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Introduction

It has long been accepted that long term methamphetamine (Meth) abuse (high repetitive doses) produces neurotoxicity and is associated with cognitive impairments [START_REF] Ares-Santos | Neurobiology of methamphetamine[END_REF], the neuropsychological deficits being associated with the neurodegenerative effects of this drug as observed in experimental models [START_REF] Cadet | Speed kills: cellular and molecular bases of methamphetamine-induced nerve terminal degeneration and neuronal apoptosis[END_REF][START_REF] Krasnova | Methamphetamine toxicity and messengers of death[END_REF]. Several mechanisms of Meth-induced neurotoxicity have been proposed, including oxidative stress, excitotoxicity, mitochondrial dysfunction and neuroinflammation marked by microgliosis, astrogliosis and cytokine induction [START_REF] Moszczynska | Molecular, behavioral, and psychological consequences of methamphetamine neurotoxicity: Implications for treatment[END_REF], concurring to mediate apoptosis and neurotoxicity in the CNS [START_REF] Sharikova | Methamphetamine induces apoptosis of microglia via the intrinsic mitochondrial-dependent pathway[END_REF]. Beside perturbations in calcium and lipid homeostasis, post Meth exposure is characterized by degeneration of neurons, similar to what is observed in Alzheimer's disease (AD) pathology.

Indeed, a neuroproteomic study carried out in rats has shown that the expression of 18 proteins (11 in the hippocampus and 7 in the olfactory bulb) underwent a significant alteration as a result of Meth exposure with the altered proteins being involved in cell death, inflammation, oxidation, and apoptosis [START_REF] Zhu | The effect of chronic methamphetamine exposure on the hippocampal and olfactory bulb neuroproteomes of rats[END_REF]. Interestingly, all these pathogenic mechanisms are part of the neurodegenerative cascade of Alzheimer's disease (AD) [START_REF] Morales | Neuroinflammation in the pathogenesis of Alzheimer's disease. A rational framework for the search of novel therapeutic approaches[END_REF][START_REF] Kocahan | Mechanisms of Alzheimer's disease pathogenesis and prevention: The brain, neural pathology, N-methyl-D-aspartate receptors, Tau protein and other risk factors[END_REF] and involvement of the limbic system and hippocampus in particular exemplifies the connection between Meth abuse and AD pathology.

It has also been demonstrated that the GSK3β kinase as well as the pleiotropic transcription factor NFκB, which respectively play key roles in Tau phosphorylation and in inflammatory responses, both participate to the control of Aβ42-induced inhibition of ADAM10 expression and augmentation of BACE1 and presenilin 1 transcription [START_REF] Buggia-Prevot | NFkappaB-dependent control of BACE1 promoter transactivation by Abeta42[END_REF][START_REF] Chami | Nuclear factor-κB regulates βAPP and βand γ-secretases differently at physiological and supraphysiological Aβ concentrations[END_REF][START_REF] Chinchalongporn | Melatonin ameliorates Aβ42induced alteration of βAPP-processing secretases via the melatonin receptor through the Pin1/GSK3β/NF-κB pathway in SH-SY5Y cells[END_REF]. Interestingly, Meth is capable to induce pro-inflammatory cytokines and their mediators through the NFκB pathway [START_REF] Permpoonputtana | The anti-inflammatory effect of melatonin on methamphetamine-induced proinflammatory mediators in human neuroblastoma dopamine SH-SY5Y cell lines[END_REF] and to promote TNFα expression as well as NFκB nuclear translocation [START_REF] Wongprayoon | Melatonin attenuates methamphetamine-induced neuroinflammation through the melatonin receptor in the SH-SY5Y cell line[END_REF]. Given the additional fact that Tau phosphorylation is induced by 3,4-Methylenedioxymethamphetamine ("Ecstasy") in vivo in the mouse hippocampus [START_REF] Busceti | Enhanced Tau phosphorylation in the hippocampus of mice treated with 3,4-Methylenedioxymethamphetamine ("Ecstasy")[END_REF], these mechanisms altogether portray that Meth-induced alterations correlate with AD-like pathology.

