H. Rhee, P. Zou, and N. D. Udeshi, Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging, Science, vol.339, pp.1328-1359, 2013.

S. S. Lam, J. D. Martell, and K. J. Kamer, Directed evolution of APEX2 for electron microscopy and proximity labeling, Nat Methods, vol.12, pp.51-55, 2015.

S. Markmiller, S. Soltanieh, and K. L. Server, Context-dependent and diseasespecific diversity in protein interactions within stress granules, Cell, vol.172, pp.590-594, 2018.

K. Bersuker, C. Peterson, and M. To, A Proximity labeling strategy provides insights into the composition and dynamics of lipid droplet proteomes, Dev Cell, vol.44, pp.97-112, 2018.

C. L. Chen, Y. Hu, and N. D. Udeshi, Proteomic mapping in live Drosophila tissues using an engineered ascorbate peroxidase, Proc Natl Acad Sci, vol.112, pp.12093-98, 2015.

V. Hung, P. Zou, and H. Rhee, Proteomic mapping of the human mitochondrial intermembrane space in live cells via ratiometric APEX tagging, Mol Cell, vol.55, pp.332-373, 2014.

S. Tyanova, T. Temu, and J. Cox, The MaxQuant computational platform for mass spectrometry-based shotgun proteomics, Nat Protoc, vol.11, pp.2301-2320, 2016.

H. Choi, B. Larsen, and Z. Y. Lin, SAINT: probabilistic scoring of affinity purification-mass spectrometry data, Nat Methods, vol.8, pp.70-73, 2011.

O. Söderberg, M. Gullberg, and M. Jarvius, Direct observation of individual endogenous protein complexes in situ by proximity ligation, Nat Methods, vol.3, p.0, 2006.

O. Söderberg, K. Leuchowius, and M. Gullberg, Characterizing proteins and their interactions in cells and tissues using the in situ proximity ligation assay, Methods San Diego Calif, vol.45, pp.227-259, 2008.

M. A. Bobrich, S. A. Schwabe, and A. Brobeil, PTPIP51: a new interaction partner of the insulin receptor and PKA in adipose tissue, J Obes, p.476240, 2013.

C. Poulard, I. Treilleux, and E. Lavergne, Activation of rapid oestrogen signalling in aggressive human breast cancers, EMBO Mol Med, vol.4, pp.1200-1213, 2012.

M. A. Smith, R. Hall, and K. Fisher, Annotation of human cancers with EGFR signaling-associated protein complexes using proximity ligation assays, Sci Signal, vol.8, p.4, 2015.

R. B. Sekar and A. Periasamy, Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations, J Cell Biol, vol.160, pp.629-662, 2003.

Y. Xu, D. W. Piston, and C. H. Johnson, A bioluminescence resonance energy transfer (BRET) system: application to interacting circadian clock proteins, Proc Natl Acad Sci, vol.96, pp.151-157, 1999.

C. Couturier and B. Deprez, Setting up a bioluminescence resonance energy transfer high throughput screening assay to search for protein/protein interaction inhibitors in mammalian cells, Front Endocrinol, vol.3, p.100, 2012.

A. Malovannaya, R. B. Lanz, and S. Y. Jung, Analysis of the human endogenous coregulator complexome, Cell, vol.145, pp.787-99, 2011.

J. F. Rual, K. Venkatesan, and T. Hao, Towards a proteome-scale map of the human protein-protein interaction network, Nature, vol.437, pp.1173-1181, 2005.

U. Stelzl, U. Worm, and M. Lalowski, A human protein-protein interaction network: a resource for annotating the proteome, Cell, vol.122, pp.957-68, 2005.

A. Vinayagam, U. Stelzl, and R. Foulle, A directed protein interaction network for investigating intracellular signal transduction, Sci Signal, vol.4, p.8, 2011.

J. Wang, K. Huo, and L. Ma, Toward an understanding of the protein interaction network of the human liver, Mol Syst Biol, vol.7, p.536, 2011.

