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Abstract: HslVU is an ATP-dependent proteolytic complex present in certain bacteria and in the
mitochondrion of some primordial eukaryotes, including deadly parasites such as Leishmania. It is
formed by the dodecameric protease HslV and the hexameric ATPase HslU, which binds via the
C-terminal end of its subunits to HslV and activates it by a yet unclear allosteric mechanism. We
undertook the characterization of HslV from Leishmania major (LmHslV), a trypanosomatid that
expresses two isoforms for HslU, LmHslU1 and LmHslU2. Using a novel and sensitive peptide
substrate, we found that LmHslV can be activated by peptides derived from the C-termini of
both LmHslU1 and LmHslU2. Truncations, Ala- and D-scans of the C-terminal dodecapeptide
of LmHslU2 (LmC12-U2) showed that five out of the six C-terminal residues of LmHslU2 are essential
for binding to and activating HslV. Peptide cyclisation with a lactam bridge allowed shortening
of the peptide without loss of potency. Finally, we found that dodecapeptides derived from HslU
of other parasites and bacteria are able to activate LmHslV with similar or even higher efficiency.
Importantly, using electron microscopy approaches, we observed that the activation of LmHslV was
accompanied by a large conformational remodeling, which represents a yet unidentified layer of
control of HslV activation.

Keywords: ATP-dependent protease; HslVU; peptide chemical synthesis; cryo-electron microscopy;
Leishmania; mitochondria; allosteric regulation; cyclic peptides
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1. Introduction

ATP-dependent proteases are present in all living organisms [1] and play major roles in
intracellular proteolysis, and therefore, in cell homeostasis. They rid the cells of old and misfolded
proteins and are also involved in the control, often tightly regulated, of the stability of most regulatory
proteins. In eukaryotes, the major ATP-dependent protease is the 26S proteasome responsible for the
degradation of poly-ubiquitylated proteins. This multi-enzymatic complex is composed of the 20S
catalytic core that is capped at one or both ends by its regulatory subunit, the 19S complex or PA700 [2,3].
In bacteria, several ATP-dependent proteases are present. Among them, HslVU, also called ClpYQ, is
a proteolytic complex initially described in Escherichia coli (E. coli) [4–6]. It is a self-compartmentalized
protease constituted of two HslV hexameric rings that enclose a proteolytic chamber containing
12 active sites whose catalytic residues are the N-terminal Thr (Thr1) of each subunit. HslV activity is
controlled by its regulator HslU, an ATPase of the AAA+ family [7]. HslU forms a hexameric ring that
binds in the presence of ATP to one or both ends of the protease, resulting into the formation of the
HslVU ATP-dependent protease. Substrate recognition is most likely performed by the HslU regulator
that then unfolds and translocates the captured protein into the internal proteolytic chamber of HslV,
by an ATP-dependent mechanism [6,8–10].

HslV alone can only slowly degrade some hydrophobic peptides and unfolded proteins in vitro
whereas it can be activated several folded by the binding of HslU [5,6]. Crystallographic and mutational
analyses have shown that the C-terminus segment of HslU that is buried between the HslU subunits
when the complex is at rest, distends in the presence of ATP and inserts into pockets located between
adjacent HslV subunits [8]. Binding of HslU results into an enlargement of HslV pores [11,12],
which most likely facilitates the entrance of substrates into the catalytic cavity of HslV. However,
HslV activation additionally requires conformational rearrangements at or close to the active sites of
HslV, which are propagated over a relatively long distance from the binding pockets to the active sites,
allowing the latter to adopt an active configuration by shifting from an “off” to an “on” state [8,9,13–15].

Importantly, it has been shown that synthetic peptides composed of the 8-12 last amino acid
residues of HslU can partially or fully replace the latter for HslV activation toward small fluorogenic
peptide substrates or unfolded proteins, but not folded proteins [15].

