M. S. Vitiello, G. Scalari, B. Williams, and P. D. Natale, Quantum cascade lasers: 20 years of challenges, Opt. Express, vol.23, pp.5167-5182, 2015.

P. Laffaille, J. C. Moreno, R. Teissier, M. Bahriz, and A. N. Baranov, High temperature operation of short wavelength InAs-based quantum cascade lasers, AIP Adv, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01620379

M. Bahriz, G. Lollia, A. N. Baranov, and R. Teissier, High temperature operation of far infrared (lambda approximate to 20 µm) InAs/AlSb quantum cascade lasers with dielectric waveguide, Opt. Express, vol.23, pp.1523-1528, 2015.

O. Cathabard, R. Teissier, J. Devenson, J. C. Moreno, and A. N. Baranov, Quantum cascade lasers emitting near 2.6 µm, Appl. Phys. Lett, p.96, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01826618

C. Walther, G. Scalari, J. Faist, H. Beere, and D. Ritchie, Low frequency terahertz quantum cascade laser operating from 1.6 to 1.8 THz, Appl. Phys. Lett, vol.89, 2006.

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco et al., Distributed feedback quantum cascade lasers, vol.70, p.986, 1997.

F. Xie, C. Caneau, H. P. Leblanc, S. Coleman, L. C. Hughes et al., Continuous wave operation of distributed feedback quantum cascade lasers with low threshold voltage and low power consumption

A. A. Belyanin, P. M. Smowton, and . Eds, Spie-Int Soc Optical Engineering, vol.8277, 2012.

Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, Room-temperature continuous wave operation of distributed feedback quantum cascade lasers with watt-level power output, Appl. Phys. Lett, p.97, 2010.

F. Xie, C. Caneau, H. P. Leblanc, S. Coleman, M. Ho et al., Room temperature continuous wave operation of long Wavelength (9-11 µm) distributed feedback quantum cascade lasers for glucose detection. In Novel in-Plane Semiconductor Lasers Xii, Eds.; Spie-Int Soc Optical Engineering, vol.8640, p.864016, 2013.

K. Saeedi, M. Szech, P. Dluhy, J. Z. Salvail, K. J. Morse et al., Optical pumping and readout of bismuth hyperfine states in silicon for atomic clock applications

M. Kajita, Precise Measurement of Transition Frequencies of Optically Trapped 40Ca19F Molecules, J. Phys. Soc. Jpn, vol.87, 2018.

S. K. Tokunaga, R. J. Hendricks, M. R. Tarbutt, and B. Darquié, High-resolution mid-infrared spectroscopy of buffer-gas-cooled methyltrioxorhenium molecules, New J. Phys, vol.19, p.53006, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01348950

A. Tredicucci, C. Gmachl, F. Capasso, D. L. Sivco, A. L. Hutchinson et al., Long wavelength superlattice quantum cascade lasers at lambda similar or equal to 17 µm, Appl. Phys. Lett, vol.74, pp.638-640, 1999.

X. Huang, W. O. Charles, and C. Gmachl, Temperature-insensitive long-wavelength (lambda approximate to 14 µm) Quantum Cascade lasers with low threshold, Opt. Express, vol.19, pp.8297-8302, 2011.

K. Fujita, M. Yamanishi, T. Edamura, A. Sugiyama, and S. Furuta, Extremely high T0-values (~450 K) of long-wavelength (~15 µm), low-threshold-current-density quantum-cascade lasers based on the indirect pump scheme, Appl. Phys. Lett, p.97, 2010.

K. Ohtani, M. Beck, M. J. Süess, J. Faist, A. M. Andrews et al., Far-Infrared Quantum Cascade Lasers Operating in the AlAs Phonon Reststrahlen Band, ACS Photonics, vol.3, pp.2280-2284, 2016.

M. Rochat, D. Hofstetter, M. Beck, and J. Faist, Long-wavelength (lambda approximate to 16 µm), room-temperature, single-frequency quantum-cascade lasers based on a bound-to-continuum transition, Appl. Phys. Lett, vol.79, pp.4271-4273, 2001.

P. Fuchs, J. Semmel, J. Friedl, S. Hoefling, J. Koeth et al., Distributed feedback quantum cascade lasers at 13.8 µm on indium phosphide, Appl. Phys. Lett, 2011.

Z. Loghmari, M. Bahriz, D. D. Thomas, A. Meguekam, H. N. Van et al., Room temperature continuous wave operation of InAs/AlSb-based quantum cascade laser at approximate to 11 µm, Electron. Lett, vol.54, pp.1045-1046, 2018.

A. N. Baranov, M. Bahriz, and R. Teissier, Room temperature continuous wave operation of InAs-based quantum cascade lasers at 15 µm, Opt. Express, vol.24, pp.18799-18806, 2016.

Z. Loghmari, M. Bahriz, A. Meguekam, R. Teissier, and A. N. Baranov, InAs-based quantum cascade lasers emitting close to 25 µm, Electron. Lett, vol.55, pp.144-145, 2019.

J. S. Yu, S. Slivken, S. R. Darvish, A. Evans, B. Gokden et al., High-power, room-temperature, and continuous-wave operation of distributed-feedback quantum-cascade lasers at lambda similar to 4.8 µm, Appl. Phys. Lett, vol.87, 2005.

I. Orfanos, T. Sphicopoulos, A. Tsigopoulos, C. Caroubalos, and . Tractable, Above-Threshold Model for the Design of Dfb and Phase-Shifted Dfb Lasers, IEEE J. Quantum Electron, vol.27, pp.946-956, 1991.

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai et al., Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature, Appl. Phys. Lett, vol.100, 2012.

D. Wang, J. Zhang, F. Cheng, Y. Zhao, N. Zhuo et al., Stable Single-Mode Operation of Distributed Feedback Quantum Cascade Laser by Optimized Reflectivity Facet Coatings, Nanoscale Res. Lett, vol.13, 2018.

M. Carras, M. Garcia, X. Marcadet, O. Parillaud, A. De-rossi et al., Top grating index-coupled distributed feedback quantum cascade lasers, Appl. Phys. Lett, vol.93, 2008.

D. Chastanet, A. Bousseksou, G. Lollia, M. Bahriz, F. H. Julien et al., High temperature, single mode, long infrared (lambda = 17.8 µm) InAs-based quantum cascade lasers, Appl. Phys. Lett, vol.105, 2014.