M. Christie, Predation on larvae of Anopheles gambiae Giles, J Trop Med Hyg, vol.61, pp.168-76, 1958.

, WHO. World malaria report, 2018.

W. Takken, Chemical signals affecting mosquito behaviour, Invert Rep Dev, vol.36, pp.67-71, 1999.

H. M. Ferguson, A. Dornhaus, A. Beeche, C. Borgemeister, M. Gottlieb et al., Ecology: a prerequisite for malaria elimination and eradication, PLoS Med, vol.7, p.1000303, 2010.

R. E. Harbach, Mosquito taxonomic inventory, 2019.

K. S. Costanzo, E. J. Muturi, and B. W. Alto, Trait-mediated effects of predation across life-history stages in container mosquitoes, Ecol Entomol, vol.36, pp.605-620, 2011.

S. M. Muriu, T. Coulson, C. M. Mbogo, and H. Godfray, Larval density dependence in Anopheles gambiae s.s., the major African vector of malaria, J Anim Ecol, vol.82, pp.166-74, 2013.

V. O. Van-uitregt, T. P. Hurst, and R. S. Wilson, Reduced size and starvation resistance in adult mosquitoes, Aedes notoscriptus, exposed to predation cues as larvae, J Anim Ecol, vol.81, pp.108-123, 2012.

A. Telang, A. A. Qayum, A. Parker, B. R. Sacchetta, and G. R. Byrnes, Larval nutritional stress affects vector immune traits in adult yellow fever mosquito Aedes aegypti (Stegomyia aegypti), Med Vet Entomol, vol.26, pp.271-81, 2012.

L. Shapiro, C. C. Murdock, G. R. Jacobs, R. J. Thomas, and M. B. Thomas, Larval food quantity affects the capacity of adult mosquitoes to transmit human malaria, Proc R Soc Biol Sci, vol.283, 2016.

J. Bara, Z. Rapti, C. E. Cáceres, and E. J. Muturi, Effect of larval competition on extrinsic incubation period and vectorial capacity of Aedes albopictus for Dengue virus, PLoS ONE, vol.10, p.126703, 2015.

O. Roux, A. Vantaux, B. Roche, K. B. Yameogo, K. R. Dabiré et al., Evidence for carry-over effects of predator exposure on pathogen transmission potential, Proc R Soc Biol Sci, vol.282, p.2430, 2015.

A. Vantaux, T. Lefèvre, A. Cohuet, K. R. Dabiré, B. Roche et al., Larval nutritional stress affects vector life history traits and human malaria transmission, Sci Rep, vol.6, p.36778, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01409057

F. Keesing, R. D. Holt, and R. S. Ostfeld, Effects of species diversity on disease risk, Ecol Lett, vol.9, pp.485-98, 2006.

P. Johnson, R. B. Hartson, D. J. Larson, and D. R. Sutherland, Diversity and disease: community structure drives parasite transmission and host fitness, Ecol Lett, vol.11, pp.1017-1043, 2008.

D. Block, M. Stoks, and R. , Fitness effects from egg to reproduction: bridging the life history transition, Ecology, vol.86, pp.185-97, 2005.

J. A. Crean, K. Monro, and D. J. Marshall, Fitness consequences of larval traits persist across the metamorphic boundary, Evolution, vol.65, pp.3079-89, 2011.

M. W. Service, Mortalities of immature stages of species B of Anopheles gambiae complex in Kenya-comparison between rice fields and temporary pools, identification of predators, and effects of insecticidal spraying, J Med Entomol, vol.13, pp.535-580, 1977.

M. Mogi, T. Okazawa, I. Miyagi, S. Sucharit, W. Tumrasvin et al., Development and survival of anopheline immatures (Diptera: Culicidae) in rice fields in northern Thailand, J Med Entomol, vol.23, pp.244-50, 1986.

E. J. Kweka, G. F. Zhou, T. M. Gilbreath, Y. Afrane, M. Nyindo et al., Predation efficiency of Anopheles gambiae larvae by aquatic predators in western Kenya highlands, Parasit Vectors, vol.4, issue.7, 2011.

A. Howard, G. Zhou, and F. X. Omlin, Malaria mosquito control using edible fish in western Kenya: preliminary findings of a controlled study, BMC Public Health, vol.7, p.199, 2007.