Whereas HslU is an ATPase that has no obvious similarity outside the AAA ATPase module
with the ATPase subunits of the 26S proteasome, HslV is clearly related to 20S proteasome subunits,
as shown by sequence similarities, enzymatic mechanism and structural organization [4,5,16,17]. Thus,
HslVU was initially considered as an ancestral form of the proteasome that had evolved in eukaryotes
into the 26S proteasome, making the coexistence of both proteases in the same living organism
unlikely. However, while HslVU is indeed absent in higher eukaryotes, it has been discovered in
the mitochondrion of trypanosomatids [18,19]. Furthermore, it has been shown that HslV and HslU
genes are in fact present in most eukaryotic lineages [20]. Interestingly, from the studies on HslVU
functions in these eukaryotes, it appears that, in contrast to its bacterial counterpart [21], the protease
HslVU is essential for the survival of several parasites [22–26]. Indeed, it has been shown that both
HslV and HslU1/U2 have important roles in mitochondrial DNA replication and cell cycle control in
Trypanosoma brucei [22,26], and in transcription of genes encoded by the mitochondrial genome as well
as cellular and mitochondrial growth in Plasmodium falciparum [23,25]. Thus, thanks to its essential
functions in these dangerous parasites and its absence in humans, HslVU represents an attractive
potential drug target to fight against deadly parasitic diseases.

A clear route for inhibition of HslV is to develop compounds targeting its active site(s), as done
extensively for the eukaryotic 20S proteasome, for example [27]. However, although previous studies
show the feasibility of species-specific inhibitors of proteasome [28–30], developing selective HslV
inhibitors not targeting the human proteasome remains a challenge. Another approach to inhibit
HslVU could be to target the formation of the HslVU complex, since association of the HslV and HslU
subcomplexes is necessary for protein degradation by the protease. Such inhibition could be achieved
in principle by small molecules [31] or high affinity mimetics of the C-terminal segment of HslU, which
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should prevent the docking of HslU to HslV by occupying its insertion pockets on HslV. Although
such compounds could still activate HslV catalysis, they should nevertheless prevent the degradation
of protein substrates that depends on HslUs, and thus, severely impair parasite growth. In fact, the
validity of this approach has been already documented in P. falciparum [23]. In line with this idea, and
to pave the way for the future development of specific compounds inhibiting the binding of HslU to
HslV, we undertook an exploration of the structure-activity relationships of HslV-HslU interaction in
Leishmania major.

Although the eubacterial HslVU protease has been extensively studied, much less is known
about its eukaryote counterparts from a biochemical and structural point of view: the most detailed
analysis to date is the characterization of T. brucei HslV [32,33]. Similar to T. brucei, L. major, which is
the causative agent of cutaneous leishmaniasis, expresses together with HslV (LmHslV, UniProt ID
Q4Q116) two isoforms of HslU, named LmHslU1 and LmHslU2 (UniProt IDs Q4QFH5 and Q4QI03,
respectively). Our recent studies suggest that these two isoforms have specific roles [26], but whether
they function as hetero- (U1/U2) or homo- (U1 and U2) complexes is presently not known.

In this study, we present the initial characterization of the proteolytic core LmHslV and its
activation by peptides derived from the C-termini of HslUs. Using recombinant protein and synthetic
peptides, we describe a novel peptidic substrate (Z-EVNL-AMC, JMV4482, Z = benzyloxycarbonyl,
AMC = 7-amino-4-methylcoumarin) for HslV and analyze the structural requirements for HslU-derived
peptides to activate LmHslV as well as the conformational reorganization of this complex upon activation.

2. Results

2.1. Expression and Purification of Recombinant LmHslV

In order to characterize L. major HslV, we produced the recombinant protein in E. coli. As the
protease is normally expressed with a N-terminal mitochondrial signal peptide that is removed upon
translocation to the mitochondrion, we produced a modified form of the protein, in which the signal
peptide has been replaced by a N-terminal methionine that precedes the ‘TTI’ motif required for
activity (Figure S1A). Indeed, this configuration is that observed in E. coli HslV, for which it is known
that the N-terminal methionine is cleaved upon expression, thus exposing a N-terminal threonine
(Thr1) that is the catalytic residue. Additionally, a C-terminal 6xHis tag was added to the protein for
its rapid purification.

