Q. Bao, D. Newport, M. Chen, D. B. Stout, and A. F. Chatziioannou, Performance evaluation of the inveon dedicated PET preclinical tomograph based on the NEMA NU-4 standards, J Nucl Med, vol.50, pp.401-408, 2009.

L. Barateau, R. Lopez, and Y. Dauvilliers, Treatment options for narcolepsy, CNS Drugs, vol.30, pp.369-379, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01484941

S. Bayard, C. Langenier, M. , C. De-cock, V. Scholz et al., Executive control of attention in narcolepsy, Plos One, vol.7, p.33525, 2012.

D. Béracochéa, A. Celerier, M. Peres, and C. Pierard, Enhancement of learning processes following an acute modafinil injection in mice, Pharmacol Biochem Behav, vol.76, pp.473-479, 2003.

J. E. Black and M. Hirshkowitz, Modafinil for treatment of residual excessive sleepiness in nasal continuous positive airway pressure-treated obstructive sleep apnea/hypopnea syndrome, Sleep, vol.28, pp.464-471, 2005.

E. A. Cabrera, C. E. Wiers, E. Lindgren, G. Miller, N. D. Volkow et al., Neuroimaging the effectiveness of substance use disorder treatments, J Neuroimmune Pharmacol, vol.11, pp.408-433, 2016.

R. N. Cardinal, J. A. Parkinson, J. Hall, and B. J. Everitt, Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex, Neurosci Biobehav Rev, vol.26, pp.321-352, 2002.

M. Charvériat, C. C. Naus, L. Leybaert, J. C. Sáez, and C. Giaume, Connexin-dependent neuroglial networking as a new therapeutic target, Front Cell Neurosci, vol.11, p.174, 2017.

Y. T. Cho, M. Ernst, and J. L. Fudge, Cortico-amygdala-striatal circuits are organized as hierarchical subsystems through the primate amygdala, J Neurosci, vol.33, pp.14017-14030, 2013.

J. Clasadonte, E. Scemes, Z. Wang, D. Boison, and P. G. Haydon, Connexin 43-mediated astroglial metabolic networks contribute to the regulation of the sleep-wake cycle, Neuron, vol.95, pp.1365-1380, 2017.

M. Darvas, J. P. Fadok, and R. D. Palmiter, Requirement of dopamine signaling in the amygdala and striatum for learning and maintenance of a conditioned avoidance response, Learn Mem, vol.18, pp.136-143, 2011.

Y. Dauvilliers, F. Comte, S. Bayard, B. Carlander, M. Zanca et al., A brain PET study in patients with narcolepsy-cataplexy, J Neurol Neurosurg Psychiatry, vol.81, pp.344-348, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00534816

Y. Dauvilliers, E. Evangelista, D. De-verbizier, L. Barateau, and P. Peigneux, 18F]fludeoxyglucose-positron emission tomography evidence for cerebral hypermetabolism in the awake state in narcolepsy and idiopathic hypersomnia, Front Neurol, vol.8, p.350, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01757555

N. Dawson, R. J. Thompson, A. Mcvie, D. M. Thomson, B. J. Morris et al., Modafinil reverses phencyclidine-induced deficits in cognitive flexibility, cerebral metabolism, and functional brain connectivity, Schizophr Bull, vol.38, pp.457-474, 2012.

X. Di and B. B. Biswal, Alzheimer's Disease Neuroimaging Initiative (2012) Metabolic brain covariant networks as revealed by FDG-PET with reference to resting-state fmri networks, Brain Connect, vol.2, pp.275-283

A. Duchêne, M. Perier, Y. Zhao, X. Liu, J. Thomasson et al., Impact of astroglial connexins on modafinil pharmacological properties, Sleep, vol.39, pp.1283-1292, 2016.

J. Duteil, F. A. Rambert, J. Pessonnier, J. F. Hermant, R. Gombert et al., Central alpha 1-adrenergic stimulation in relation to the behaviour stimulating effect of modafinil; studies with experimental animals, Eur J Pharmacol, vol.180, pp.49-58, 1990.

J. Duteil, F. A. Rambert, A. M. Pointeau, P. Mangiameli, and E. Assous, Flerobuterol: a potential antidepressant drug related to betaadrenergic agonists. Experimental profile in mice, Fundam Clin Pharmacol, vol.5, pp.695-708, 1991.