Nevertheless, although substantial number of evidences validates the pernicious effects of Meth on the CNS, other studies have contrastingly ascertained some neuroprotective effects of this psychostimulant [START_REF] Rau | Administration of low dose methamphetamine 12 h after a 16 severe traumatic brain injury prevents neurological dysfunction and cognitive impairment in rats[END_REF][START_REF] Rau | The neuroprotective potential of low-dose methamphetamine in preclinical models of stroke and traumatic brain injury[END_REF] and the genuine effect of Meth abuse on cognition is still matter to debate [START_REF] Hart | Is cognitive functioning impaired in methamphetamine users? A critical review[END_REF]. Therefore, Meth presents a challenging ambiguity of neurotoxicity and neuroprotection where the potential underlying mechanisms are precisely regulated by the controlled exposure of Meth dosages. Given the neurodegenerative effects and its sodality with the cognitive functioning, which majorly depends on dosage variation and time of exposure, we reasoned that Meth administration might differentially affect the proteolytic processing of βAPP, a field of investigation that has been relatively unexplored so far.

Herein, we investigated the effect of various doses of methamphetamine on βAPP metabolism and βAPP-cleaving secretases in vitro in cultured human SH-SY5Y neuroblastoma cells. With emphasis on the benefits and hazards of Meth on cognitive, functional and behavioral manifestations, the idea is to develop a better understanding of the drug action and disease process and the possibilities of modification of the AD pathogenesis and treatment.

Materials and methods

Materials

DMEM complete medium, Opti-MEM, trypsin and fetal bovine serum (FBS) were from Invitrogen (Carlsbad, CA, USA). Penicillin-streptomycin mix was from PAA. Poly-D-lysine was from Sigma (St. Louis, MO, USA). Tris buffer and glycine were from Vivantis. Skim milk powder was from criterion. ECL and ammonium persulphate were from GE Health care (Piscataway, NJ, USA). SDS was from Amresco. O-Phenanthroline was from Calbiochem (San Diego, CA, USA). (D)-METH hydrochloride was purchased from Alltech-Applied Science (State College, PA, USA).

Cell culture and treatments

Human neuroblastoma SH-SY5Y cells were cultured at 37°C, 5% CO2 in DMEM supplemented with 10% inactivated FBS containing penicillin (100 U/ml) and streptomycin (50 mg/ml). For experiments, the cells were seeded in six-35mm well plates and were grown until reaching 80% confluence. Cells were then treated without (control) or with various concentrations of Meth (1, 10, 100 and 1000 μM) for 16 h.

Western blot analysis in cell lysate

Cells were collected with phosphate-buffered saline (PBS)-EDTA and resuspended in 80-150 μl of lysis buffer (10 mM Tris/HCl, pH 7.5, 150 mM NaCl, 0.5% triton X-100, 0.5% deoxycholate, 5 mM EDTA). Protein concentrations were determined by the Bradford method [START_REF] Bradford | A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[END_REF] and 5-50 µg of proteins were separated by SDS-polyacrylamide gel electrophoresis on 8% (βAPP), 10% (ADAM10 and BACE1) or 12% (β-actin) Tris/glycine gels. Proteins were then transferred onto nitrocellulose membranes (45-120 min according to protein size, 100 V), blocked for 1 h in 5% nonfat milk and incubated overnight at 4°C with primary antibodies (in 5% nonfat milk) directed against βAPP (dilution 1/4000, polyclonal A8717, Sigma), ADAM10 (dilution 1/500, polyclonal AB19026, Millipore), BACE1 (diution 1/1000, monoclonal Ab108394, Abcam) or β-actin (dilution 1/5000, monoclonal 13E5; Cell Signaling) antibodies. Bound antibodies were detected using goat anti-mouse (dilution 1/3000, polyclonal 7076, Cell Signaling) or goat anti-rabbit peroxidase-conjugated (dilution 1/3000, polyclonal 7074, Cell Signaling) antibodies. Immunological complexes were revealed using Immobilon Western Chemiluminescence HRP substrate (Millipore) and detected using an automatic medical X-ray processor (Kodak, Rochester, NY, USA). Films were scanned, band densities were measured with the Image J software (http://imagej.nih.gov/ij/), and data were normalized using β-actin as an internal standard.

