B. D. Manning, A. Toker, . Akt/pkb, and . Signaling, Navigating the Network, Cell, vol.169, pp.381-405, 2017.

E. C. Lien, C. C. Dibble, and A. Toker, PI3K signaling in cancer: beyond AKT. Current opinion in cell biology, vol.45, pp.62-71, 2017.

D. R. Alessi, S. R. James, C. P. Downes, A. B. Holmes, P. R. Gaffney et al., Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha, Current biology : CB, vol.7, pp.261-270, 1997.

D. D. Sarbassov, D. A. Guertin, S. M. Ali, and D. M. Sabatini, Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex, Science, vol.307, pp.1098-101, 2005.

M. Laplante and D. M. Sabatini, An emerging role of mTOR in lipid biosynthesis, Current biology : CB, vol.19, pp.1046-52, 2009.

D. C. Fingar and J. Blenis, Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression, Oncogene, vol.23, pp.3151-71, 2004.

I. Tato, R. Bartrons, F. Ventura, and J. L. Rosa, Amino acids activate mammalian target of rapamycin complex 2 (mTORC2) via PI3K/Akt signaling, J Biol Chem, vol.286, pp.6128-6170, 2011.

M. Laplante and D. M. Sabatini, mTOR signaling at a glance, J Cell Sci, vol.122, pp.3589-94, 2009.

E. Kim, P. Goraksha-hicks, L. Li, T. P. Neufeld, and K. L. Guan, Regulation of TORC1 by Rag GTPases in nutrient response, Nat Cell Biol, vol.10, pp.935-980, 2008.

J. Kim, M. Kundu, B. Viollet, and K. L. Guan, AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1, Nat Cell Biol, vol.13, pp.132-173, 2011.

D. A. Cross, D. R. Alessi, P. Cohen, M. Andjelkovich, and B. A. Hemmings, Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B, Nature, vol.378, pp.785-794, 1995.

J. A. Diehl, M. Cheng, M. F. Roussel, and C. J. Sherr, Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization, Genes & development, vol.12, pp.3499-511, 1998.

E. A. Nollen and R. I. Morimoto, Chaperoning signaling pathways: molecular chaperones as stress-sensing 'heat shock' proteins, J Cell Sci, vol.115, pp.2809-2825, 2002.

H. Pei, L. Li, B. L. Fridley, G. D. Jenkins, K. R. Kalari et al., FKBP51 affects cancer cell response to chemotherapy by negatively regulating Akt, Cancer Cell, vol.16, pp.259-66, 2009.

S. Sato, N. Fujita, and T. Tsuruo, Modulation of Akt kinase activity by binding to Hsp90, Proc Natl Acad Sci U S A, vol.97, pp.10832-10839, 2000.

A. Harikishore and H. S. Yoon, Immunophilins: Structures, Mechanisms and Ligands, Current molecular pharmacology, vol.9, pp.37-47, 2015.

C. Desmetz, C. Bascoul-mollevi, P. Rochaix, P. J. Lamy, A. Kramar et al., Identification of a new panel of serum autoantibodies associated with the presence of in situ carcinoma of the breast in younger women, Clin Cancer Res, vol.15, pp.4733-4774, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01937301

B. K. Ward, P. J. Mark, D. M. Ingram, R. F. Minchin, and T. Ratajczak, Expression of the estrogen receptor-associated immunophilins, cyclophilin 40 and FKBP52, in breast cancer, Breast Cancer Res Treat, vol.58, pp.267-80, 1999.

P. Kumar, P. J. Mark, B. K. Ward, R. F. Minchin, and T. Ratajczak, Estradiol-regulated expression of the immunophilins cyclophilin 40 and FKBP52 in MCF-7 breast cancer cells, Biochem Biophys Res Commun, vol.284, pp.219-244, 2001.

J. Solassol, A. Mange, and T. Maudelonde, FKBP family proteins as promising new biomarkers for cancer. Current opinion in pharmacology, vol.11, pp.320-325, 2011.

A. G. Erlejman, D. Leo, S. A. Mazaira, G. I. Molinari, A. M. Camisay et al., NF-kappaB transcriptional activity is modulated by FK506-binding proteins FKBP51 and FKBP52: a role for peptidyl-prolyl isomerase activity, J Biol Chem, vol.289, pp.26263-76, 2014.

J. M. Pare, P. Lapointe, and T. C. Hobman, Hsp90 cochaperones p23 and FKBP4 physically interact with hAgo2 and activate RNA interference-mediated silencing in mammalian cells, Molecular biology of the cell, vol.24, pp.2303-2313, 2013.