After expression in E. coli, recombinant LmHslV was easily purified on nickel using a Ni-NTA
superflow (Qiagen) column (Figure S1B). Depending on the samples, a few high molecular weight
contaminants were visible by SDS-PAGE analysis. Therefore, in some experiments we further purified
the protein by gel filtration (Superose 12) to resolve it away from the contaminants and obtain purer
samples. However, we did not notice any interference of these contaminants with the activity of
the protease. As expected, gel filtration analyses showed that the protein was able to spontaneously
assemble as a dodecamer (Figure S1C), as seen with HslVs from other organisms. As expected,
N-terminal sequencing by Edman degradation showed that 89% of the produced recombinant LmHslV
polypeptides had the N-terminal methionine removed and exposed an active N-terminal threonine.

2.2. LmHslV Is a Dodecameric and Inactive Protease that Can Be Activated by Peptides Corresponding to the
C-terminal End of LmHslU1 and U2

2.2.1. Peptides Derived from the C-terminal Ends of LmHslU1 and U2 Can Activate LmHslV

After purification, we initially found no activity for the protease using the Z-GGL-AMC peptide
substrate classically used to assess activity of HslV from different species, including E. coli [5] and
P. falciparum [34]. This was most likely due to the absence of HslU, whose binding is known to activate
HslV. Unfortunately, we failed to obtain recombinant LmHslU1 and LmHslU2 in a soluble form.
Therefore, we tested whether we could activate LmHslV by incubating the complex with peptides
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derived from the C-terminal end of LmHslU1 or LmHslU2, as previously shown for HslVs from other
organisms [15,35].

We first synthesized peptides 1–4 corresponding to the 8 C-terminal amino acid residues of
LmHslU1 and LmHslU2, acetylated (Ac-) or not (H-) on their N-terminus (H-LmC8-U1, Ac-LmC8-U1,
H-LmC8-U2 and Ac-LmC8-U2, respectively, see Table 1 for the sequences of all peptides used in this
study) and assessed their effect on LmHslV activity. We also synthesized and tested peptides 6 and 7
corresponding to C-terminal octapeptide of Escherichia coli, respectively, non-acetylated (H-EcC8-U)
and acetylated (Ac-EcC8-U).

Table 1. Peptides used in this study.

Compound Structure

C-ter HslU: Octamers

LmHslU1

(1) H-LmC8-U1 H-Val-Asp-Ile-Lys-Lys-Phe-Ile-Leu-OH

(2) Ac-LmC8-U1 Ac-Val-Asp-Ile-Lys-Lys-Phe-Ile-Leu-OH

LmHslU2

(3) H-LmC8-U2 H-Val-Asn-Leu-Ala-Lys-Tyr-Leu-Leu-OH

(4) Ac-LmC8-U2 Ac-Val-Asn-Leu-Ala-Lys-Tyr-Leu-Leu-OH

(5) Dimer of LmC8-U2 1,2,3-Triazole-1,4 = [CH2-CH2CO-(O2Oc)3-Ala-Val-Asn-Leu-Ala-Lys-Tyr-Leu-Leu-OH]2

EcHslU

(6) H-EcC8-U H-Glu-Asp-Leu-Ser-Arg-Phe-Ile-Leu-OH

(7) Ac-EcC8-U Ac-Glu-Asp-Leu-Ser-Arg-Phe-Ile-Leu-OH

C-ter HslU: Dodecamers

LmHslU1

(8) LmC12-U1 H-arg-O2Oc-Met-Val-Lys-Lys-Val-Asp-Ile-Lys-Lys-Phe-Ile-Leu-OH

(9) [Tyr10]-LmC12-U1 H-arg-O2Oc-Met-Val-Lys-Lys-Val-Asp-Ile-Lys-Lys-Tyr-Ile-Leu-OH