D. M. Edgar and W. F. Seidel, Modafinil induces wakefulness without intensifying motor activity or subsequent rebound hypersomnolence in the rat, J Pharmacol Exp Ther, vol.283, pp.757-769, 1997.

C. M. Ellis, C. Monk, A. Simmons, G. Lemmens, S. C. Williams et al., Functional magnetic resonance imaging neuroactivation studies in normal subjects and subjects with the narcoleptic syndrome. Actions of modafinil, J Sleep Res, vol.8, pp.85-93, 1999.

T. M. Engber, S. A. Dennis, B. E. Jones, M. S. Miller, and P. C. Contreras, Brain regional substrates for the actions of the novel wakepromoting agent modafinil in the rat: comparison with amphetamine, Neuroscience, vol.87, pp.905-911, 1998.

L. Ferraro, S. Tanganelli, W. T. O'connor, T. Antonelli, F. Rambert et al., The vigilance promoting drug modafinil decreases GABA release in the medial preoptic area and in the posterior hypothalamus of the awake rat: possible involvement of the serotonergic 5-HT3 receptor, Neurosci Lett, vol.220, pp.5-8, 1996.

J. Franco-pérez, P. Ballesteros-zebadúa, E. A. Fernández-figueroa, I. Ruiz-olmedo, P. Reyes-grajeda et al., Sleep deprivation and sleep recovery modifies connexin36 and con-nexin43 protein levels in rat brain, Neuroreport, vol.23, pp.103-107, 2012.

J. Franco-pérez and C. Paz, Quinine, a selective gap junction blocker, decreases REM sleep in rats, Pharmacol Biochem Behav, vol.94, pp.250-254, 2009.

T. Funayama, Y. Ikeda, A. Tateno, H. Takahashi, Y. Okubo et al., Modafinil augments brain activation associated with reward anticipation in the nucleus accumbens, Psychopharmacology (Berl), vol.231, pp.3217-3228, 2014.

P. Gerrard and R. Malcolm, Mechanisms of modafinil: A review of current research, Neuropsychiatr Dis Treat, vol.3, pp.349-364, 2007.

D. G. Ghahremani, G. Tabibnia, J. Monterosso, G. Hellemann, R. A. Poldrack et al., Effect of modafinil on learning and taskrelated brain activity in methamphetamine-dependent and healthy individuals, Neuropsychopharmacology, vol.36, pp.950-959, 2011.

C. Giaume, A. Koulakoff, L. Roux, D. Holcman, and N. Rouach, Astroglial networks: a step further in neuroglial and gliovascular interactions, Nat Rev Neurosci, vol.11, pp.87-99, 2010.

A. E. Goudriaan, D. J. Veltman, W. Van-den-brink, D. G. Schmaal, and L. , Neurophysiological effects of modafinil on cue-exposure in cocaine dependence: a randomized placebo-controlled cross-over study using pharmacological fmri, Addict Behav, vol.38, pp.1509-1517, 2013.

A. Gozzi, V. Colavito, S. Etet, P. F. Montanari, D. Fiorini et al., Modulation of fronto-cortical activity by modafinil: a functional imaging and fos study in the rat, Neuropsychopharmacology, vol.37, pp.822-837, 2012.

R. H. Hou, C. Freeman, R. W. Langley, E. Szabadi, and C. M. Bradshaw, Does modafinil activate the locus coeruleus in man? Comparison of modafinil and clonidine on arousal and autonomic functions in human volunteers, Psychopharmacology (Berl), vol.181, pp.537-549, 2005.

M. D. Hunter, V. Ganesan, I. D. Wilkinson, and S. A. Spence, Impact of modafinil on prefrontal executive function in schizophrenia, Am J Psychiatry, vol.163, pp.2184-2186, 2006.

Y. Ikeda, T. Funayama, A. Tateno, H. Fukayama, Y. Okubo et al., Modafinil enhances alerting-related brain activity in attention networks, Psychopharmacology (Berl), vol.234, pp.2077-2089, 2017.

