage game G. There are n + 1 risk-neutral agents, indexed by

i = 0; 1; 2; ::::; n who compete for a public prize. Agent 0 is a unitary entity � called the incumbent �

and has a valuation VI for the prize. Agents i = 1; 2; :::; n are grouped into a common entity � called

the challenger group �and join their e¤orts to take over from the incumbent in the award of the prize.

All group members have the same valuation VG of the prize, which is supposed to be higher than that

of the incumbent, i.e. VG � VI . These valuations are publicly known. Let xi 2 <+ be the rent-seeking
expenditure/e¤ort expended at unit cost by group member i, and X =

nP
i=1

xi 2 <+ be the sum of rent-

seeking e¤orts of group members. The rent-seeking expenditure/e¤ort of the external entity is denoted

Y 2 <+. Following much of the contest literature, I assume that the probability of winning the prize
p : <2+ ! [0; 1] for group members is given by a contest success function, which has the Logit form, i.e.

p (X;Y ) =

8<: X=(X + Y ) if (X;Y ) 6= (0; 0);

1=2 if (X;Y ) = (0; 0):
(1)

The preferences of all players are represented by an additively separable utility function, i.e.

vi = p (X;Y )VG � xi; (2)

for member i = 1; 2; :::; n of the challenger group, and

v0 = (1� p (X;Y ))VI � Y; (3)

for the incumbent.

I �rst analyze the one-shot equilibrium outcome in which group members do not cooperate in the contest

with the opponent. Let X�i =
P

j 6=i xj be the sum of rent-seeking e¤orts of the group members excluding

that of member i. Maximizing vi with respect to xi subject to the non-negativity constraint xi � 0 yields
group member i�s best response to X�i and to Y , i.e. ri(X�i; Y ), which is given by the following �rst

order-condition2
Y

(xi +X�i + Y )
2VG = 1; (4)

with equality for xi > 0:

Similarly, maximizing v0 with respect to Y subject to the non-negativity constraint Y � 0, yields the
best-response function of the incumbent to the collective e¤ort X of the challenger group, i.e. R0(X),

which is given by the following �rst order-condition

X

(X + Y )
2VI � 1; (5)

with equality for Y > 0.

2Note that the marginal return to an additional unit of individual rent-seeking e¤ort (as well as to an additional unit of
group rent-seeking e¤ort) is decreasing in e¤ort. Hence, each player�s problem is strictly concave and the �rst-order conditions
are both necessary and su¢ cient for characterizing the best-response functions of the players.
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Due to the public-good nature of collective rent-seeking, �rst-order conditions only determine group

e¤ort. I look, however, for a symmetric equilibrium such that all group members make the same level of

e¤ort. The symmetric equilibrium is thus a couple
�
xN ; Y N

�
such that R0(XN ) = Y N and ri(XN

�i; Y
N ) =

xN for all i = 1; 2; :::; n (and where XN
�i + x

N = XN = nxN ).

Solving the system given by (4) and (5) and letting � be the ratio of the valuations of the prize, i.e.

� = VG=VI � 1, we have that
xN =

�

n [1 + �]
2VG; (6)

while Y N = XN=�.

The equilibrium winning probability for the challenger group is thus given by

p(XN ; Y N ) =
�

1 + �
; (7)

which is independent of the size of the challenger group. Indeed, with the lottery contest success func-

tion and linear cost functions, the increased free-rider problem induced by a larger group size is exactly

compensated by the larger number of contributors (see Katz et al., 1990, and Ursprung, 1990).

Under non-cooperation, each group member has thus the following utility

vN =
� [n(1 + �)� 1]
n [1 + �]

2 VG; (8)

while that of the incumbent is given by

vN0 =
VI

[1 + �]2
: (9)

2.2 The optimal solution

Consider now a situation where there can be full cooperation within the challenger group. In other words,

group members can jointly choose individual e¤orts so as to maximize the aggregate welfare of their group,

i.e., they choose X so as to maximize
P

i vi = np (X;Y )�X, given Y . The collective best response of the
challenger group to Y , i.e. R(Y ), is given by the following �rst-order condition

nY

(X + Y )
2VG � 1; (10)

with equality for X > 0.

Similarly, the best-response function of the incumbent to the collective e¤ort X of the challenger group,

i.e. R0(X), is given by the following �rst-order condition

X

(X + Y )
2VI � 1; (11)

with equality for Y > 0.

An interior equilibrium is a couple of e¤orts (XC ; Y C) such that R(Y C) = XC and R0(XC) = Y C .

Assuming that the members of the challenger group share equally the collective e¤ort, and denoting by

xC = XC=n this common individual e¤ort under within-group cooperation, I obtain

xC =
�n

[1 + �n]
2VG; (12)
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and Y C = xC=�.

As a result the equilibrium winning probability for the challenger group is given by

p(XC ; Y C) =
�n

1 + �n
: (13)

Under cooperation within the challenger group, each group member has thus the following utility

vC =

�
�n

1 + �n

�2
VG; (14)

while that of the incumbent is given by

vC0 =
VI

[1 + �n]
2 : (15)

3 The repeated game

3.1 Preliminaries

The n + 1 agents play an in�nitely repeated game with discounting. Time is discrete and dates are

denoted by t = 0; 1; 2:::Let G1(�) be the repeated game obtained by repeating G in�nitely often, and

where � 2 (0; 1) is the discount parameter per period for each player. I assume that the e¤ort level

produced by all group members and the incumbent are perfectly observed by all agents. Let Y (t) 2 <+
and x(t) � (x1(t); x2(t); :::; xn(t)) 2 <n+ be, respectively, the e¤ort of the incumbent and the vector of

individual e¤orts within the challenger group in period t. A public history in period t � 1 is thus h(t) =
((x(0); Y (0)) ; (x(1); Y (1)) ; :::; (x(t� 1); Y (t� 1))) or h(t) = f(x(s); Y (s))gt�1s=0. The initial history is the

null set, H0 � f?g, and Ht the set of t-period histories. A pure strategy for group member i in G1(�),

for i = 1; 2; :::; n, is an in�nite sequence of functions �i = f�tig
1
t=1, where �

t
i : Ht ! <+ is a mapping from

the set of all possible public histories up to t � 1 (included) into the set of e¤ort levels. Similarly, a pure
strategy in G1(�) for the incumbent is de�ned on the same sets, i.e. �0 = f�t0g

1
t=1, where �

t
0 : Ht ! <+.