S. Y. Ohba, H. Kawada, G. O. Dida, D. Juma, G. Sonye et al., Predators of Anopheles gambiae sensu lato (Diptera: Culicidae) larvae in wetlands, western Kenya: confirmation by polymerase chain reaction method, J Med Entomol, vol.47, pp.783-790, 2010.

F. H. Collins and R. K. Washino, Biological control of mosquitoes, pp.25-41, 1985.

M. W. Service, Mortalities of the larvae of Anopheles gambiae Giles complex and detection of predators by the precipitin test, Bull Entomol Res, vol.62, pp.359-69, 1973.

C. Koenraadt and W. Takken, Cannibalism and predation among larvae of the Anopheles gambiae complex, Med Vet Entomol, vol.17, pp.61-67, 2003.

E. Schielke, C. Costantini, G. Carchini, N. Sagnon, J. Powell et al., Short report: development of a molecular assay to detect predation on Anopheles gambiae complex larval stages, Am J Trop Med Hyg, vol.77, pp.464-470, 2007.

M. E. Morales, D. M. Wesson, I. W. Sutherland, D. E. Impoinvil, C. M. Mbogo et al., Determination of Anopheles gambiae larval DNA in the gut of insectivorous dragonfly (Libellulidae) nymphs by polymerase chain reaction, J Am Mosquito Contr, vol.19, pp.163-168, 2003.

D. W. Jenkins, Pathognes, parasites and predators of medically important arthropods. Annotated list and bibliography, 1964.

M. Mogi, Insects and other invertebrate predators, J Am Mosquito Contr, vol.23, pp.93-109, 2007.

E. Shaalan and D. V. Canyon, Aquatic insect predators and mosquito control, Trop Biomed, vol.26, pp.223-61, 2009.

G. Chandra, I. Bhattacharjee, S. N. Chatterjee, and A. Ghosh, Mosquito control by larvivorous fish, Indian J Med Res, vol.127, pp.13-27, 2008.

G. G. Marten, J. W. Reid, and . Cyclopoid, J Am Mosquito Contr, vol.23, pp.65-92, 2007.

H. Quiroz-martinez and A. Rodriguez-castro, Aquatic insects as predators of mosquito larvae, J Am Mosquito Contr, vol.23, pp.110-117, 2007.

S. Y. Ohba, T. Huynh, L. L. Le, H. T. Ngoc, S. L. Hoang et al., Mosquitoes and their potential predators in rice agroecosystems of the Mekong delta, southern Vietnam, J Am Mosquito Contr, vol.27, pp.384-92, 2011.

V. Robert, H. P. Awono-ambene, and J. Thioulouse, Ecology of larval mosquitoes, with special reference to Anopheles arabiensis (Diptera: Culcidae) in market-garden wells in urban Dakar, Senegal, J Med Entomol, vol.35, pp.948-55, 1998.
URL : https://hal.archives-ouvertes.fr/hal-00428477

K. Raghavendra, P. Sharma, and A. P. Dash, Biological control of mosquito populations through frogs: opportunities & constrains, Indian J Med Res, vol.128, pp.22-27, 2008.

G. H. Pyke, A review of the biology of Gambusia affinis and G. holbrooki, Rev Fish Biol Fisher, vol.15, pp.339-65, 2005.

G. H. Pyke, Plague minnow or mosquito fish? A review of the biology and impacts of introduced Gambusia species, Annu Rev Ecol Evol Syst, vol.39, pp.171-91, 2008.

D. P. Walshe, P. Garner, A. Adeel, A. A. Pyke, G. H. Burkot et al., Larvivorous fish for preventing malaria transmission. Cochrane Database Syst Rev, 2013.

S. K. Ghosh, S. N. Tiwari, T. S. Sathyanarayan, T. R. Sampath, V. P. Sharma et al., Larvivorous fish in wells target the malaria vector sibling species of the Anopheles culicifacies complex in villages in Karnataka, Trans R Soc Trop Med Hyg, vol.99, pp.101-106, 2005.

S. K. Ghosh and A. P. Dash, Larvivorous fish against malaria vectors: a new outlook, Trans R Soc Trop Med Hyg, vol.101, pp.1063-1067, 2007.