LmHslU2

(10) LmC12-U2 H-arg-O2Oc-Leu-Gln-Lys-Asn-Val-Asn-Leu-Ala-Lys-Tyr-Leu-Leu-OH

(11) [Phe10]-LmC12-U2 H-arg-O2Oc-Leu-Gln-Lys-Asn-Val-Asn-Leu-Ala-Lys-Phe-Leu-Leu-OH

(12) Dimer of LmC12-U2 1,2,3-Triazole-1,4 =
[CH2CH2CO-(O2Oc)3-Leu-Gln-Lys-Asn-Val-Asn-Leu-Ala-Lys-Tyr-Leu-Leu-OH]2

C-ter HslU from other origins

(13) TbC12-U2 H-arg-O2Oc-Leu-Met-Asn-Asn-Ile-Asp-Leu-Ala-Lys-Tyr-Ile-Leu-OH

(14) PfC12-U H-arg-O2Oc-Phe-Ile-Lys-Gln-Tyr-Asp-Leu-Lys-Lys-Tyr-Ile-Ile-OH

(15) EcC12-U H-arg-O2Oc-Leu-Val-Ala-Asp-Glu-Asp-Leu-Ser-Arg-Phe-Ile-Leu-OH

Ala-scan (C-ter LmHslU2)

(16) [Ala5]-LmC12-U2 H-arg-O2Oc-Leu-Gln-Lys-Asn-Ala-Asn-Leu-Ala-Lys-Tyr-Leu-Leu-OH

(17) [Ala6]-LmC12-U2 H-arg-O2Oc-Leu-Gln-Lys-Asn-Val-Ala-Leu-Ala-Lys-Tyr-Leu-Leu-OH

(18) [Ala7]-LmC12-U2 H-arg-O2Oc-Leu-Gln-Lys-Asn-Val-Asn-Ala-Ala-Lys-Tyr-Leu-Leu-OH

(19) [Ala9]-LmC12-U2 H-arg-O2Oc-Leu-Gln-Lys-Asn-Val-Asn-Leu-Ala-Ala-Tyr-Leu-Leu-OH

(20) [Ala10]-LmC12-U2 H-arg-O2Oc-Leu-Gln-Lys-Asn-Val-Asn-Leu-Ala-Lys-Ala-Leu-Leu-OH

(21) [Ala11]-LmC12-U2 H-arg-O2Oc-Leu-Gln-Lys-Asn-Val-Asn-Leu-Ala-Lys-Tyr-Ala-Leu-OH

(22) [Ala12]-LmC12-U2 H-arg-O2Oc-Leu-Gln-Lys-Asn-Val-Asn-Leu-Ala-Lys-Tyr-Leu-Ala-OH

D-scan (C-ter LmHslU2)

(23) [leu7]-LmC12-U2 H-arg-O2Oc-Leu-Gln-Lys-Asn-Val-Asn-leu-Ala-Lys-Tyr-Leu-Leu-OH

(24) [ala8]-LmC12-U2 H-arg-O2Oc-Leu-Gln-Lys-Asn-Val-Asn-Leu-ala-Lys-Tyr-Leu-Leu-OH

(25) [lys9]-LmC12-U2 H-arg-O2Oc-Leu-Gln-Lys-Asn-Val-Asn-Leu-Ala-lys-Tyr-Leu-Leu-OH

(26) [tyr10]-LmC12-U2 H-arg-O2Oc-Leu-Gln-Lys-Asn-Val-Asn-Leu-Ala-Lys-tyr-Leu-Leu-OH

(27) [leu11]-LmC12-U2 H-arg-O2Oc-Leu-Gln-Lys-Asn-Val-Asn-Leu-Ala-Lys-Tyr-leu-Leu-OH

(28) [leu12]-LmC12-U2 H-arg-O2Oc-Leu-Gln-Lys-Asn-Val-Asn-Leu-Ala-Lys-Tyr-Leu-leu-OH

Truncated peptides (C-ter LmHslU2)

(29) LmC9-U2 H-arg-O2OC-Asn-Val-Asn-Leu-Ala-Lys-Tyr-Leu-Leu-OH

(30) LmC8-U2 H-arg-O2Oc-Val-Asn-Leu-Ala-Lys-Tyr-Leu-Leu-OH

(31) LmC7-U2 H-arg-O2Oc-Asn-Leu-Ala-Lys-Tyr-Leu-Leu-OH

(32) Ac-LmC7-U2 Ac-Asn-Leu-Ala-Lys-Tyr-Leu-Leu-OH
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Table 1. Cont.