The strategy pro�le is denoted by � � (�0; �1; �2; :::; �n).
Any strategy pro�le � generates an outcome path S = fx(t); Y (t)g1t=0, de�ned inductively by fx(0); Y (0)g =

� (?) and (x(t); Y (t)) = (�t0; �t1; :::; �tn) for all t � 1. A path of rent-seeking e¤orts S thus implies an in�nite
stream of stage-game payo¤s fvi(x(t); Y (t))g1t=0 for group member i = 1; 2; :::; n and fv0(x(t); Y (t))g

1
t=0 for

the incumbent. Let vi(t) � vi(x(t); Y (t)) for i = 0; 1; 2; :::n �with i = 0 for the incumbent and i = 1; 2; :::; n
for the members of the challenger group. The average discounted payo¤ of player i for the outcome path

S = fx(t); Y (t)g1t=0 is given by
V �i (S) = (1� �)

X1

t=0
�tvi(t) (16)

Thus, the average discounted payo¤ of player i, for i = 0; 1; 2; :::; n in G1(�) obtained with the strategy

pro�le � is V �i (�) = V �i (S (�)). � is a Nash equilibrium if �0 is a best response to (�1; �2; :::; �n) and if

�i, for i = 1; :::; n, is a best response to ��i = (�0; �1; :::; �i�1; �i+1; :::; �n). And it is a subgame perfect

equilibrium in G1 (�) if after every history, the continuation of � is a Nash equilibrium in the corresponding

subgame. I will restrict attention to Stationary Subgame Perfect (Nash) Equilibria (SSPE), i.e., equilibria

in which after any history, a stationary pro�le of strategies is played thereafter, and which also satisfy the

additional requirement of symmetry within the challenger group, in the sense that all group members make

the same level of e¤ort at every history.

6



3.2 Nash Reversion Strategies

I �rst consider that the members of the challenger group use Nash Reversion Strategies (NRSs) à la

Friedman (1971) in order to support cooperative behavior. NRSs prescribe that group members cooperate

in the �rst period and in all subsequent periods if all members cooperated in the previous period. If any

member deviated in the previous period, then all group members revert to the single-shot Nash equilibrium

forever, independently of the behavior of the incumbent. Yet, group members�actions must be mutual

best responses and must also be individual best-responses to the action of the incumbent � in case of

non-cooperation within the group �or must constitute a collective best-response function to the action of

the incumbent �in case of cooperation within the group. Furthermore, it is supposed that the incumbent

plays in every period his static best-response to the group members�strategies �whether they cooperate

or not � regardless of the history (i.e. �tY = R0(x(t)) for all t). To put this informally, there is always

non-cooperation between the challenger group and the incumbent.

In general, in in�nitely repeated games, the set of SSPE is very large. I thus focus on the "best" SSPE

from the viewpoint of group members, that is the one sustaining the joint-payo¤ maximizing level of rent-

seeking e¤ort xC .3 Formally, I thus focus on the strategy pro�le characterized by: �ti = x
C for i = 1; 2; :::; n

and �t0 = R0(X
C) = Y C if t = 0 or if h(t) =

�
(xC(s); Y C(s))

	t�1
s=0

for t � 1; �ti = xN for i = 1; 2; :::; n and

�t0 = R0(X
N ) = Y N otherwise. This strategy pro�le is denoted by ~�.

Let xD be the e¤ort level of a contributing member who considers defecting from the cooperative phase

while other play ~�. The payo¤ of the deviator would thus be given by

vD =
(n� 1)xC + xD

(n� 1)xC + xD + Y C VG � x
D, (17)

where xC is given by (14) and where xC = �Y C . The deviator chooses xD so as to maximize vD. The

�rst-order condition to this problem implies that

@vD

@xD
=

Y C

[(n� 1)xC + xD + Y C ]2
VG � 1 � 0. (18)

In any period in which all group members contribute the joint-maximizing level of e¤ort xC , each member�s

best possible deviation from ~� is given by:

xD =

8>><>>:
=

p
n(1 + �n)� n [1 + �(n� 1)]

(1 + �n)2
VG if n = 2;

0 if n � 3:

(19)

Thus each member�s best possible deviation from ~� is to cut her contribution to 0 for any n � 3, indepen-
dently of �. In contrast, xD > 0 for n = 2, independently of �.4

Substituting (21) into (19) and using (14), I obtain the (best) deviation payo¤ for any group member,

3 I must insist that this SSPE is Pareto-e¢ cient only from the point of group members. This is reason why I use the term
"best" SSPE.

4 Indeed, xD � 0 if and only if [(1 + �n)=(1 + �(n� 1))] �
p
n. On the one hand, the left-hand term of this inequality is

increasing in � and thus reaches a maximum when � is going to in�nity, in which case the inequality reduces to n=(n�1) �
p
n

or
p
n � (n�1), which does not hold for any n � 3. On the other hadn, the left-hand term of the above-mentioned inequality

reaches a minimum in � = 1, in which case it reduces to (n+ 1)=n �
p
n, that is 3 > 2

p
2 (when n = 2).
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that is

vD =

8>>>><>>>>:
=
1 + (1 + �n) [n(1 + �)� 2

p
n]

(1 + �n)2
VG if n = 2;

� (n� 1)
1 + �(n� 1)VG if n � 3:

(20)

The one-period net gain to deviating from the cooperative agreement within the group is
�
vD � vC

�
, while

the per-period net bene�t to maintaining cooperation within the group is vC � vN . Thus, the discounted
value of avoiding a (permanent) breakdown of cooperation within the group is given by [�= (1� �)]

�
vC � vN

�
.

Therefore, no group members have an incentive to deviate from the cooperative agreement if and only if

vD � vC � �

1� �
�
vC � vN

�
: (21)

Focusing on situations where self-enforcement is a binding constraint on the abilities of group members to

cooperate, the critical value of the discount parameter above which cooperation can be sustained as a SSPE

through NRSs is then � =
�
vD � vC

�
=
�
vD � vN

�
. Substituting (10), (16) and (22) into this expression, I

obtain

�N (2) =
2(3� 2

p
2)(1 + 2�)(1 + �)2

8(2�
p
2)�3 + 4(8� 5

p
2)�2 + (23� 16

p
2)�+ 2(3� 2

p
2)
; (22)

if n = 2, and

�N (n) jn�3 =
n(1 + �)2 [�n(n� 2) + (n� 1)]

(1 + �n)2 [�(n2 � n� 1) + (n� 1)2] (23)

if n � 3.
I have the following result.5

Result 1: (i) �N (n) is decreasing in n for any n � 3 independently of �; (ii) �N (n) is decreasing in � for
any n � 2 independently of n:

The sustainability of within-group cooperation depends on the impact of increasing n or � on the one-period

net gain of deviating from the cooperative agreement �given by vD � vC �relative to the net bene�t of
maintaining within-group cooperation �given by vC � vN . I focus on the situation where n � 3. I have

vC � vN =
� (n� 1)

�
�n2(1 + �)� (1 + �n)

�
n(1 + �)2(1 + �n)2

VG; (24)

and

vD � vC = � [�n(n� 2) + (n� 1)]
[1 + �(n� 1)] (1 + �n)2VG: (25)

As shown in the Proof of Result 1 (in the Appendix), the net bene�t of cooperation �given by vC � vN �

is increasing in n. This re�ects the fact that an increase in group size exacerbates the free-rider problem,

which in turn makes the punishment threat relatively more e¤ective. As regards the impact of group size

on the incentive to deviate, that is on the net bene�t of defection, �given by vD � vC �it is decreasing
in n for any n � 4. The incentive to deviate from the cooperative outcome is determined by the bene�t

of withdrawing his/her individual contribution and by the resulting negative impact on the probability of

success of the group. But this last is concave in aggregate e¤ort. Hence, the decrease in the probability of

5All the Proofs of the results are given in the Appendix.