R. W. El-sabaawi, T. C. Frauendorf, P. S. Marques, R. A. Mackenzie, L. R. Manna et al., Biodiversity and ecosystem risks arising from using guppies to control mosquitoes, Biol Lett, vol.12, 2016.

G. Chandra, A. Ghosh, I. Bhattacharjee, and S. K. Ghosh, Use of larvivorous fish in biological and environmental control of disease vectors, pp.25-41, 2013.

J. R. Bence, Indirect effects and biological control of mosquitoes by mosquitofish, J Appl Ecol, vol.25, pp.505-526, 1988.

A. Kumar, V. P. Sharma, P. K. Sumodan, and D. Thavaselvam, Field trials of biolarvicide Bacillus thuringiensis var. israelensis strain 164 and the larvivorous fish Aplocheilus blocki against Anopheles stephensi for malaria control in Goa, India. J Am Mosquito Contr, vol.14, pp.457-62, 1998.

H. H. Yap, Biological control of mosquitoes, especially malaria vectors, Anopheles species, SE Asian J Trop Med, vol.16, pp.163-71, 1985.

S. K. Muiruri, J. M. Mwangangi, J. Carlson, E. W. Kabiru, E. Kokwaro et al., Effect of predation on Anopheles larvae by five sympatric insect families in coastal Kenya, J Vector Dis, vol.50, pp.45-50, 2013.

F. Darriet and J. M. Hougard, Etude en laboratoire de la biologie et des capacités prédatrices de l'Hétéroptère aquatique Ranatra parvipes vicina (Signoret, 1880) à l'encontre des larves de moustiques, Rev Hydrobiol Trop, vol.26, pp.305-316, 1993.

R. D. Lozano, M. H. Rodriguez, J. Jimenez, M. H. Avila, and C. Mallorca, Aquatic insects associated with Anopheles albimanus (Diptera: Culicidae) breeding sites in Southern Mexico, Environ Entomol, vol.26, pp.828-866, 1997.

M. Mogi, V. Memah, I. Miyagi, T. Toma, and D. T. Sembel, Mosquito (Diptera, Culicidae) and predator abundance in irrigated and rain-fed rice fields in north Sulawesi, Indonesia, J Med Entomol, vol.32, pp.361-368, 1995.

M. Mogi, T. Sunahara, and M. Selomo, Mosquito and aquatic predator communities in ground pools on lands deforested for rice field development in Central Sulawesi, Indonesia. J Am Mosquito Contr, vol.15, pp.92-99, 1999.

S. Munga, N. Minakawa, G. Zhou, A. K. Githeko, and G. Yan, Survivorship of immature stages of Anopheles gambiae s.l. (Diptera: culicidae) in natural habitats in western Kenya highlands, J Med Entomol, vol.44, pp.758-64, 2007.

A. Diabaté, R. K. Dabiré, K. Heidenberger, J. Crawford, W. O. Lamp et al., Evidence for divergent selection between the molecular forms of Anopheles gambiae: role of predation, BMC Evol Biol, vol.8, p.5, 2008.

L. E. Collins and A. Blackwell, The biology of Toxorhynchites mosquitoes and their potential as biocontrol agents, Biocontrol, vol.21, pp.105-121, 2000.

W. A. Steffan and N. L. Evenhuis, Biology of Toxorhynchites, Annu Rev Entomol, vol.26, pp.159-81, 1981.

D. A. Focks, Toxorhynchites-a biological control agent of containerbreeding mosquitoes, Am Mosquito Controller Bull, vol.6, pp.1-9, 1982.

W. E. Bradshaw and C. M. Holzapfel, Seasonal development of tree-hole mosquitoes (Diptera: Culicidae) and chaoborids in relation to weather and predation, J Med Entomol, vol.21, pp.366-78, 1984.

W. F. Zuharah, N. Fadzly, N. A. Yusof, and H. Dieng, Risky behaviors: effects of Toxorhynchites splendens (Diptera: Culicidae) predator on the behavior of three mosquito species, J Insect Sci, vol.15, p.128, 2015.

D. A. Focks and . Toxorhynchites, Biological control of mosquitoes. California: American Mosquito Control Association, pp.42-47, 1985.