T. Rolland, M. Ta?an, and B. Charloteaux, A proteome-scale map of the human interactome network, Cell, vol.159, pp.1212-1238, 2014.

J. P. Lambert, M. Tucholska, and C. Go, Proximity biotinylation and affinity purification are complementary approaches for the interactome mapping of chromatin-associated protein complexes, J Proteomics, vol.118, pp.81-94, 2015.

M. T. Mackmull, B. Klaus, and I. Heinze, Landscape of nuclear transport receptor cargo specificity, Mol Syst Biol, vol.13, p.962, 2017.

J. Y. Youn, W. H. Dunham, and S. J. Hong, High-density proximity mapping reveals the subcellular organization of mRNA-associated granules and bodies, Mol Cell, vol.69, pp.517-549, 2018.

J. Jing, L. He, and A. Sun, Proteomic mapping of ER-PM junctions identifies STIMATE as a regulator of Ca 2+ influx, Nat Cell Biol, vol.17, pp.1339-1386, 2015.

D. U. Mick, R. B. Rodrigues, and R. D. Leib, Proteomics of primary cilia by proximity labeling, Dev Cell, vol.35, pp.497-512, 2015.

. Re?fe?rences-2.-have-s-ten, S. Boulon, Y. Ahmad, and A. I. Lamond, Mass spectrometry-based immuno-precipitation proteomics -the user's guide, Proteomics, vol.11, pp.1153-59, 2011.

M. Y. Hein, N. C. Hubner, and I. Poser, A human interactome in three quantitative dimensions organized by stoichiometries and abundances, Cell, vol.163, pp.712-735, 2015.

R. M. Ewing, P. Chu, and F. Elisma, Large-scale mapping of human protein-protein interactions by mass spectrometry, Mol Syst Biol, vol.3, p.89, 2007.

E. L. Huttlin, R. J. Bruckner, and J. A. Paulo, Architecture of the human interactome defines protein communities and disease networks, Nature, vol.545, pp.505-514, 2017.

E. L. Huttlin, L. Ting, and R. J. Bruckner, The BioPlex network: a systematic exploration of the human interactome, Cell, vol.162, pp.425-465, 2015.

E. Gerace and D. Moazed, Affinity purification of protein complexes using TAP tags, Methods Enzymol, vol.559, pp.37-52, 2015.

S. Fields and O. Song, A novel genetic system to detect protein-protein interactions, Nature, vol.340, pp.245-291, 1989.

A. Hamdi and P. Colas, Yeast two-hybrid methods and their applications in drug discovery, Trends Pharmacol Sci, vol.33, pp.109-127, 2012.

P. Uetz, L. Giot, and G. Cagney, A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae, Nature, vol.403, pp.623-650, 2000.

T. Ito, T. Chiba, and R. Ozawa, A comprehensive two-hybrid analysis to explore the yeast protein interactome, Proc Natl Acad Sci, vol.98, pp.4569-74, 2001.

C. Tourette, B. Li, and R. Bell, A large scale Huntingtin protein interaction network implicates Rho GTPase signaling pathways in Huntington disease, J Biol Chem, vol.289, pp.6709-6735, 2014.

H. Shahheydari, S. Frost, and B. J. Smith, Identification of PLP2 and RAB5C as novel TPD52 binding partners through yeast two-hybrid screening, Mol Biol Rep, vol.41, pp.4565-72, 2014.

H. Huang, B. M. Jedynak, and J. S. Bader, Where have all the interactions gone? Estimating the coverage of two-hybrid protein interaction maps, PLoS Comput Biol, vol.3, p.214, 2007.

J. Zhang and S. Lautar, A Yeast three-hybrid method to clone ternary protein complex components, Anal Biochem, vol.242, pp.68-72, 1996.