8



success due to an individual defection becomes less pronounced as n increases, which would reinforce the

incentive to defect. However, the concavity of the probability of success also implies that, when n increases,

it increases the optimal level of aggregate e¤ort but by a lower extent than the size of the group. In turn,

an individual contribution and thus the bene�t of withdrawing his/her contribution also decreases with n,

which would relax the incentive to deviate. It turns out that the decrease in the bene�t of withdrawing

his/her individual contribution dominates that of the associated cost in terms of probability of success. As

a result, the net bene�t of defection decreases with group size and this e¤ect goes in the same direction

than the increase in the punishment threat for facilitating the sustainability of group cooperation. This

is in contrast with the general presumption that decentralized strategies of reciprocity may fail to enforce

cooperation in large groups. In the present analysis, where group members face an external entity, I have

that an increase in group size unambiguously facilitates group cooperation. Furthermore, cooperation

remains an equilibrium in very large groups if their members place any weight at all on the future since,

then, the critical discount factor �N (n) jn�3 converges to 0 as n goes to in�nity.
Also, an increase in the valuation of the prize by group members compared to that of the incumbent �

i.e. an increase in � �makes within-group cooperation less di¢ cult to sustain.6 As shown in the appendix,

an increase in � increases the net bene�t of cooperation and thus the e¤ectiveness of the punishment threat

as does an increase in group size. However, it also increases the net bene�t of deviating from the cooperative

outcome. That is, as � increases, the bene�t of withdrawing his/her individual contribution becomes more

important than the cost in terms of probability of success. As a result the net bene�t of defection increases

but this e¤ect is always dominated by the increased punishment threat as � rises, which in turn makes

within-group cooperation easier to sustain.

3.3 Renegotiation

Although in�nite Nash reversion is subgame perfect, it is not very realistic because it is unforgiving and,

furthermore, it hurts the punishers just as the deviator. Indeed, it is hard to believe that agents remain

forever in a Pareto dominated equilibrium without renegotiating back to a cooperative outcome. I thus

now consider another strategy pro�le which is robust to renegotiation. Speci�cally, I analyze whether full

cooperation can be sustained as aWeakly Renegotiation-Proof Equilibrium (WRPE), in the sense of Farrell

and Maskin (1989). To be WPRE, a strategy pro�le must satisfy two requirements: (i) The �rst is that

of subgame perfection which requires that no player can gain by a one-period deviation after any history;

(ii) The second requirement is that, after any history, there must not exist two continuation equilibria such

that all players are better o¤ in one continuation equilibrium than in the other. Otherwise, the players

would renegotiate from one to the other.

A strategy pro�le satisfying these two requirements is Penance-p, which has been proposed by Asheim

et al. (2006) and Froyn and Hovi (2008) in the context of a prisoner�s dilemma game. Our contribution here

is to extend the use of this concept to a game of group cooperation with continuous payo¤s and strategic

interactions between players and, more importantly, with one player not participating to the agreement.

Speci�cally, the Penance-p subgame perfect strategy pro�le, denoted by ~�(p), speci�es (i) that a group

member contributes the joint-maximizing level of e¤ort except if another group member has been the sole
6Both vC � vN and vD � vC depend on � and on VG = �VI . We consider that VI is �xed and thus the increase in � is

only driven by the increase in VG:
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deviator from Penance-p in the previous period and (ii) that if a deviation occurs then p group members

�the punishing members �stop contributing to collective action, whereas the n� p other group members
continue to act cooperatively. This means that they produce the joint-maximizing level of group e¤ort of

a group consisting of n� p members, while the p punishing members do not contribute at all to collective
action but still bene�t from the collective action of their group. Punishments last only one period and

so this strategy pro�le is robust to renegotiation if not all group members strictly gain by restarted full

cooperation instead of carrying out the punishment.

Again, I focus on the "best" WRPE from the viewpoint of group members, that is the one sustaining

the joint-payo¤ maximizing level of rent-seeking e¤ort xC . Recall that x(t) � (x1(t); x2(t); :::; xn(t)) 2 <n+.
Thus, the Penance-p strategy pro�le can be formally described as follows

�ti =

8>><>>:
xC if t = 0 or if (x(t� 1); Y (t� 1)) = (xC ; Y C);

xP if xi(t� 1) 6= xC or if xj(t� 1) 6= xC for j 6= i and i =2 Pj ;

0 if xj(t� 1) 6= xC for j 6= i and i 2 Pj ;

(26)

for i = 1; 2; :::; n.

xP is joint-payo¤ maximizing level of rent-seeking e¤ort of a group of size (n � p), and where Pj is
the set of punishing members when member j deviates from ~�(p). As mentioned above, the number of

punishing members is the same for all i = 1; 2; :::; n and is denoted by p. Finally, as in the previous section,

the incumbent is assumed to play in every period his static best-response to the group members�strategies

regardless of the history, that is �t0 = R0(x(t)) for all t.

3.3.1 The subgame-perfection requirement

Consider �rst the requirement of subgame perfection. There are two kinds of histories to check: When no

deviation has taken place in the previous round t� 1 and when a deviation did occur in t� 1.

No deviation in period t� 1:

In this history, Penance-p prescribes that all group members continue to cooperate. If however, one member

deviates in period t and reverts to Penance-p in t + 1 then his/her deviation payo¤ is vD given by (22)

in period t, while in period t + 1 he/she obtains the payo¤ of group cooperation with n � p contributing
members. Substituting n by n� p into (16), I obtain

vP =
[� (n� p)]2

[1 + �(n� p)]2
VG: (27)

In period t + 2 onward, full cooperation is restored so that member i obtains vC , given by (16) in that

period and in any future period. Therefore, any group member has no incentives to unilaterally deviate

from the cooperative outcome unless he/she can obtain a larger discounted sum of payo¤s in period t and

t+1 by deviating, that is if and only if vD + �vP � (1+ �)vC or � � �P with �P �
�
vD � vC

�
=
�
vC � vP

�
.