M. K. Toohey, M. S. Goettel, M. Takagi, R. C. Ram, G. Prakash et al., Field studies on the introduction of the mosquito predator Toxorhynchites amboinensis (Diptera: Culicidae) into Fiji, J Med Entomol, vol.2, pp.102-112, 1985.

E. J. Muturi, C. H. Kim, B. Jacob, S. Murphy, and R. J. Novak, Interspecies predation between Anopheles gambiae s.s. and Culex quinquefasciatus larvae, J Med Entomol, vol.47, pp.287-90, 2010.

S. N. Surendran, P. J. Jude, A. C. Thavaranjit, T. Eswaramohan, M. Vinobaba et al., Predatory efficacy of Culex (Lutzia) fuscanus on mosquito vectors of human diseases in Sri Lanka, J Am Mosquito Contr, vol.29, pp.168-70, 2013.

R. M. Kumar and T. R. Rao, Predation on mosquito larvae by Mesocyclops thermocyclopoides (Copepoda: Cyclopoida) in the presence of alternate prey, Int Rev Hydrobiol, vol.88, pp.570-81, 2003.

G. G. Marten, R. Astaiza, M. F. Suarez, C. Monje, and J. W. Reid, Natural control of larval Anopheles albimanus (Dipetra, Culicidae) by the predator Mesocyclops (Copepoda, cyclopoida), J Med Entomol, vol.26, pp.624-631, 1989.

G. G. Marten, M. Nguyen, and G. Ngo, Copepod predation on Anopheles quadrimaculatus larvae in rice fields, J Vector Ecol, vol.25, pp.1-6, 2000.

D. Frisch and . Dormancy, dispersal and the survival of cyclopoid copepods (Cyclopoida, Copepoda) in a lowland floodplain, Freshwater Biol, vol.47, pp.1269-81, 2002.

C. M. Collins, J. Bonds, M. M. Quinlan, and J. D. Mumford, Effects of the removal or reduction in density of the malaria mosquito, Anopheles gambiae sl, on interacting predators and competitors in local ecosystems, Med Vet Entomol, vol.33, pp.1-15, 2019.

P. Nosil and B. J. Crespi, Experimental evidence that predation promotes divergence in adaptive radiation, Proc Natl Acad Sci USA, vol.103, pp.9090-9095, 2006.

M. D. Bentley and J. F. Day, Chemical ecology and behavioral aspects of mosquito oviposition, Annu Rev Entomol, vol.34, pp.401-422, 1989.

A. Afify and C. G. Galizia, Chemosensory cues for mosquito oviposition site selection, J Med Entomol, vol.52, pp.120-150, 2015.

A. Silberbush, S. Markman, E. Lewinsohn, E. Bar, J. E. Cohen et al., Predator-released hydrocarbons repel oviposition by a mosquito, Ecol Lett, vol.13, pp.1129-1167, 2010.

J. R. Vonesh and L. Blaustein, Predator-induced shifts in mosquito oviposition site selection: a meta-analysis and implications for vector control, Isr J Ecol Evol, vol.56, pp.263-79, 2010.

K. A. Angelon and J. W. Petranka, Chemicals of predatory mosquitofish (Gambusia affinis) influence selection of oviposition site by Culex mosquitoes, J Chem Ecol, vol.28, pp.797-806, 2002.

A. R. Van-dam and W. E. Walton, The effect of predatory fish exudates on the ovipostional behaviour of three mosquito species: Culex quinquefasciatus, Aedes aegypti and Culex tarsalis, Med Vet Entomol, vol.22, pp.399-404, 2008.

L. Blaustein, M. Kiflawi, A. Eitam, M. Mangel, and J. E. Cohen, Oviposition habitat selection in response to risk of predation in temporary pools: mode of detection and consistency across experimental venue, Oecologia, vol.138, pp.300-305, 2004.

G. Stav, L. Blaustein, and J. Margalith, Experimental evidence for predation risk sensitive oviposition by a mosquito, Culiseta longiareolata, Ecol Entomol, vol.24, pp.202-209, 1999.

S. Ohba, M. Ohtsuka, T. Sunahara, Y. Sonoda, E. Kawashima et al., Differential responses to predator cues between two mosquito species breeding in different habitats, Ecol Entomol, vol.37, pp.410-418, 2012.