T. Jeanson, A. Duchêne, D. Richard, S. Bourgoin, C. Picoli et al., Potentiation of amitriptyline anti-hyperalgesic-like action by astroglial connexin 43 inhibition in neuropathic rats, Sci Rep, vol.6, p.38766, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01472405

R. T. Johnson, S. M. Breedlove, and C. L. Jordan, Astrocytes in the amygdala, Vitam Horm, vol.82, pp.23-45, 2010.

E. Y. Joo, W. S. Tae, K. Y. Jung, and S. B. Hong, Cerebral blood flow changes in man by wake-promoting drug, modafinil: a randomized double blind study, J Sleep Res, vol.17, pp.82-88, 2008.

E. Y. Joo, D. W. Seo, W. S. Tae, and S. B. Hong, Effect of modafinil on cerebral blood flow in narcolepsy patients, Sleep, vol.31, pp.868-873, 2008.

Y. K. Kim, I. Y. Yoon, Y. K. Shin, S. S. Cho, and S. E. Kim, Modafinilinduced hippocampal activation in narcolepsy, Neurosci Lett, vol.422, pp.91-96, 2007.

T. M. Korotkova, B. P. Klyuch, A. A. Ponomarenko, J. S. Lin, H. L. Haas et al., Modafinil inhibits rat midbrain dopaminergic neurons through D2-like receptors, Neuropharmacology, vol.52, pp.626-633, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00408025

B. Lanz, C. Poitry-yamate, and R. Gruetter, Image-derived input function from the vena cava for 18F-FDG PET studies in rats and mice, J Nucl Med, vol.55, pp.1380-1388, 2014.

S. Lavault, Y. Dauvilliers, X. Drouot, S. Leu-semenescu, J. L. Golmard et al., Benefit and risk of modafinil in idiopathic hypersomnia vs Narcolepsy with cataplexy, Sleep Med, vol.12, pp.550-556, 2011.

J. S. Lin, B. Roussel, H. Akaoka, P. Fort, G. Debilly et al., Role of catecholamines in the modafinil and amphetamine induced wakefulness, a comparative pharmacological study in the cat, Brain Res, vol.591, pp.319-326, 1992.
URL : https://hal.archives-ouvertes.fr/hal-02340867

J. S. Lin, Y. Hou, and M. Jouvet, Potential brain neuronal targets for amphetamine-, methylphenidate-, and modafinil-induced wakefulness, evidenced by c-fos immunocytochemistry in the cat, Proc Natl Acad Sci U S A, vol.93, pp.14128-14133, 1996.

J. S. Lin, D. Gervasoni, Y. Hou, G. Vanni-mercier, F. Rambert et al., Effects of amphetamine and modafinil on the sleep/wake cycle during experimental hypersomnia induced by sleep deprivation in the cat, J Sleep Res, vol.9, pp.89-96, 2000.

J. S. Lin, C. Anaclet, O. A. Sergeeva, and H. L. Haas, The waking brain: an update, Cell Mol Life Sci, vol.68, pp.2499-2512, 2011.

X. Liu, J. M. Petit, P. Ezan, J. Gyger, P. Magistretti et al., The psychostimulant modafinil enhances gap junctional communication in cortical astrocytes, Neuropharmacology, vol.75, pp.533-538, 2013.

R. Lopez, I. Arnulf, X. Drouot, M. Lecendreux, and Y. Dauvilliers, French consensus. Management of patients with hypersomnia: which strategy?, Rev Neurol, vol.173, pp.8-18, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01802410

J. Lu and M. Chen, Glial gap junctions boost modafinil action on arousal, Sleep, vol.39, pp.1175-1177, 2016.

G. Lynch, L. C. Palmer, and C. M. Gall, The likelihood of cognitive enhancement, Pharmacol Biochem Behav, vol.99, pp.116-129, 2011.

K. J. Mcclellan and C. M. Spencer, Modafinil: a review of its pharmacology and clinical efficacy in the management of narcolepsy, CNS Drugs, vol.9, pp.311-324, 1998.

E. Mignot, S. Nishino, C. Guilleminault, and W. C. Dement, Modafinil binds to the dopamine uptake carrier site with low affinity, Sleep, vol.17, pp.436-437, 1994.

M. J. Minzenberg and C. S. Carter, Modafinil: a review of neurochemical actions and effects on cognition, Neuropsychopharmacology, vol.33, pp.1477-1502, 2008.

M. J. Minzenberg, A. J. Watrous, J. H. Yoon, S. Ursu, and C. S. Carter, Modafinil shifts human locus coeruleus to low-tonic, highphasic activity during functional MRI, Science, vol.322, pp.1700-1702, 2008.