Recall that the best deviation payo¤ vD from the cooperative phase depends on whether n = 2 or n � 3.
If n = 2, then p = 1. Indeed p must always be strictly positive otherwise defection would never be punished

and so each member would always defect. And it must also be lower than 2, otherwise the strategy pro�le
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would correspond to Nash reversion strategies and the renegotiation-proofness requirement would not be

satis�ed. Then, using (16), the �rst expression in (22) and (29), I obtain for n = 2 and p = 1;

�P (2; 1) =
(3� 2

p
2)(1 + 2�)(1 + �)2

�2(3 + 4�)
: (28)

Now consider that n � 3. In this case, the member who defects from the cooperative phase cuts her

contribution to 0 (see 21), so that the best deviation payo¤ is given by the second expression in (22). Also

using (16) and (29), I then obtain the following threshold value of the discount parameter

�P (n; p) jn�3 =
[1 + �(n� p)]2 [�n(n� 2) + (n� 1)]
�p [1 + �(n� 1)] [2�n(n� p) + 2n� p] : (29)

We now have to verify the subgame-perfect requirement, when a single deviation has taken place in period

t� 1.

A deviation in period t� 1:

In this history, Penance-p prescribes that in period t, there are p punishing members who do not contribute

to the collective action of the group. I �rst determine under which condition the n � p group members
(including the member who deviated in t� 1) that are prescribed to cooperate to the bene�t of the whole
group by contributing xP have no incentive to deviate from Penance-p in period t.

If n = 2 (and thus p = 1) or n� p = 1, the best deviation payo¤ from the punishment phase, denoted

vDP is equal to vP because vP is the optimal payo¤ of the unique member who makes rent-seeking e¤orts

in t (because he/she deviated in t � 1). Thus, the incentive compatibility constraint on the punishment
path is always satis�ed if n� p = 1.
Now suppose that (n � p) > 1 and let xDP be the e¤ort level of a contributing member who defects

from the punishment in period t. The best deviation payo¤ of a contributing member in the punishment

phase who decides to deviate depends on whether n � p = 2 or n � p � 3 and is given by (??) with n

replaced by n� p, that is2

vDP =

8>>>><>>>>:
=
4�2 + (3� 2

p
2)(1 + 2�)

(1 + 2�)2
VG if n� p = 2;

� (n� p� 1)
1 + �(n� p� 1)VG if n� p � 3:

: (30)

Therefore, each of the n�p contributors in period t has no incentive to unilaterally deviate from Penance-p
unless he/she can obtain a larger discounted sum of payo¤s in period t and t + 1 by deviating, that is if

and only if vDP + �vP � vP + �vC or � � �DP with �DP �
�
vDP � vP

�
=
�
vC � vP

�
.

Thus, using (16), (29) and (35), the minimum discount factor above which no contributing member in

the punishment phase has an incentive to deviate is given by

�DP (n) jn�p=2 =
(3� 2

p
2)(1 + 2�)(1 + �n)2

(n� 2) [n+ 2 + 4�n]�2
; (31)

if n� p = 2 and

�DP (n; p) jn�p�3 =
(1 + �n)

2
[�(n� p)(n� p� 2) + (n� p� 1)]

�p [�(n� p� 1) + 1] [2�n(n� p) + 2n� p] ; (32)
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if n� p � 3.
I now establish the following result that will prove useful in the rest of the analysis.

Result 2: The minimum discount factors �P (n; p) jn�3 and �DP (n; p) jn�p�3 above which the strategy pro-
�le ~�(p) satis�es the subgame-perfect requirements are both decreasing in the number of punishing members

p:

I also need to verify that the punishing members who do not contribute at all to collective action in the

punishment period have no incentives to deviate by producing a positive level of e¤ort. If the p punishing

members adhere to the punishment in period t and do not participate to collective action, then the payo¤

of each of them is given by the probability of success (multiplied by VG) of a cooperative group consisting

of n� p members, that is from (15),

vPA =
� (n� p)

1 + �(n� p)VG: (33)

If n � p � 3, then each group member�s best possible deviation is to cut her contribution to 0, which

corresponds exactly to what is prescribed by penance-p for the p punishing members. So, in this case, the

punishing members do not have any incentives to deviate in the punishment phase, all the more it will

trigger the punishment again in t+ 1.

If n � p � 2, then the best deviation for a contributing member is to make a positive level of e¤ort.

However, a non-contributing member still cannot do better than not contributing at all to collective action

independently of n and p. Indeed, let xA be the e¤ort level of a punishing member who considers defecting

in the punishment period t. His/her payo¤ would be given by

vA =
(n� p)xP + xA

(n� p)xP + xA + Y P VG � x
A; (34)

where xP = �Y P . @vA=@xA is decreasing in xA and thus a punishing member does not have any incentive

to deviate from penance-p by producing a positive level of e¤ort if and only if
�
@vA=@xA

�
jxA=0 � 0, that

is if VG= [1 + �(n� p)]2 � Y P . Since Y P = xP =� =
h
(n� p)= [1 + �(n� p)]2

i
VG, this inequality is always

satis�ed for n� p � 1.

3.3.2 The renegotiation-proofness requirement

I now turn to the renegotiation-proofness requirement. It implies an upper bound on the number of

punishing countries. Indeed, full cooperation is weakly renegotiation-proof if not all group members are

strictly worse o¤ with the punishment than with renegotiation (i.e. returning immediately to cooperation

without punishment). Suppose member i deviates in t�1. Clearly, in period t the n�p members (including
the defecting member of period t � 1) who contribute to group e¤ort are worse o¤ with the punishment
than with renegotiation. Thus, weak-renegotiation proofness requires that the p punishing members are at

least as well o¤ with punishment as with renegotiation.

If the p punishing members adhere to the punishment in period t and do not participate to collective

action, then the payo¤ of each of them is given by vPA. If however, full cooperation is restored immediately,

then all members obtain vC given by (16). In either cases, all group members obtain vC in t+ 1 onward.

Thus, weak renegotiation-proofness requires that vPA � vC or p � �p, with

�p � n(1 + �n)

1 + 2�n
: (35)
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Intuitively, the number of punishing members must not be too large, otherwise the e¤ective level of collective

action in the punishment path is too low to prevent renegotiating back to the fully cooperative outcome.