A. Silberbush and W. J. Resetarits, Mosquito female response to the presence of larvivorous fish does not match threat to larvae, Ecol Entomol, vol.42, pp.595-600, 2017.

W. F. Zuharah and P. J. Lester, Can adults of the New Zealand mosquito Culex pervigilans (Bergorth) detect the presence of a key predator in larval habitats?, J Vector Ecol, vol.35, pp.100-105, 2010.

A. Silberbush and L. Blaustein, Mosquito females quantify risk of predation to their progeny when selecting an oviposition site, Funct Ecol, vol.25, pp.1091-1096, 2011.

S. Munga, N. Minakawa, G. F. Zhou, O. Barrack, A. K. Githeko et al., Effects of larval competitors and predators on oviposition site selection of Anopheles gambiae sensu stricto, J Med Entomol, vol.43, pp.221-225, 2006.

A. Warburg, R. Faiman, A. Shtern, A. Silberbush, S. Markman et al., Oviposition habitat selection by Anopheles gambiae in response to chemical cues by Notonecta maculata, J Vector Ecol, vol.36, pp.421-426, 2011.

M. Chobu, G. Nkwengulila, A. M. Mahande, B. J. Mwang?onde, and E. J. Kweka, Direct and indirect effect of predators on Anopheles gambiae sensu stricto, Acta Trop, vol.142, pp.131-138, 2015.

S. A. Juliano and L. Reminger, The relationship between vulnerability to predation and behavior of larval treehole mosquitoes: geographic and ontogenetic differences, Oikos, vol.63, pp.465-76, 1992.

M. Ferrari, F. Messier, and D. P. Chivers, Variable predation risk and the dynamic nature of mosquito antipredator responses to chemical alarm cues, Chemoecol, vol.17, pp.223-232, 2008.

G. Gimonneau, M. Pombi, R. K. Dabire, A. Diabate, S. Morand et al., Behavioural responses of Anopheles gambiae sensu stricto M and S molecular form larvae to an aquatic predator in Burkina Faso, Parasit Vectors, vol.5, p.11, 2012.

O. Roux, A. Diabate, and F. Simard, Larvae of cryptic species of Anopheles gambiae respond differently to cues of predation risk, Freshwater Biol, vol.58, pp.1178-89, 2013.

B. Kesavaraju and S. A. Juliano, Differential behavioral responses to waterborne cues to predation in two container-dwelling mosquitoes, Ann Entomol Soc Am, vol.97, pp.194-201, 2004.

G. Gimonneau, A. N. Bayibeki, T. Baldet, P. H. Awono-ambene, and F. Simard, Life history consequences of larval foraging depth differ between two competing Anopheles mosquitoes, Ecol Entomol, vol.40, pp.143-152, 2014.

B. Kesavaraju and S. A. Juliano, Nature of predation risk cues in container systems: mosquito responses to solid residues from predation, Ann Entomol Soc Am, vol.103, pp.1038-1083, 2010.

M. Ferrari, B. D. Wisenden, and D. P. Chivers, Chemical ecology of predatorprey interactions in aquatic ecosystems: a review and prospectus, Can J Zool, vol.88, pp.698-724, 2010.

O. Roux, A. Diabate, and F. Simard, Divergence in threat sensitivity among aquatic larvae of cryptic mosquito species, J Anim Ecol, vol.83, pp.702-713, 2014.

E. L. Preisser, D. I. Bolnick, and M. F. Benard, Scared to death? The effects of intimidation and consumption in predator-prey interactions, Ecology, vol.86, pp.501-510, 2005.

M. F. Benard, Predator-induced phenotypic plasticity in organisms with complex life histories, Annu Rev Ecol Evol Syst, vol.35, pp.651-73, 2004.

J. Lind and W. Cresswell, Determining the fitness consequences of antipredation behavior, Behav Ecol, vol.16, pp.945-56, 2005.

S. J. Mccauley, L. Rowe, and M. Fortin, The deadly effects of "nonlethal" predators, Ecology, vol.92, pp.2043-2051, 2011.

S. L. Lima and L. M. Dill, Behavioral decisions made under the risk of predation: a review and prospectus, Can J Zool, vol.68, pp.619-659, 1990.