N. Johnsson and A. Varshavsky, Split ubiquitin as a sensor of protein interactions in vivo, Proc Natl Acad Sci, vol.91, pp.10340-10384, 1994.

A. Brückner, C. Polge, and N. Lentze, Yeast two-hybrid, a powerful tool for systems biology, Int J Mol Sci, vol.10, pp.2763-88, 2009.

A. Gingras, K. T. Abe, and B. Raught, Getting to know the neighborhood: using proximity-dependent biotinylation to characterize protein complexes and map organelles, Curr Opin Chem Biol, vol.48, pp.44-54, 2018.

D. I. Kim and K. J. Roux, Filling the void: proximity-based labeling of proteins in living cells, Trends Cell Biol, vol.26, pp.804-821, 2016.

K. J. Roux, D. I. Kim, and M. Raida, A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells, J Cell Biol, vol.196, pp.801-811, 2012.

D. I. Kim, B. Kc, and W. Zhu, Probing nuclear pore complex architecture with proximity-dependent biotinylation, Proc Natl Acad Sci, vol.111, pp.2453-61, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01059687

A. L. Couzens, J. Knight, and M. J. Kean, Protein interaction network of the mammalian Hippo pathway reveals mechanisms of kinase-phosphatase interactions, Sci Signal, vol.6, p.15, 2013.

G. D. Gupta, E. Coyaud, and J. Gonçalves, A Dynamic protein interaction landscape of the human centrosome-cilium interface, Cell, vol.163, pp.1484-99, 2015.

B. R. Kim, E. Coyaud, and E. Laurent, Identification of the SOX2 interactome by BioID reveals EP300 as a mediator of SOX2-dependent squamous differentiation and lung squamous cell carcinoma growth, Mol Cell Proteomics, vol.16, pp.1864-88, 2017.

D. Dingar, M. Kalkat, and P. K. Chan, BioID identifies novel c-MYC interacting partners in cultured cells and xenograft tumors, J Proteomics, vol.118, pp.95-111, 2015.

N. Meyer and L. Z. Penn, Reflecting on 25 years with MYC, Nat Rev Cancer, vol.8, pp.976-90, 2008.

J. Kehrer, F. Frischknecht, and G. R. Mair, Proteomic analysis of the Plasmodium berghei gametocyte egressome and vesicular bioID of osmiophilic body proteins identifies merozoite TRAP-like protein (MTRAP) as an essential factor for parasite transmission, Mol Cell Proteomics MCP, vol.15, pp.2852-62, 2016.

Q. Lin, Z. Zhou, and W. Luo, Screening of proximal and interacting proteins in rice protoplasts by proximity-dependent biotinylation, Front Plant Sci, vol.8, p.749, 2017.

E. R. Lampugnani, R. H. Wink, and S. Persson, The toolbox to study protein-protein interactions in plants, Crit Rev Plant Sci, pp.1-27, 2018.

M. Khan, J. Y. Youn, and A. C. Gingras, planta proximity dependent biotin identification (BioID). Sci Rep, vol.8, p.9212, 2018.

T. C. Branon, J. A. Bosch, and A. D. Sanchez, Efficient proximity labeling in living cells and organisms with TurboID, Nat Biotechnol, vol.36, pp.880-887, 2018.

X. Liu, K. Salokas, and F. Tamene, An AP-MS-and BioID-compatible MAC-tag enables comprehensive mapping of protein interactions and subcellular localizations, Nat Commun, vol.9, p.1188, 2018.

I. M. Schopp, A. Ramirez, C. C. Debeljak, and J. , Split-BioID a conditional proteomics approach to monitor the composition of spatiotemporally defined protein complexes, Nat Commun, vol.8, p.15690, 2017.

D. Munter, S. Görnemann, J. Derua, and R. , Split-BioID: a proximity biotinylation assay for dimerization-dependent protein interactions, FEBS Lett, vol.591, pp.415-439, 2017.

P. J. Tire?s-À and . Solassol,