One can also easily verify that �p 2 (n=2; (n+ 1)=2) for any � > 1. Thus, the maximal number of punishing
members satisfying the renegotiation-proofness requirement will be given by:

�p = n=2 if n is even or �p = (n� 1)=2 if n is odd. (36)

From Result 2, I have that �P (n; p) jn�3 is decreasing in the number of punishing members. Thus,
substituting (42) into (31), the lowest values of the discount factor satisfying the incentive compatibility

constraint on the cooperative phase are given by

�P (n) =

����������
[2 + �(n+ 1)]

2
[�n(n� 2) + (n� 1)]

�(n� 1) [1 + �(n� 1)] [1 + 3n+ 2�n(n+ 1)] if n = 3; 5; 7; :::

[2 + �n]
2
[�n(n� 2) + (n� 1)]

�n2(3 + 2�n) [1 + �(n� 1)] if n = 4; 6; 8; ::::

(37)

�DP (n; p) jn�p�3 is also decreasing in the number of punishing members provided that n�p � 3. It can be
easily veri�ed that this inequality reduces to n � 5 if n with �p = (n� 1)=2 if n is odd; while it reduces to
n � 6 if n is even with �p = n=2, if n is even. Thus, under these conditions and substituting (42) into (37),
the lowest values of the discount factor satisfying the incentive compatibility constraint on the punishment

phase are given by

�DP (n) =

����������
2 [1 + �n]

2
[�(n+ 1)(n� 3) + 2(n� 1)]

�(n� 1) [2 + �(n� 1)] [1 + 3n+ 2�n(n+ 1)] if n = 5; 7; 9:::

2 [1 + �n]
2
[�n(n� 4) + 2(n� 2)]

�n2(3 + 2�n) [2 + �(n� 2)] if n = 6; 8; 10:

(38)

Thus, provided that n � 5, Penance-p strategies with full cooperation within the challenger group is a

WPRE if and only if � �Max
n
�P (n); �DP (n)

o
:

Let us now consider that n � 4. Again, with a group of two members, subgame-perfection only

requires that each member has no incentive to deviate from the cooperative path, i.e. � � �P (2; 1), where
�P (2; 1) is given by (30). The renegotiation-proofness requirement is also satis�ed since p = 1. Now,

for a group of three members, the renegotiation-proofness requirement also implies that p = 1. And

subgame-perfection requires that � � Max
n
�P (3); �DP (3) jn�p=2

o
, where �P (3) and �DP (3) jn�p=2 are

given by (42) and (36), respectively. For n = 4, the renegotiation proofness requirement is such that p � 2.
Since �P (n; p) jn�3 is decreasing in p, �P (4) most relaxes the incentive compatibility constraint on the
cooperative phase. In this case, Penance-p strategies with full cooperation within the challenger group is a

WPRE if and only if � �Max
n
�P (4); �DP (4) jn�p=2 ; �DP (4; 1) jn�p�3

o
, where �P (4) jne�4 , �DP (4) jn�p=2 ,

and �DP (4; 1) jn�p�3 are given by (41), (36) and (37), respectively.
I have the following Result.

Result 3: The strategy pro�le ~�(�p) with full cooperation within the challenger group is a WPRE if and

only if:

(i) � � �P (2; 1) when n = 2;
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(ii) � � �P (n) when n = f3; 4g;
(iii) � � �P (5) when n = 5 and � � ~� or � � �DP (5) when n = 5 and � � ~�, with ~� ' 1:13;
(iv) � � �DP (n) when n � 6:

As mentioned above, Froyn and Hovi (2008) in a model where players have a binary choice between

cooperating and defecting, and Asheim and Holstmark (2009) in a model with continuous choices �but

without strategic interactions between players ��nd that full cooperation can be sustained aWPRE through

penance strategies. I show that this result extends to a more general model with strategic interactions

between players and in a context where full cooperation within a group is undertaken to counteract the

action of a unitary opponent. Furthermore, contrary to the above mentioned analysis, the number of

players determines which incentive compatibility constraint is more stringent than the other. Observe that

the inequality �DP (n) � �P (n) reduces to vDP � vP � vD � vC since �DP (n) �
�
vDP � vP

�
=
�
vC � vP

�
and �P (n) �

�
vD � vC

�
=
�
vC � vP

�
. vDP � vP represents the net bene�t of deviation for a contributing

member on the punishment path, while vD � vC represents the net bene�t of deviation for each member
on the cooperative path. When group size is larger than 5, the best possible deviation from either the

cooperative phase or the punishment phase is to cut his/her contribution to 0. In this case, as shown

and explained in the previous subsection, the net bene�t of defection decreases with group size �that is

with the number of contributing members. It follows that there are more incentives to deviate from the

punishment path than from the fully cooperative outcome (and hence �DP (n) � �P (n)). This result is

reversed when the challenger group has few members (less than 5). In this case, the best possible deviation

from the punishment path is to make a positive level of e¤ort since contributing members are not enough

to make it pro�table full defection. In turns, it makes defection from the punishment path less attractive

than defection from the equilibrium path.

I now characterize the impact of an increase in group size n, or in the relative valuation of the prize

by group members given by �, on the di¢ culty of sustaining within-group cooperation, as measured by

the lowest discount factor supporting the optimal level of group e¤ort as a WRPE. For n � 5, I have the
following result.

Result 4: Suppose that n � 5, then:

(i) �P (2; 1) < �P (4) < �P (3) ;

(ii) �P (5) > �P (4) and �DP (5) > �P (4);

(iii) �P (2; 1), and �P (n) for n = f3; 4; 5g and �DP (5) are decreasing in �.

Thus, for a group of a small size, increasing the number of group members generally makes full cooperation

more di¢ cult to sustain as a WRPE except when group size increases from 3 to 4 members. Also, whether

a group of 5 members has more or less di¢ culty to sustain within-group cooperation as a WRPE compared

to a group of 3 members is indeterminate and depends on the exact value of �. Intuitively, a group of 3

members is that for which the punishment is relatively the least severe since, in that case, the number of

punishing members in proportion of group size �that is p=n = 1=3 �is the smallest compared to a group

of 2, 4 or 5 members. Yet, an increase in the valuation of the prize by group members compared to that

of the incumbent � i.e. an increase in � �unambiguously makes within-group cooperation less di¢ cult

to sustain as a WRPE. The question now is whether these results remain valid for larger groups with an
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arbitrary number of members. For n � 5, I have the following result.

Result 5: Suppose that n � 5, then: (i) �DP (n+ 1) < �DP (n) if n is odd ; (ii) �DP (n) is increasing in n
independently of �; (iii) �DP (n) is decreasing in � independently of n:

Point (i) of this result echoes the previous one for a group of less than �ve members and where the incentive

compatibility constraint along the cooperative path is more stringent than that of the punishment path.

For a group of more than 5 members, the binding constraint is that corresponding to the punishment

path. But the intuition remains the same. If the challenger group has an odd number of members, then

integrating one more member facilitates within-group cooperation because this allows increasing the number

of punishing members also by 1, thus increasing the proportion of group members punishing a deviation.

Nevertheless, an increase in group size generally raises the threshold value of the minimum discount factor

above which within-group cooperation on the e¢ cient level of group e¤ort can be sustained as a WRPE.