G. Gimonneau, J. Bouyer, S. Morand, N. J. Besansky, A. Diabate et al., A behavioral mechanism underlying ecological divergence in the malaria mosquito Anopheles gambiae, Behav Ecol, vol.21, pp.1087-92, 2010.

G. S. Helfman, Threat-sensitive predator avoidance in damselfish-trumpetfish interactions, Behav Ecol Sociobiol, vol.24, pp.47-58, 1989.

B. Kesavaraju, K. Damal, and S. A. Juliano, Threat-sensitive behavioral responses to concentrations of water-borne cues from predation, Ethology, vol.113, pp.199-206, 2007.

B. W. Alto, J. Malicoate, S. M. Elliott, and J. Taylor, Demographic consequences of predators on prey: trait and density mediated effects on mosquito larvae in containers, PLoS ONE, vol.7, p.45785, 2012.

M. A. Beketov and M. Liess, Predation risk perception and food scarcity induce alterations of life-cycle traits of the mosquito Culex pipens, Ecol Entomol, vol.32, pp.405-415, 2007.

R. Stoks, D. Block, M. Mcpeek, and M. A. , Alternative growth and energy storage responses to mortality threats in damselflies, Ecol Lett, vol.8, pp.1307-1323, 2005.

M. Mark and A. , The growth/predation risk trade-off: so what is the mechanism?, Am Nat, vol.163, pp.88-111, 2004.

M. A. Mcpeek, M. Grace, and J. Richardson, Physiological and behavioral responses to predators shape the growth/predation risk trade-off in damselflies, Ecology, vol.82, pp.1535-1580, 2001.

D. Hawlena and O. J. Schmitz, Physiological stress as a fundamental mechanism linking predation to ecosystem functioning, Am Nat, vol.176, pp.537-56, 2010.

L. Janssens and R. Stoks, Predation risk causes oxidative damage in prey, Biol Lett, vol.9, 2013.

S. Plaistow and M. T. Siva-jothy, Energetic constraints and male matesecuring tactics in the damselfly Calopteryx splendens xanthostoma (Charpentier), Proc R Soc Biol Sci, vol.263, pp.1233-1242, 1996.

D. Costantini, Oxidative stress and hormesis in evolutionary ecology and physiology. A marriage between mechanistic and evolutionary approaches, 2014.

C. Selman, J. D. Blount, D. H. Nussey, and J. R. Speakman, Oxidative damage, ageing, and life-history evolution: where now?, Trends Ecol Evol, vol.27, pp.570-577, 2012.

S. Slos and R. Stoks, Predation risk induces stress proteins and reduces antioxidant defense, Funct Ecol, vol.22, pp.637-679, 2008.

C. Guerra, T. Zenteno-savín, A. N. Maeda-martínez, D. Abele, and E. Philipp, The effect of predator exposure and reproduction on oxidative stress parameters in the Catarina scallop Argopecten ventricosus, Comp Biochem Phys A, vol.165, pp.89-96, 2013.

P. Burraco, C. Díaz-paniagua, and I. Gomez-mestre, Different effects of accelerated development and enhanced growth on oxidative stress and telomere shortening in amphibian larvae, Sci Rep, vol.7, p.7494, 2017.

S. Pinya, S. Tejada, X. Capó, and A. Sureda, Invasive predator snake induces oxidative stress responses in insular amphibian species, Sci Total Environ, vol.566, pp.57-62, 2016.

L. Janssens and R. Stoks, Chronic predation risk reduces escape speed by increasing oxidative damage: a deadly cost of an adaptive antipredator response, PLoS One, vol.9, p.101273, 2014.

M. Travers, M. Clinchy, L. Zanette, R. Boonstra, and T. D. Williams, Indirect predator effects on clutch size and the cost of egg production, Ecol Lett, vol.13, pp.980-988, 2010.

C. Isaksson, B. C. Sheldon, and T. Uller, The challenges of integrating oxidative stress into life-history biology, Bioscience, vol.61, pp.194-202, 2011.

P. Monaghan, N. B. Metcalfe, and R. Torres, Oxidative stress as a mediator of life history trade-offs: mechanisms, measurements and interpretation, Ecol Lett, vol.12, pp.75-92, 2009.