M. J. Minzenberg, J. H. Yoon, and C. S. Carter, Modafinil modulation of the default mode network, Psychopharmacology (Berl), vol.215, pp.23-31, 2011.

K. D. Oikonomou, M. B. Singh, E. V. Sterjanaj, and S. D. Antic, Spiny neurons of amygdala, striatum, and cortex use dendritic plateau potentials to detect network UP states, Front Cell Neurosci, vol.8, p.292, 2014.

T. Y. Park, K. S. Nishida, C. M. Wilson, S. Jaiswal, J. Scott et al., Effects of isoflurane anesthesia and intravenous morphine self-administration on regional glucose metabolism ([18F]FDG-PET) of male spraguedawley rats, Eur J Neurosci, vol.45, pp.922-931, 2017.

C. S. Patlak, R. G. Blasberg, and J. D. Fenstermacher, Graphical evaluation of blood-to-brain transfer constants from multipletime uptake data, J Cereb Blood Flow Metab, vol.3, pp.1-7, 1983.

G. Paxinos and C. Watson, The rat brain in stereotaxic coordinates, 6, 2007.

W. M. Qu, Z. L. Huang, X. H. Xu, N. Matsumoto, and Y. Urade, Dopaminergic D1 and D2 receptors are essential for the arousal effect of modafinil, J Neurosci, vol.28, pp.8462-8469, 2008.

R. Rasetti, V. S. Mattay, B. Stankevich, K. Skjei, G. Blasi et al., Modulatory effects of modafinil on neural circuits regulating emotion and cognition, Neuropsychopharmacology, vol.35, pp.2101-2109, 2010.

A. Reilhac, A. Charil, C. Wimberley, G. Angelis, H. Hamze et al., 4D PET iterative deconvolution with spatiotemporal regularization for quantitative dynamic PET imaging, Neuroimage, vol.118, pp.484-493, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02348012

T. M. Rodrigues, C. Caldas, A. Ferreira, and J. J. , Pharmacological interventions for daytime sleepiness and sleep disorders in Parkinson's disease: systematic review and meta-analysis, Parkinsonism Relat Disord, vol.27, pp.25-34, 2016.

M. Saletu, P. Anderer, H. V. Semlitsch, G. M. Saletu-zyhlarz, M. Mandl et al., Low-resolution brain electromagnetic tomography (LORETA) identifies brain regions linked to psychometric performance under modafinil in narcolepsy, Psychiatry Res, vol.154, pp.69-84, 2007.

T. E. Scammell, I. V. Estabrooke, M. T. Mccarthy, R. M. Chemelli, M. Yanagisawa et al., Hypothalamic arousal regions are activated during modafinil-induced wakefulness, J Neurosci, vol.20, pp.8620-8628, 2000.

W. K. Schiffer, M. M. Mirrione, A. Biegon, D. L. Alexoff, V. Patel et al., Serial micropet measures of the metabolic reaction to a microdialysis probe implant, J Neurosci Methods, vol.155, pp.272-284, 2006.

L. Schmaal, L. Joos, M. Koeleman, D. J. Veltman, W. Van-den-brink et al., Effects of modafinil on neural correlates of response inhibition in alcohol-dependent patients, Biol Psychiatry, vol.73, pp.211-218, 2013.

L. Schmaal, A. E. Goudriaan, L. Joos, G. Dom, T. Pattij et al., Neural substrates of impulsive decision making modulated by modafinil in alcohol-dependent patients, Psychol Med, vol.44, pp.2787-2798, 2014.

A. Schmidt, F. Muller, P. C. Dolder, Y. Schmid, D. Zanchi et al., Comparative effects of methylphenidate, modafinil and MDMA on response inhibition neural networks in healthy subjects, Int J Neuropsychopharmacol, vol.20, pp.712-720, 2017.

P. Sheng, L. Hou, X. Wang, X. Wang, C. Huang et al., Efficacy of modafinil on fatigue and excessive daytime sleepiness associated with neurological disorders: a systematic review and meta-analysis, Plos One, vol.8, p.81802, 2013.

P. Simon, C. Hémet, and J. Costentin, Analysis of stimulant locomotor effects of modafinil in various strains of mice and rats, Fundam Clin Pharmacol, vol.10, pp.431-435, 1996.