As just mentioned above, the net bene�t of defection from the punishment path, that is vDP � vP , is
decreasing in the number of contributing members in the same way as does the net bene�t of defection

from cooperation with group size. However, and in contrast to the situation where group members use

Nash Reversion Strategies, the punishment threat also becomes less e¤ective as group size increases due to

the renegotiation proofness requirement. In fact, Result 5 shows that vC �vP is decreasing even more with
group size than vDP � vP , thus increasing �DP (n) and making full cooperation more di¢ cult to sustain
as a WRPE as group size increases. In other words, the constraint of renegotiation-proofness brings us

back to the general presumption that maintaining cooperation becomes more di¢ cult as the size of the

collectivity increases (see, e.g., Hardin 1982; Olson 1982; Sandler 1992; Taylor 1982). Yet, in contrast to

Olson (1965)�s conjecture full cooperation can still be maintained in arbitrarily large groups provided the

discount factor of group members is su¢ ciently high.

As for the impact of the heterogeneity in the valuation of the prize on the di¢ culty of sustaining full

cooperation as a WRPE, I obtain the same result than that obtained when group members use simple Nash

Reversion Strategies without any possibility of renegotiation. The cooperative level of individual e¤ort �

whether there are n or only (n � p) contributing members � increases with � and, hence, withdrawing
his/her individual contribution becomes more and more tempting even though a defection also decreases

the probability of winning the public prize. However, the net bene�t of maintaining full cooperation relative

to the punishment phase also increases with �, thus making the punishment threat more e¤ective. And, as

shown by Result 5, the renegotiation-proofness requirement with a limiting number of punishing members

does not alter the increased e¤ectiveness of the punishment threat for making within-group cooperation

easier to sustain, as the relative valuation of the prize by group members increases.

4 Concluding remarks

In a repeated contest game, I analyze the ability of group members to cooperate in order to challenge

the position of an incumbent for the award of a public prize. The results show that group cooperation

can be more easily sustained through simple Nash Reversion Strategies (NRS) as the relative valuation

of the prize by group members, or group size, increases. The intuition is that bad outcomes under a

static setting make for e¤ective punishments in a repeated game setting. Next, I consider that group
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members can renegotiate, without costs, returning back to the cooperative outcome in case of a defection.

I show that group cooperation can still be maintained independently of the size of the group as a Weakly

Renegotiation-Proof Equilibrium (WRPE). Furthermore, the renegotiation-proofness requirement does not

change the result that a greater heterogeneity in the valuation of the prize makes it easier within-group

cooperation. However, the comparative static result with respect to group size is reversed. In particular,

the critical discount factor above which full cooperation can be maintained converges to 0 under NRS

while, under the constraint of renegotiation-proofness, it converges to 1 as the size of the collectivity goes

to in�nity. Therefore, it would be necessary to investigate other strategies of cooperation against against

an opponent that are in between the impossibility of renegotiation and perfect or frictionless renegotiation.

And the (im)perfectness of renegotiation should depend, among other features, on group size. Thus, the

next step should be to introduce a cost of renegotiation as a function of group size in this simple framework,

before considering a generalization of the model.

5 Appendix

5.1 Proof of Result 1

I �rst evaluate the impact of group size n and of the relative valuation of the prize by group members � on the

threshold value of the discount factor �N (n). Regarding the impact of group size, I have

@�N (n)

@n
= �

(1 + �)2

(
n3(n� 1)(n� 3)�3 + n

�
n2
�
n2 � 3n+ 1

�
+ 3(n� 1)

�
�2

+
�
n2
�
n2 � n� 3

�
+ 5n� 1

�
�+ (n� 1)2

)
(1 + �n)3 [�(n2 � n� 1) + (n� 1)2]2

; (A1)

which is strictly negative for any n � 3.
The impact of the ratio of valuations � on �N (n) is given by

@�N (n)

@�
= �

n(n� 1)
(
n
�
n(n2 � 2n� 1) + 3

�
�3 +

�
n3(2n� 5) + n(6n� 5) + 1

�
�2

+
�
n3 (n� 2) + 5n(n� 1)� 2

�
�+ n2(n� 2) + 3(n� 1)

)
(1 + �n)3 [�(n2 � n� 1) + (n� 1)2]2

; (A2)

which is also strictly negative for any n � 3.
I now evaluate the impact of group size n and of the relative valuation of the prize by group members � on

the net bene�t to maintaining within-group cooperation vC � vN and on the net bene�t of deviating from the

cooperative outcome vD � vC . Calculating the derivative of vC � vN with respect to n, I obtain

@
�
vC � vN

�
@n

=
�
�
n3�3 + n2(4n� 3)�2 + n(2n2 � 3)�� 1

�
n2(1 + �)2(1 + �n)3

VG; (A3)

which is clearly positive for any n � 3.
The derivative of vD � vC with respect to n is given by

@
�
vD � vC

�
@n

= �
�
�
n(n2 � 4n+ 2)�3 + n(n� 4)�2 � (1 + �n)

�
[1 + �(n� 1)]2 (1 + �n)3

VG; (A4)

One can see that this derivative is negative for any n � 4 and � � 1.
Now, I consider that VI remains unchanged and I calculate the derivative of vC�vN with respect to � = VG=VI .

I have
@
�
vC � vN

�
@�

=
(n� 1)

�
n2(n+ 3)�3 + n

�
n2 + 4n+ 1

�
�2 + 3n(n� 1)�� 2

�
n(1 + �)3(1 + �n)3

VG; (A5)

16



which is clearly positive.

The derivative of vD � vC with respect to � is given by

@
�
vD � vC

�
@�

=

�
n(2n2 � 6n+ 3)�2 + (4n2 � 8n+ 1)�+ 2(n� 1)

�
[1 + �(n� 1)]2 (1 + �n)3

VG (A6)

which is also clearly positive for any n � 3.
Calculating the derivative of �N (2), with respect to �, I have

@�N (2)

@�
= � (3� 2

p
2)(1 + �) [� [5 + 4�(5 + 4�)]� 1]�

8(2�
p
2)�3 + 4(8� 5

p
2)�2 + (23� 16

p
2)�+ 2(3� 2

p
2)
�2 ; (A7)

I now compare �N (2) and �N (3). Recall that in contrast to n � 3, the group member who defects from the

cooperative outcome chooses a positive level of e¤ort when n = 2. Using (25), �(3) is given by

�N (3) =
3 (1 + �)

2
(2 + 3�)

(4 + 5�) (1 + 3�)
2 ; (A8)

Calculating the di¤erence between �N (2) and �N (3), I have

�N (2)� �N (3) = �
(1 + �)

2 �
11:29�4 + 0:82�3 � 16:90�2 � 7:37�+ 0:69

�
(4 + 5�) (1 + 3�)

2 �
4:69�3 + 3:72�2 + 0:37�+ 0:34

� ; (A9)

which can be positive or negative depending on �.