B. Chambraud, E. Sardin, J. Giustiniani, O. Dounane, M. Schumacher et al., A role for FKBP52 in Tau protein function, Proc Natl Acad Sci, vol.107, pp.2658-63, 2010.

K. J. Roux, D. I. Kim, M. Raida, and B. Burke, A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells, J Cell Biol, vol.196, pp.801-811, 2012.

E. Coyaud, M. Mis, E. M. Laurent, W. H. Dunham, A. L. Couzens et al., BioID-based Identification of Skp Cullin F-box (SCF)beta-TrCP1/2 E3 Ligase Substrates, Mol Cell Proteomics, vol.14, pp.1781-95, 2015.

D. Kessner, M. Chambers, R. Burke, D. Agus, and P. Mallick, ProteoWizard: open source software for rapid proteomics tools development, Bioinformatics, vol.24, pp.2534-2540, 2008.

R. Craig and R. C. Beavis, TANDEM: matching proteins with tandem mass spectra, Bioinformatics, vol.20, pp.1466-1473, 2004.

P. G. Pedrioli, Trans-proteomic pipeline: a pipeline for proteomic analysis, Methods Mol Biol, vol.604, pp.213-251, 2010.

G. Liu, J. Zhang, B. Larsen, C. Stark, A. Breitkreutz et al., ProHits: integrated software for mass spectrometry-based interaction proteomics, Nat Biotechnol, vol.28, pp.1015-1022, 2010.

G. Teo, G. Liu, J. Zhang, A. I. Nesvizhskii, A. C. Gingras et al., SAINTexpress: improvements and additional features in Significance Analysis of INTeractome software, J Proteomics, vol.100, pp.37-43, 2014.

B. Gyorffy, A. Lanczky, A. C. Eklund, C. Denkert, J. Budczies et al., An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients, Breast Cancer Res Treat, vol.123, pp.725-756, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00520003

W. Huang-da, B. T. Sherman, and R. A. Lempicki, Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources, Nat Protoc, vol.4, pp.44-57, 2009.

D. Szklarczyk, A. Franceschini, S. Wyder, K. Forslund, D. Heller et al., STRING v10: protein-protein interaction networks, integrated over the tree of life, Nucleic Acids Res, vol.43, pp.447-52, 2015.

A. Chatr-aryamontri, R. Oughtred, L. Boucher, J. Rust, C. Chang et al., The BioGRID interaction database: 2017 update, Nucleic Acids Res, vol.45, pp.369-79, 2017.

S. Orchard, M. Ammari, B. Aranda, L. Breuza, L. Briganti et al., The MIntAct project--IntAct as a common curation platform for 11 molecular interaction databases, Nucleic Acids Res, vol.42, pp.358-63, 2014.

S. Jean and A. A. Kiger, Classes of phosphoinositide 3-kinases at a glance, J Cell Sci, vol.127, pp.923-931, 2014.

A. Nakamura, M. Naito, T. Tsuruo, and N. Fujita, Freud-1/Aki1, a novel PDK1-interacting protein, functions as a scaffold to activate the PDK1/Akt pathway in epidermal growth factor signaling, Mol Cell Biol, vol.28, pp.5996-6009, 2008.

G. L. Razidlo, D. Katafiasz, and G. S. Taylor, Myotubularin regulates Akt-dependent survival signaling via phosphatidylinositol 3-phosphate, J Biol Chem, vol.286, pp.20005-20024, 2011.

C. Behrends, M. E. Sowa, S. P. Gygi, and J. W. Harper, Network organization of the human autophagy system, Nature, vol.466, pp.68-76, 2010.

Y. Mamane, E. Petroulakis, L. Rong, K. Yoshida, and L. W. Ler, Sonenberg N. eIF4E--from translation to transformation, Oncogene, vol.23, pp.3172-3181, 2004.

J. E. Skeen, P. T. Bhaskar, C. C. Chen, W. S. Chen, X. D. Peng et al., Akt deficiency impairs normal cell proliferation and suppresses oncogenesis in a p53-independent and mTORC1-dependent manner, Cancer Cell, vol.10, pp.269-80, 2006.

R. J. Dowling, I. Topisirovic, A. T. Bidinosti, M. Fonseca, B. D. Petroulakis et al., mTORC1-mediated cell proliferation, but not cell growth, controlled by the 4E-BPs, Science, vol.328, pp.1172-1178, 2010.