R. E. Sims, J. B. Butcher, H. R. Parri, and S. Glazewski, Astrocyte and neuronal plasticity in the somatosensory system, Neural Plast, p.732014, 2015.

M. L. Soto-montenegro, J. J. Vaquero, J. Pascau, J. D. Gispert, P. García-barreno et al., Detection of visual activation in the rat brain using 2-deoxy-2-[(18)F]fluoro-D: -glucose and statistical parametric mapping (SPM), Mol Imaging Biol, vol.11, pp.94-99, 2009.

M. G. Spangler-bickell, B. De-laat, R. Fulton, G. Bormans, and J. Nuyts, The effect of isoflurane on18f-FDG uptake in the rat brain: a fully conscious dynamic PET study using motion compensation, EJNMMI Res, vol.6, p.86, 2016.

S. A. Spence, R. D. Green, I. D. Wilkinson, and M. D. Hunter, Modafinil modulates anterior cingulate function in chronic schizophrenia, Br J Psychiatry, vol.187, pp.55-61, 2005.

E. A. Stone, S. Cotecchia, Y. Lin, and D. Quartermain, Role of brain alpha 1B-adrenoceptors in modafinil-induced behavioral activity, Synapse, vol.46, pp.269-270, 2002.

E. A. Stone, Y. Lin, R. F. Suckow, and D. Quartermain, Stressinduced subsensitivity to modafinil and its prevention by corticosteroids, Pharmacol Biochem Behav, vol.73, pp.971-978, 2002.

E. Szabadi, Drugs for sleep disorders: mechanisms and therapeutic prospects, Br J Clin Pharmacol, vol.61, pp.761-766, 2006.

R. J. Thomas and K. Kwong, Modafinil activates cortical and subcortical sites in the sleep-deprived state, Sleep, vol.29, pp.1471-1481, 2006.

M. J. Thorpy and Y. Dauvilliers, Clinical and practical considerations in the pharmacologic management of narcolepsy, Sleep Med, vol.16, pp.9-18, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02164813

J. Tokugawa, L. Ravasi, T. Nakayama, K. C. Schmidt, and L. Sokoloff, Operational lumped constant for FDG in normal adult male rats, J Nucl Med, vol.48, pp.94-99, 2007.

S. A. Van-vliet, E. L. Blezer, M. J. Jongsma, R. A. Vanwersch, B. Olivier et al., Exploring the neuroprotective effects of modafinil in a marmoset parkinson model with immunohistochemistry, magnetic resonance imaging and spectroscopy, Brain Res, vol.1189, pp.219-228, 2008.

B. Weber, C. Burger, P. Biro, and A. Buck, A femoral arteriovenous shunt facilitates arterial whole blood sampling in animals, Eur J Nucl Med Mol Imaging, vol.29, pp.319-323, 2002.

J. T. Willie, W. Renthal, R. M. Chemelli, M. S. Miller, T. E. Scammell et al., Modafinil more effectively induces wakefulness in orexin-null mice than in wild-type littermates, Neuroscience, vol.130, pp.983-995, 2005.

C. Wimberley, G. Angelis, F. Boisson, P. Callaghan, K. Fischer et al., Simulation-based optimisation of the PET data processing for partial saturation approach protocols, Neuroimage, vol.97, pp.29-40, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02348006

J. P. Wisor, S. Nishino, I. Sora, G. H. Uhl, E. Mignot et al., Dopaminergic role in stimulant-induced wakefulness, J Neurosci, vol.21, pp.1787-1794, 2001.

J. P. Wisor and K. S. Eriksson, Dopaminergic-adrenergic interactions in the wake promoting mechanism of modafinil, Neuroscience, vol.132, pp.1027-1034, 2005.

Y. N. Wong, D. Simcoe, L. N. Hartman, W. B. Laughton, S. P. King et al., A double-blind, placebo-controlled, ascending-dose evaluation of the pharmacokinetics and tolerability of modafinil tablets in healthy male volunteers, J Clin Pharmacol, vol.39, pp.30-40, 1999.

D. Zolkowska, R. Jain, R. B. Rothman, J. S. Partilla, B. L. Roth et al., Evidence for the involvement of dopamine transporters in behavioral stimulant effects of modafinil, J Pharmacol Exp Ther, vol.329, pp.738-746, 2009.