B. W. Alto, L. P. Lounibos, S. Higgs, and S. A. Juliano, Larval competition differentially affects arbovirus infection in Aedes mosquitoes, Ecology, vol.86, pp.3279-88, 2005.

B. W. Alto, L. P. Lounibos, C. N. Mores, and M. H. Reiskind, Larval competition alters susceptibility of adult Aedes mosquitoes to dengue infection, Proc R Soc Biol Sci, vol.275, pp.463-71, 2008.

S. N. Bevins, Invasive mosquitoes, larval competition, and indirect effects on the vector competence of native mosquito species (Diptera: Culicidae), Biol Invasions, vol.10, pp.1109-1126, 2008.

I. Bargielowski and J. C. Koella, A possible mechanism for the suppression of Plasmodium berghei development in the mosquito Anopheles gambiae by the microsporidian Vavraia culicis, PLoS One, vol.4, p.4676, 2009.

G. Margos, W. A. Maier, and H. M. Seitz, The effect of nosematosis on the development of Plasmodium falciparum in Anopheles stephensi, Parasitol Res, vol.78, pp.168-71, 1992.

L. Bano, Partial inhibitory effect of Plistophora culicis on the sporogonic cycle of Plasmodium cynomolgi in Anopheles stephensi, Nature, vol.181, p.430, 1985.

R. H. Hulls, The adverse effects of a microsporidan on sporogony and infectivity of Plasmodium berghei, Trans R Soc Trop Med Hyg, vol.65, pp.421-423, 1971.

W. Schenker, W. A. Maier, and H. M. Seitz, The effects of Nosema algerae on the development of Plasmodium yoelii nigeriensis in Anopheles stephensi, Parasitol Res, vol.78, pp.56-65, 1992.

L. Menach, A. Mckenzie, F. E. Flahault, A. Smith, and D. L. , The unexpected importance of mosquito oviposition behaviour for malaria: non-productive larval habitats can be sources for malaria transmission, Malar J, vol.4, p.23, 2005.
URL : https://hal.archives-ouvertes.fr/inserm-00090526

L. S. Tusting, J. Thwing, D. Sinclair, U. Fillinger, J. Gimnig et al., Mosquito larval source management for controlling malaria, Cochrane Database Syst Rev, vol.8, p.8923, 2013.

J. R. Vonesh and J. M. Kraus, Pesticide alters habitat selection and aquatic community composition, Oecologia, vol.160, pp.379-85, 2009.

C. F. Marina, J. G. Bond, J. Muñoz, J. Valle, R. Novelo-gutiérrez et al., Efficacy and non-target impact of spinosad, Bti and temephos larvicides for control of Anopheles spp. in an endemic malaria region of southern Mexico, Parasit Vectors, vol.7, p.55, 2014.

F. Mesléard, S. Garnero, N. Beck, and É. Rosecchi, Uselessness and indirect negative effects of an insecticide on rice field invertebrates, C R Biol, vol.328, pp.955-62, 2005.

D. R. Roberts and R. G. Andre, Insecticide resistance issues in vector-borne disease control, Am J Trop Med Hyg, vol.50, pp.21-34, 1994.

M. Elono, A. L. Foit, K. Duquesne, S. Liess, and M. , Controlling Culex pipiens: antagonists are more efficient than a neonicotinoid insecticide, J Vector Ecol, vol.43, pp.26-35, 2018.

C. M. Mutero, H. Blank, F. Konradsen, and W. Van-der-hoek, Water management for controlling the breeding of Anopheles mosquitoes in rice irrigation schemes in Kenya, Acta Trop, vol.76, pp.253-63, 2000.

J. Yasuoka, R. Levins, T. W. Mangioneb, and A. Spielmanc, Community-based rice ecosystem management for suppressing vector anophelines in Sri Lanka, Trans R Soc Trop Med Hyg, vol.100, pp.995-1006, 2006.

J. Carlson, J. Keating, C. M. Mbogo, S. Kahindi, and J. C. Beier, Ecological limitations on aquatic mosquito predator colonization in the urban environment, J Vector Ecol, vol.29, pp.331-340, 2004.

J. C. Carlson, L. A. Dyer, F. X. Omlin, and J. C. Beier, Diversity cascades and malaria vectors, J Med Entomol, vol.46, pp.460-464, 2009.