D. A. Peattie, M. W. Harding, M. A. Fleming, M. T. Decenzo, J. A. Lippke et al., Expression and characterization of human FKBP52, an immunophilin that associates with the 90-kDa heat shock protein and is a component of steroid receptor complexes, Proc Natl Acad Sci, vol.89, pp.10974-10982, 1992.

S. Periyasamy, M. Warrier, M. P. Tillekeratne, W. Shou, and E. R. Sanchez, The immunophilin ligands cyclosporin A and FK506 suppress prostate cancer cell growth by androgen receptor-dependent and -independent mechanisms, Endocrinology, vol.148, pp.4716-4742, 2007.

J. F. Lin, J. Xu, H. Y. Tian, X. Gao, Q. X. Chen et al., Identification of candidate prostate cancer biomarkers in prostate needle biopsy specimens using proteomic analysis, Int J Cancer, vol.121, pp.2596-605, 2007.

Y. Liu, C. Li, Z. Xing, X. Yuan, Y. Wu et al., Proteomic mining in the dysplastic liver of WHV/c-myc mice--insights and indicators for early hepatocarcinogenesis, FEBS J, vol.277, pp.4039-53, 2010.

J. Cheung-flynn, V. Prapapanich, M. B. Cox, D. L. Riggs, C. Suarez-quian et al., Physiological role for the cochaperone FKBP52 in androgen receptor signaling, Mol Endocrinol, vol.19, pp.1654-66, 2005.

D. L. Riggs, P. J. Roberts, S. C. Chirillo, J. Cheung-flynn, V. Prapapanich et al., The Hsp90-binding peptidylprolyl isomerase FKBP52 potentiates glucocorticoid signaling in vivo, EMBO J, vol.22, pp.1158-67, 2003.

Z. Yang, I. M. Wolf, H. Chen, S. Periyasamy, Z. Chen et al., FK506-binding protein 52 is essential to uterine reproductive physiology controlled by the progesterone receptor A isoform, Mol Endocrinol, vol.20, pp.2682-94, 2006.

R. Varnaite and S. A. Macneill, Meet the neighbors: Mapping local protein interactomes by proximity-dependent labeling with BioID, Proteomics, vol.16, pp.2503-2521, 2016.

A. Flynn and C. G. Proud, The role of eIF4 in cell proliferation. Cancer surveys, vol.27, pp.293-310, 1996.

R. L. Barent, S. C. Nair, D. C. Carr, Y. Ruan, R. A. Rimerman et al., Analysis of FKBP51/FKBP52 chimeras and mutants for Hsp90 binding and association with progesterone receptor complexes, Mol Endocrinol, vol.12, pp.342-54, 1998.

T. H. Davies, Y. M. Ning, and E. R. Sanchez, A new first step in activation of steroid receptors: hormone-induced switching of FKBP51 and FKBP52 immunophilins, J Biol Chem, vol.277, pp.4597-600, 2002.

M. D. Galigniana, A. G. Erlejman, M. Monte, C. Gomez-sanchez, and G. Piwien-pilipuk, The hsp90-FKBP52 complex links the mineralocorticoid receptor to motor proteins and persists bound to the receptor in early nuclear events, Mol Cell Biol, vol.30, pp.1285-98, 2010.

T. Bouwmeester, A. Bauch, H. Ruffner, P. O. Angrand, G. Bergamini et al., A physical and functional map of the human TNF-alpha/NF-kappa B signal transduction pathway, Nat Cell Biol, vol.6, pp.97-105, 2004.

P. Liu, W. Gan, Y. R. Chin, K. Ogura, J. Guo et al., PtdIns(3,4,5)P3-Dependent Activation of the mTORC2 Kinase Complex, Cancer discovery, vol.5, pp.1194-209, 2015.

A. C. Gingras, K. T. Abe, and B. Raught, Getting to know the neighborhood: using proximity-dependent biotinylation to characterize protein complexes and map organelles, Curr Opin Chem Biol, vol.48, pp.44-54, 2019.

B. Beganton, I. Solassol, A. Mange, and J. Solassol, Protein interactions study through proximity-labeling, Expert Rev Proteomics, vol.2019, pp.1-10

T. Branon, J. A. Bosch, A. D. Sanchez, N. D. Udeshi, T. Svinkina et al., Directed evolution of TurboID for efficient proximity labeling in living cells and organisms, Nature Biotecnology, 2018.