Measurement of sAPPα secretion

SHSY5Y cells were cultured in 35-mm dishes until they reached 80% confluence. Then, the cells were treated without (control) or with various concentration of Meth in DMEM containing 1% FBS. Media were then removed and replaced with 1 ml of serum-free DMEM and cells were allowed to secrete for 3 h. Then, TCA precipitation of the 1 ml serum-free secretion media was performed and samples were subjected to Western blot analysis onto 8% SDS-PAGE, transferred onto nitrocellulose membrane (120 min, 100 volts), incubated in 5% non-fat milk blocking solution for 30 min and incubated overnight at 4°C with the humanspecific anti-sAPPα antibody DE2B4 (dilution 1/500, monoclonal DE2B4, Santa Cruz Biotechnology Inc., Santa Cruz, CA, USA). Membranes were then incubated with HRPconjugated anti mouse antibody and processed for quantification as described above.

α-secretase fluorimetric assay on intact cells

SH-SY5Y cells cultured in 35-mm dishes coated with polylysine (10 μg/ml) were treated without (control) or with Meth for 16 hours and the α-secretase catalytic activity was measured using the JMV2770 substrate and the ADAM10-specific GI254023X inhibitor as previously described [START_REF] Alfa Cisse | Design and characterization of a novel cellular prion-derived quenched fluorimetric substrate of α-secretase[END_REF].

β-secretase fluorimetric assay of cell homogenates

SH-SY5Y cell lysate (30 µg) were treated without (control) or with Meth for 16 hours and assayed for their β-secretase activity using the JMV2236 substrate and the JMV1197 BACE1-specific inhibitor as previously described [START_REF] Andrau | BACE1-and BACE2-expressing human cells: characterization of beta amyloid precursor proteinderived catabolites, design of a novel fluorimetric assay, and identification of new in vitro inhibitors[END_REF].

Real-time quantitative polymerase chain reaction (q-PCR)

SH-SY5Y cells were treated in the absence (control) or in the presence of various Meth concentrations as described above. Post treatment, total RNA was extracted and purified with the PureLink RNA mini kit (Ambion, Life Technologies, Austin, TX, USA). Real-time PCR was performed with 100 ng of total RNA using the QuantiFast SYBR Green RT-PCR kit (Qiagen, Singapore) detector system (Eppendorf Mastercycler ep RealPlex) and the SYBR Green detection protocol. The 2x QuantiFast SYBR Green RT-PCR master mix, QuantiFast RT mix, QuantiTectPrimer Assay and template RNA were mixed and the reaction volume was adjusted to 25 μl using RNase-free water. The specific primers were designed and purchased from Qiagen. Each primer is a 10x QuantiTect Primer Assay containing a mix of forward and reverse primers for specific targets: Hs_ADAM10_1_SG (QT00032641) (human ADAM10), Hs_BACE1_1_SG (QT00084777) (human BACE1) and Hs_GAPDH_1_SG (QT00079247, human GAPDH, housekeeping gene for normalization).

Statistical analysis

Statistical analyses were performed with the GraphPad Prism software (San Diego, CA, USA) using the unpaired t-test for pair wise comparisons.

Results

Effect of methamphetamine on the α-secretase processing of βAPP

We first investigated the effect of Meth on the non amyloidogenic α-secretase processing of endogenously expressed βAPP in cultured human SH-SY5Y neuroblastoma cells by measuring the production of the neurotrophic, neuroprotective, memory-enhancing and neurogenesis-stimulating βAPP-derived sAPPα metabolite. Our results interestingly showed that Meth dose-dependently increases sAPPα secretion when applied at 1 and 10 µM, while sAPPα production was not changed when further increasing Meth concentrations up to 100 µM and 1 mM (Fig. 1). Moreover, none of the Meth doses applied altered βAPP immunoreactivity (Fig. 1), thereby indicating that Meth is genuinely controlling the αsecretase processing of βAPP rather than altering its expression or maturation.

Effect of methamphetamine on a-secretase catalytic activity

We then studied the effect of different concentrations of Meth on the catalytic activity of the principal α-secretase ADAM10 in wild-type SH-SY5Y by means of an α-secretasespecific fluorimetric assay. The results show that, as was observed with sAPPα production, 1 and 10 μM of Meth significantly and dose-dependently increase the GI254023X-sensitive hydrolysis of the JMV2770 substrate when compared to untreated cells (Fig. 2A) whereas higher doses of the psychoactive drug (up to 1 mM) failed to modify ADAM10 activity (Fig. 2A).