5.2 Proof of Result 2

Observe that �P �
�
vD � vC

�
=
�
vC � vP

�
depends on p only thought vP , which is itself decreasing in p for any

n � 2 and p � 1. Indeed, the derivative of vP with respect to p is given by

@vP

@p
= � 2(n� p)�2

[1 + �(n� p)]3
VG; (A10)

which is negative. It follows that �P (n; p) jn�3 is decreasing in the number of punishing members p.
I now turn to the impact of the number of punishing members p on the threshold value of the discount factor

�DP (n; p) jn�p�3 . I have

@�DP (n; p) jn�p�3
@p

= �
(1 + �n)

2
[1 + �(n� p)]

�
�0(n; p) + �1(n; p)�+�2(n; p)�

2
�

�p2 [�(n� p� 1) + 1]2 [2�n(n� p) + 2n� p]2
; (A11)

where

�0(n; p) = 2(n� 1)(n� p) + p2;
�1(n; p) = (n� p) [4n(n� p� 2) + p(4 + p) + 2] ;
�2(n; p) = 2n(n� p) [n(n� 2p� 3) + p(4 + p) + 2] :

Clearly, �0(n; p) and �1(n; p) are strictly positive for any n�p � 2. Calculating the derivative of the term [:] in
�2(n; p) with respect to p, I have @�2(n; p)=@p= 4� 2(n� p); which is negative for any n � p � 2. Thus, the
term [:] in �2(n; p) reaches a maximum in p = 1, in which case, I have �2(n; 1) = n2� 5n+7, which is positive
for any n � 3. As a result, �2(n; p) is positive for any n � 3. In turn, @�DP (n; p) jn�p�3 =@p is negative and
thus �DP (n; p) jn�p�3 is a decreasing function of the number p of punishing members for any n� p � 3 (implying
n � 4).
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5.3 Proof of Result 3

Let �rst consider a group of three members, i.e. n = 3 so that p = 1. Using (42), �P (3) is given by

�P (3) =
2 + �(7 + 6�)

�(5 + 12�)
; (A12)

while using (36) �DP (3) jn�p=2 is given by

�DP (3) jn�p=2 =
(3� 2

p
2)(1 + 2�)(1 + 3�)2

�2(5 + 12�)
: (A13)

Calculating the di¤erence, we have

�P (3) jn�3 � �DP (3) jn�p=2 =
(1 + 2�)

h
2�(2 + 3�)(3

p
2� 4)� (3� 2

p
2)
i

�2(5 + 12�)
; (A14)

which is clearly positive.

Now consider a group of four members. For n = 4, the renegotiation proofness requirement is such that p � 2.
Since �P (n; p) jn�3 is decreasing in p, the optimal number of punishing members that most relaxes the incentive
compatibility constraint on the cooperative phase is given by �P (4). Using (42), we have

�P (4) =
(1 + 2�)2

4�(1 + 3�)
: (A15)

I now determine whether p = 1 or p = 2 most relaxes the incentive compatibility constraint on the punishment

path. Using (36) and (37), we have

�DP (4) jn�p=2 =
(3� 2

p
2)(1 + 2�)(1 + 4�)2

4�2(3 + 8�)
: (A16)

and

�DP (4; 1) jn�p�3 =
(2 + 3�)(1 + 4�)2

�(1 + 2�)(7 + 24�)
: (A17)

Calculating the di¤erence, we have

�DP (4; 1) jn�p�3 � �DP (4) jn�p=2 =
(1 + 4�)2

�
79:53�3 + 78:72�2 + 15:08�� 1:20

�
4(1 + 2�)(3 + 8�)(7 + 24�)�2

; (A18)

which is clearly positive, thus implying that �DP (4) jn�p=2 < �DP (4; 1) jn�p�3 . Thus, p = 2 when n = 4,

most relaxes the incentive compatibility constraint both on the cooperative and punishment phase. I thus need to

compare �P (4) and �DP (4) jn�p=2 . I have

�P (4)� �DP (4) jn�p=2 =
(1 + 2�)

�
7; 76�3 + 7:14�2 + 1:11�� 0:17

�
4(1 + 3�)(3 + 8�)�2

; (A19)

which is also positive. Thus the minimum discount factor above which full cooperation can be obtained as WPRE

in a group of four members is given by �P (4):

I now consider that n � 5. Let �(n) � �DP (n)� �P (n). For n odd, we have

�(n) =
n(n+ 1)[n(n� 5) + 2]�4 +

�
n2(3n� 13)� 7n+ 1

�
�3 � 2(3n+ 1)� (1 + 2�)� 4

� [1 + �(n� 1)] [2 + �(n� 1)] [1 + 3n+ 2�n(n+ 1)] (A20)

Also, the derivative of �(n) with respect to n is given by

@�(n)

@n
=
(1 + �n) [2 + �(n+ 1)]

�
�5(n)�

5 +�4(n)�
4 ++�3(n)�

3 +�2(n)�
2 +�1(n)�+ 12

�
� [1 + �(n� 1)]2 [2 + �(n� 1)]2 [1 + 3n+ 2�n(n+ 1)]2

(A21)
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where

�1(n) = 2(17n� 5);
�2(n) = 2 [n(18n� 1) + 1] ;
�3(n) =

�
n2(17n+ 21) + 11n� 1

�
;

�4(n) = 3n(n+ 1) [n(n+ 6)� 3] ;
�5(n) = 2n(n2 � 1)(3n+ 1):

One can observe that �i(n) � 0 for i = f1; 2; 3; 4; 5g so that the sign of this derivative is always positive. Hence,
�(n) reaches a minimum in n = 5. In this case, one obtain

�(5) =
15�4 + 4�3 � 16�2 � 8�� 1
2� [1 + 2�] [1 + 4�] [4 + 15�]

; (A22)

which is negative for � � ~� and then positive for � � ~�, where ~� can be found numerically, i.e. ~� ' 1:13. For

n = 7, one obtain

�(7) =
[�(16�� 3)� 1] [2�(7�+ 4) + 1]
� [1 + 3�] [1 + 6�] [11 + 56�]

; (A23)

which is strictly positive for any � � 1. As a result, I have that �DP (n) > �P (n) for any n odd and larger than
7 independently of �.