J. A. Berg, M. G. Felton, J. L. Gecy, A. D. Landerman, C. R. Mayhew et al., Mosquito control and wetlands. Wetland Sci, vol.27, pp.24-34, 2010.

R. D. Holt and M. F. Hoopes, Food web dynamics in a metacommunity context: modules and beyond, Metacommunities: spatial dynamics and ecological communities, pp.68-94, 2005.

J. M. Chase and R. S. Shulman, Wetland isolation facilitates larval mosquito density through the reduction of predators, Ecol Entomol, vol.34, pp.741-748, 2009.

C. Wilcox, Habitat size and isolation affect colonization of seasonal wetlands by predatory aquatic insects, Israel J Zool, vol.47, pp.459-75, 2001.

R. S. Shulman and J. M. Chase, Increasing isolation reduces predator: prey species richness ratios in aquatic food webs. Oikos, vol.116, pp.1581-1588, 2007.

L. A. Lacey and C. M. Lacey, The medical importance of riceland mosquitoes and their control using alternatives to chemical insecticides, J Am Mosquito Control, vol.6, pp.1-93, 1990.

J. Keiser, J. Utzinger, and B. H. Singer, The potential of intermittent irrigation for increasing rice yields, lowering water consumption, reducing methane emissions, and controlling malaria in african rice fields, J Am Mosquito Control, vol.18, pp.329-369, 2002.

S. T. Mereta, D. Yewhalaw, P. Boets, A. Ahmed, L. Duchateau et al., Physico-chemical and biological characterization of anopheline mosquito larval habitats (Diptera: Culicidae): implications for malaria control, Parasit Vectors, vol.6, p.320, 2013.

M. Mogi, Effect of intermittent irrigation on mosquitoes (Diptera, Culicidae) and larvivorous predators in rice fields, J Med Entomol, vol.30, pp.309-328, 1993.

Y. A. Afrane, E. Klinkenberg, P. Drechsel, K. Owusu-daaku, R. Garms et al., Does irrigated urban agriculture influence the transmission of malaria in the city of Kumasi, Acta Trop, vol.89, pp.125-159, 2004.

N. Gunathilaka, T. Fernando, M. Hapugoda, R. Wickremasinghe, P. Wijeyerathne et al., Anopheles culicifacies breeding in polluted water bodies in Trincomalee District of Sri Lanka, Malar J, vol.12, p.285, 2013.

C. Kamdem, T. Fossog, B. Simard, F. Etouna, J. Ndo et al., Anthropogenic habitat disturbance and ecological divergence between incipient species of the malaria mosquito Anopheles gambiae, PLoS ONE, vol.7, p.39453, 2012.

C. Kamdem, C. Fouet, S. Gamez, and B. J. White, Pollutants and insecticides drive local adaptation in african malaria mosquitoes, Mol Biol Evol, vol.34, pp.1261-75, 2017.

C. M. Jones, H. K. Toé, A. Sanou, M. Namountougou, A. Hughes et al., Additional selection for insecticide resistance in urban malaria vectors: DDT resistance in Anopheles arabiensis from, PLoS ONE, vol.7, p.45995, 2012.

T. S. Awolola, A. O. Oduola, J. B. Obansa, N. J. Chukwurar, and J. P. Unyimadu, Anopheles gambiae s.s. breeding in polluted water bodies in urban Lagos, southwestern Nigeria, J Vector Dis, vol.44, pp.241-245, 2007.

L. A. Lacey and B. K. Orr, The role of biological control of mosquitoes in integrated vector control, Am J Trop Med Hyg, vol.50, pp.97-115, 1994.

A. Howard, Biological and environmental control of disease vectors. Wallingford: CABI, pp.10-24, 2013.

A. Vantaux, I. Ouattara, T. Lefèvre, and K. R. Dabiré, Effects of larvicidal and nutritional stresses on Anopheles gambiae development, survival and competence for Plasmodium falciparum, Parasit Vectors, vol.9, p.226, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01942699

T. Lefèvre, A. Vantaux, K. R. Dabiré, K. Mouline, and A. Cohuet, Non-genetic determinants of mosquito competence for malaria parasites, PLoS Pathog, vol.9, p.1003365, 2013.