Effect of methamphetamine on ADAM10 transcription and protein expression

To determine whether the observed up regulation of ADAM10 catalytic activity is a consequence of a Meth-dependent transcriptional activation of the protease, we measured the effect of Meth on ADAM10 mRNA by quantitative real-time PCR experiments. The results depict a similar pattern of action of Meth on ADAM10 mRNA expression when compared to the one previously observed for sAPPα production and ADAM10 catalytic activity, with a dose-dependent stimulation at 1 and 10 µM and no effect at 100 µM and 1 mM (Fig. 2B) and a similar pattern was observed when assessing the impact of the drug on ADAM10 immunoreactivity/protein levels by western blot (Fig. 2C).

Effect of methamphetamine on BACE1 catalytic activity and expression

We have then investigated the effects of Meth on the β-secretase BACE1, which is the rate-limiting initiator of Aβ production. Indeed, following incubation of SH-SY5Y cells with various concentrations of Meth for 16 h, we have evidenced a dose-dependent increase of BACE1 catalytic activity with a significant difference observed only at 1 mM when compared to untreated control cells (Fig. 3A). In a second set of experiments, we have established by quantitative real-time PCR that the drug indeed increases BACE1 mRNA levels when applied at the high 100 µM and 1 mM concentrations but not at the low 1 and 10 µM doses, thereby indicating that high Meth can control BACE1 at a transcriptional level (Fig. 3B). Finally, western blot analysis performed under the same conditions have established that Meth treatments positively control BACE1 protein levels (Fig. 3C). The a priori paradoxical observation that Meth at 100 µM did not show any effect on β-secretase catalytic activity while significantly increasing BACE1 mRNA levels could be due to the presence of Meth-insensitive non-BACE1 β-secretase activities able to cleave the fluorimetric substrate, whereas the quantitative PCR is fully specific for BACE1 and certainly displays a higher sensitivity when compared to the fluorimetric assay.

Discussion

The present demonstration that Meth could convey beneficial effect regarding Alzheimer's disease is in line with previous reports having established that psychostimulants can be used medically to fight brain disorders [START_REF] Iversen | Speed, Ecstasy, Ritalin: The Science of Amphetamines[END_REF]. Indeed, amphetamine and Meth are the first line treatment for attention deficit hyperactivity disorder (ADHD) [START_REF] Surman | Do stimulants improve functioning in adults with ADHD? A review of the literature[END_REF] as well as for the management of narcolepsy [START_REF] De La Herran-Arita | Current and emerging options for the drug treatment of narcolepsy[END_REF]. Furthermore, clinical trials have provided evidence that Meth may be effective in the treatment of otherwise treatment-resistant anxiety disorders [START_REF] Mithoefer | The safety and efficacy of +/-3,4-methylenedioxymethamphetamine-assisted psychotherapy in subjects with chronic, treatment-resistant posttraumatic stress disorder: the first randomized controlled pilot study[END_REF] and that its administration is involved in supportive and integrative psychotherapy protocol [START_REF] Danforth | MDMA-assisted therapy: A new treatment model for social anxiety in autistic adults[END_REF].

More specifically considering brain functions, a significant amount of data has evidenced beneficial effects of this psychoactive drug under correct dosage and right timings/duration of exposure. Regarding physiological status, juvenile rats administered with Meth showed improved performance in a spatial navigation task when tested at adulthood [START_REF] Mcfadden | The effects of methamphetamine exposure during preadolescence on male and female rats in the water maze[END_REF]. In addition, Meth controls the release of the catecholamine dopamine that are capable of activating multiple neuroprotective pathways in the brain [START_REF] Rau | Low dose methamphetamine mediates neuroprotection through a PI3K-AKT pathway[END_REF]. Now considering pathological conditions, it has been demonstrated that low to moderate doses of Meth induces short-term improvements in learning and memory in preclinical models of stroke and traumatic brain injury [START_REF] Rau | The neuroprotective potential of low-dose methamphetamine in preclinical models of stroke and traumatic brain injury[END_REF].

In this context, the present study strongly suggests that the above mentioned beneficial effects of low Meth doses can, at least partly, be due to the enhancement of α-secretase expression and activity leading to an increased production of sAPPα, which is a wellestablished neuroprotective and neurotrophic factor, but is also a key contributor to synaptic plasticity and spatial memory and has been more recently shown to enhance neurogenesis [START_REF] Mockett | Therapeutic potential of secreted amyloid precursor protein APPsα[END_REF].