Now let consider even values of n. We have

�(n) =
n2[n(n� 6) + 4]�4 + n

�
3n2 � 17n+ 6

�
�3 � 12n�2 � 6n�� 4

�n [1 + �(n� 1)] [2 + �(n� 2)] [3 + 2�n] (A24)

Also, the derivative of �(�p) with respect to n is given by

@�(n)

@n
=
(1 + �n)(2 + �n)

�
�5(n)�

5 +�4(n)�
4 +�3(n)�

3 +�2(n)�
2 +�1(n)�+ 12

�
�n2 [1 + �(n� 1)]2 [2 + �(n� 2)]2 [3 + 2�n]2

(A25)

where

�1(n) = 2(17n� 12);
�2(n) = 4

�
9n2 � 8n+ 3

�
;

�3(n) = n(17n2 � 2);
�4(n) = n2

�
3n2 + 16n� 18

�
;

�5(n) = 2n3(3n� 4):

One can observe that �i(n) � 0 for i = f1; 2; 3; 4; 5g so that the sign of this derivative is always positive. Hence,
�(n) reaches a minimum in n = 6. In this case, I have

�(6) =

�
6�2 + 6�+ 1

� �
6�2 � 3�� 1

�
9� [1 + 2�] [1 + 4�] [1 + 5�]

; (A26)

which is strictly positive for any � � 1. As a result, I have that �DP (n) > �P (n) for any n odd and larger than
6 independently of �.

5.4 Proof of Result 4

(i) Using (42), we have

�P (3)� �P (4) = � (1 + 2�) [3 + 2�(7 + 6�)]
4�(1 + 4�)(5 + 12�)

> 0 (A27)
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and thus �P (3) > �P (4).
Using (30) and (42), we also have

�P (4)� �P (2; 1) =
(1 + 2�)

�
5:94�3 + 5:20�2 � 0:43�� 0:69

�
4�2(1 + 3�)(3 + 4�)

> 0 (A28)

and thus �P (3) > �P (4)>�P (2; 1).

We also have

�P (5)� �P (3) = (4�� 9)(2 + 3�)� 3
4�(1 + 4�)(5 + 12�)

; (A29)

which is of ambiguous sign. It follows that �DP (5)� �P (3) is also of ambiguous sign.
However, we have that

�P (5)� �P (4) = 11�2 + 7�+ 1

4(1 + 3�)(5 + 12�)
> 0 (A30)

and thus �P (5) > �P (4).

Furthermore, we have that

�DP (5)� �P (4) = 105�4 + 103�3 + 11�2 � 10�� 21
4�(1 + 2�)(1 + 3�)(4 + 15�)

> 0 (A31)

and thus �DP (5) > �P (4).

I now analyze the impact of increasing � on these thresholds values of the discount parameter. I obtain,

@�P (2; 1)

@�
= �2(3� 2

p
2)(1 + �) [3 + �(9 + 7�)]

�3(3 + 4�)2
< 0 (A32)

and
@�P (3)

@�
= �

2
�
27�2 + 24�+ 5

�
�2(5 + 12�)2

< 0 (A33)

and
@�P (4)

@�
= �8�

2 + 6�+ 1

4�2(1 + 3�)2
< 0 (A34)

and
@�P (5)

@�
= �15�

2 + 8�+ 1

4�2(1 + 4�)2
< 0 (A35)

5.5 Proof of Result 5

I now consider that n � 5 and odd values of n: I have

�DP (n+ 1)� �DP (n) = � 2 [2 + �(n+ 1)]
2
[2(n� 1) + �(n� 3)(n+ 1)] [1 + 2�(1 + �(n+ 1))]

�(n� 1)(n+ 1)2 [2 + �(n� 1)] [3 + 2�(n+ 1)] [1 + n(3 + 2�(n+ 1))] (A36)

and thus �DP (n+ 1) < �DP (n) when n is odd.

I now analyze the impact of increasing n on �DP (n). When n is odd and greater than 5, we have

@�DP (n)

@n
=
2(1 + �n) [2 + �(n+ 1)]

�
�3(n)�

3 � �2(n)�2 � �1(n)�� �0(n)
�

�(n� 1)2 [2 + �(n� 1)]2 [1 + 3n+ 2�n(n+ 1)]2
(A37)

where

�0(n) = 6(n� 1)2;
�1(n) =

�
n2(5n� 19)� (n+ 1)

�
;

�2(n) = n(n+ 1)
�
n2 � 10n+ 1

�
;

�3(n) = 2n(n2 � 1)(n+ 3)
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The term in the [:] in the numerator of (A37) is positive if �3(n)�
3 � �2(n)

2 + �1(n)� + �0(n). We have

that �i(n) � 0 for i = 0; 1; 3 while �2(n) is negative for n � 9 and positive for n � 11. Since �i(n) � 0

for i = 0; 1; 3 and � � 1, a su¢ cient condition for the above inequality to be satis�ed is then that �3(n)�
2 �

�2(n)�
2 +�1(n)�

2 +�0(n)�
2 or that �3(n)��2(n)��1(n)��0(n) � 0; which is indeed the case since it is

equal to (n+ 1)
�
n(n2 + 9n+ 11)� 5

�
> 0.

When n is even and greater than 6, we have

@�DP (n)

@n
=
2(1 + �n) (2 + �n)

�
�3(n)�

3 � �2(n)�2 � �1(n)�� �0(n)
�

�n3 [2 + �(n� 2)]2 [3 + 2�n]2
(A38)

where

�0(n) = 6(n� 4);
�1(n) = 5n2 � 48n+ 24;
�2(n) = n(n2 � 24n+ 24)
�3(n) = 4n3:

The term in [:] in the numerator of (A38) is positive if �3(n)�
3 � �2(n)�

2 + �1(n)� + �0(n). We have that

�i(n) � 0 for i = 0; 3. �1(n) is negative for n � 8 and positive for n � 10 while �2(n) is negative for n � 22 and
positive for n � 24. If n � 8, a su¢ cient condition for the above inequality to be satis�ed is �3(n)�3 � �0(n),
which is indeed the case since �3(n) � �0(n) and � � 1. If n � 10, a su¢ cient condition for the inequality to be
satis�ed is �3(n)�

2 � �2(n)�2 + �1(n)�2 + �0(n)�2 or that �3(n) � �2(n) � �1(n) � �0(n) � 0, which is
indeed the case since it is equal to n(3n2 + 19n+ 18) > 0.

I now analyze the impact of increasing � on �DP (n). When n is odd, I have

@�DP (n)

@�
= �

2(1 + �n) [2 + �(n+ 1)]
�
�2(n)�

2 +�1(n)�+�0(n)
�

�2(n� 1)2 [2 + �(n� 1)]2 [1 + 3n+ 2�n(n+ 1)]2
(A39)

where

�0(n) = 2(3n+ 1)(n� 1);
�1(n) = (n� 1)2(5n+ 3);
�2(n) = n(n+ 1)(n2 � 2n+ 9);

and thus @�DP (n) =@� is negative.

When n is even, I have

@�DP (n)

@�
= �

2(1 + �n)(2 + �n)
�
�2(n)�

2 +�1(n)�+�0(n)
�

�2n2 [2 + �(n� 2)]2 [3 + 2�n]2
(A40)

where

�0(n) = 6(n� 2);
�1(n) = 5n2 � 22n+ 24;
�2(n) = n(n2 � 6n+ 24);

and thus @�DP (n) =@� is also negative when n is even.
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