When briefly considering the possible mechanisms through which Meth could promote sAPPα production, it is important to firstly underline here that Meth, after its binding to neuronal dopamine receptors, can activate the ERK pathway [START_REF] Mizoguchi | Regulations of methamphetamine reward by extracellular signal-regulated kinase 1/2/ets-like gene-1 signaling pathway via the activation of dopamine receptors[END_REF] and the phosphorylation of the CREB transcription factor [START_REF] Liu | Effect of rhynchophylline on the expression of p-CREB and sc-Fos in striatum and hippocampal CA1 area of methamphetamine-induced conditioned place preference rats[END_REF]. Because CREB, a downstream target of ERK, is involved in ADAM10 promoter transactivation [START_REF] Shukla | Melatonin stimulates the nonamyloidogenic processing of βAPP through the positive transcriptional regulation of ADAM10 and ADAM17[END_REF][START_REF] Meng | Tat-haFGF14-154 upregulates ADAM10 to attenuate the Alzheimer phenotype of APP/PS1 mice through the PI3K-CREB-IRE1α/XBP1 pathway[END_REF], low Meth could positively control ADAM10 expression via the CREB pathway, the incapacity of higher concentrations of the drug to operate in the same manner being due to an desensitization of the receptors. Secondly, because Meth increases BDNF and TrkB in multiple brain regions and since BDNF promotes the non-amyloidogenic processing of βAPP and reduces the production of Aβ peptides in a transgenic mouse model of AD [START_REF] Nigam | Exercise and BDNF reduce Aβ production by enhancing α-secretase processing of APP[END_REF], BDNF might play an intermediate role in the Methdependent sAPPα augmentation. Thirdly, because Meth induces glutamate release causing over activation of NMDAR and AMPAR receptors in the brain [START_REF] Simões | Methamphetamine changes NMDA and AMPA glutamate receptor subunit levels in the rat striatum and frontal cortex[END_REF] and since synaptic NMDAR receptor activation stimulates α-secretase processing of βAPP and inhibits Aβ production [START_REF] Hoey | Synaptic NMDA receptor activation stimulates alpha-secretase amyloid precursor protein processing and inhibits amyloidbeta production[END_REF], it could be speculated that adjusting the dosage paradigm of Meth would be another channel to regulate and modulate NMDAR receptor activation. Finally, the key regulatory role of calcium in cognition, together with the Ca 2+ -dependent nature of αsecretase [START_REF] Chen | The maze of APP processing in Alzheimer's disease: Where did we go wrong in reasoning? Front[END_REF], might provide an additional route through which Meth could possibly influence βAPP processing by α-secretase.

Although disruption of BACE1 has been recently shown to affect amphetamine-dependent dopaminergic signalling in the midbrain, an area implicated in schizophreniform behaviours [START_REF] Paredes | Physiological and behavioral effects of amphetamine in BACE1 -/mice[END_REF], the present study is the first one to report an effect of Meth on BACE1 and the here described Meth-induced up-regulation of BACE1 expression could possibly be under the control of several molecular mechanisms. Firstly, it has been shown that chronic Meth administration increases α-synuclein protein levels in the hippocampus [START_REF] Butler | Chronic methamphetamine increases alpha-synuclein protein levels in the striatum and hippocampus but not in the cortex of juvenile mice[END_REF]. Since αsynuclein expression induces BACE1 protein levels [START_REF] Roberts | α-Synuclein increases β-amyloid secretion by promoting β-/γ-secretase processing of APP[END_REF], it could therefore be inferred that the high Meth-induced rise in BACE1 levels seen in our present study might use α-synuclein as an intermediate factor. Secondly, Meth administration can cause neurotoxicity and neurodegeneration via the up regulation and nuclear translocation of NFκB [START_REF] Wongprayoon | Melatonin attenuates methamphetamine-induced neuroinflammation through the melatonin receptor in the SH-SY5Y cell line[END_REF] and by increasing GSK3β and tau phosphorylation in a dose-and time-dependent manner [START_REF] Li | Role of GSK3β/α-synuclein axis in methamphetamine-induced neurotoxicity in PC12 cells[END_REF], thereby triggering apoptosis in a GSK3β-dependent manner [START_REF] He | Amphetamine neurotoxicity in PC12 cells through the PP2A/AKT/GSK3β pathway[END_REF]. Because NFκB and GSK3β have an impact on βAPP metabolism via the modulation of BACE1 expression [START_REF] Chinchalongporn | Melatonin ameliorates Aβ42induced alteration of βAPP-processing secretases via the melatonin receptor through the Pin1/GSK3β/NF-κB pathway in SH-SY5Y cells[END_REF], it can therefore be speculated that our observed effect of high Meth treatment on BACE1 might involve both NFκB and GSK3β. Thirdly, initially reported as the most instantaneous effect of moderate to high dose of Meth is the production of ROS and oxidative stress [START_REF] Yang | The main molecular mechanisms underlying methamphetamineinduced neurotoxicity and implications for pharmacological treatment[END_REF]. Considering this parameter, Meth-induced oxidative stress has been shown to lead to a dysfunctional processing of βAPP in rat and human platelets in AD patients [START_REF] Ehrlich | Effects of oxidative stress on amyloid precursor protein processing in rat and human platelets[END_REF] with enhanced secretion of sAPPβ [START_REF] Muche | Oxidative stress affects processing of amyloid precursor protein in vascular endothelial cells[END_REF] that further increases BACE1 processing of βAPP via BACE1 gene activation [START_REF] Tan | Effects of mild and severe oxidative stress on BACE1 expression and APP amyloidogenic processing[END_REF]. Finally, it is well established that mitochondrial dysfunction affects βAPP expression and processing as well as Aβ accumulation [START_REF] Swerdlow | The Alzheimer's disease mitochondrial cascade hypothesis: Progress and perspectives[END_REF]. Moreover, some metabolic disturbances seen in AD likely arise from increased ER-mitochondrial communication that is driven by an increase in the levels of C99, the C-terminal processing product of βAPP derived from its cleavage by βsecretase that is present in mitochondria-associated endoplasmic reticulum membranes [START_REF] Area-Gomez | A key role for MAM in mediating mitochondrial dysfunction in Alzheimer disease[END_REF]. In this context, the fact that Meth mediates ER stress leading to apoptosis [START_REF] Shah | Methamphetamine-mediated endoplasmic reticulum (ER) stress induces type-1 programmed cell death in astrocytes via ATF6, IRE1α and PERK pathways[END_REF] could provide another mechanism through which Meth could control the BACE1 cleavage of βAPP.

Altogether, our data shed light on possible mechanisms through which Meth could convey both beneficial and deleterious effects regarding AD through differential effects on βAPP processing, depending on the concentrations applied. Thus, one can first delineate a so-called "therapeutic" window (1-10 µM) in which sAPPα production is at the pic of the bell-shape curve and BACE1 is not yet activated (Fig. 4, green area), thereby directing the metabolism of βAPP towards its amyloidogenic pathway. Secondly, one enter an AD-promoting window in which higher Meth concentrations (100 µM-1 mM) do not have an effect on sAPPα secretion anymore but dose-dependently increase BACE1 expression and catalytic activity, thereby shifting βAPP processing toward the amyloidogenic pathway (Fig. 4, red area). It will now be of particular interest to determine whether Meth could also have an impact on γsecretase.

Considering the possible therapeutic use of Meth in AD, it is worth noting that this compound has a relatively long half-life and crosses the blood brain barrier rapidly and that low doses of Meth produce very few side effects and the fact that Meth is metabolized to amphetamine, further prolongs its activity in the brain [START_REF] Cruickshank | A review of the clinical pharmacology of methamphetamine[END_REF][START_REF] Panenka | Methamphetamine use: A comprehensive review of molecular, preclinical and clinical findings[END_REF]. For these reasons, Meth has significant potential as a neuroprotective agent and could therefore be possibly used as a substitute to manipulate the cognitive outcomes in AD patients under strict supervision. In order to further characterize the pharmacology of Meth as a potential anti-AD agent and define possible parameters of clinical application, the precise therapeutic window in which it would be possible to intervene should now be thoroughly examined in vivo in animal models of the disease. and memory-enhancing and neurogenesis-stimulating sAPPα fragment (green). On the other hand is the AD-promoting window (100 µM-1 mM), which might correspond to drug abusing condition and that no longer augments sAPPα production but instead increases BACE1 expression and activity (red).
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 4 Figure 4: Schematic representation of the concentration-dependent beneficial and deleterious effects of methamphetamine on βAPP processing. This diagram illustrates the two antagonistic windows of action of methamphetamine regarding βAPP processing by the nonamyloidogenic α-secretase and the amyloidogenic β-secretase activities. On one hand is
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