Compound Structure

(33) LmC6-U2 H-arg-O2Oc-Leu-Ala-Lys-Tyr-Leu-Leu-OH

(34) Ac-LmC6-U2 Ac-Leu-Ala-Lys-Tyr-Leu-Leu-OH

(35) LmC4-U2 H-arg-O2Oc-Lys-Tyr-Leu-Leu-OH

(36) Ac-LmC4-U2 Ac-Lys-Tyr-Leu-Leu-OH

Cyclic peptides (C-ter LmHslU2)

(37) cyclo[Asp4, Lys8]-LmC12-U2 H-arg-O2Oc-Leu-Gln-Lys-c[Asp-Val-Asn-Leu-Lys]-Lys-Tyr-Leu-Leu-OH

(38) cyclo[asp4, Lys8]-LmC12-U2 H-arg-O2Oc-Leu-Gln-Lys-c[asp-Val-Asn-Leu-Lys]-Lys-Tyr-Leu-Leu-OH

(39) cyclo[Asp4, lys8]-LmC12-U2 H-arg-O2Oc-Leu-Gln-Lys-c[Asp-Val-Asn-Leu-lys]-Lys-Tyr-Leu-Leu-OH

(40) cyclo[asp4, lys8]-LmC12-U2 H-arg-O2Oc-Leu-Gln-Lys-c[asp-Val-Asn-Leu-lys]-Lys-Tyr-Leu-Leu-OH

(41) cyclo[Asp4, Orn8]-LmC12-U2 H-arg-O2Oc-Leu-Gln-Lys-c[Asp-Val-Asn-Leu-Orn]-Lys-Tyr-Leu-Leu-OH

(42) cyclo[Asp4, Dap8]-LmC12-U2 H-arg-O2Oc-Leu-Gln-Lys-c[Asp-Val-Asn-Leu-Dap]-Lys-Tyr-Leu-Leu-OH

(43) cyclo[Asp4, (1) Lys8]-LmC9-U2 H-arg-O2Oc-c[Asp-Val-Asn-Leu-Lys]-Lys-Tyr-Leu-Leu-OH

Scrambled LmC12-U2

(44) Scr-LmC12-U2 H-arg-O2Oc-Asn-Leu-Tyr-Lys-Leu-Val-Gln-Leu-Leu-Asn-Lys-Ala-OH

Dap = Diaminopropionyl; Orn = Ornithine; O2Oc = -NH(CH2)2O(CH2)2OCH2CO-.

Despite solubility issues at the concentrations in the millimolar range required for this effect, we
found that the LmHslU1-derived peptide 1 (H-LmC8-U1) was able to activate the protease, using
the substrate Z-GGL-AMC (Figure 1A). Moreover, a robust activation was seen with the acetylated
LmHslU2-derived peptide 4 (Ac-LmC8-U2) whereas its non-acetylated analogue 3 was not soluble
enough for reliable results. Interestingly, the octapeptides derived from EcHslU, 6 and 7 were also
found to activate LmHslV (Figure 1B), in contrast to the results reported by Sung et al. for TbHslV [32].
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the free AMC group liberated by hydrolysis of the substrate, which is proportional to the proteolytic 
activity of the sample, was measured every 15 min for 2 h. The activity is calculated as fluorescence 
units liberated by the minute during the linear period of the assay. The values are the mean of two 
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group liberated by hydrolysis of the substrate, which is proportional to the proteolytic activity of the
sample, was measured every 15 min for 2 h. The activity is calculated as fluorescence units liberated
by the minute during the linear period of the assay. The values are the mean of two experimental
replicates for a representative experiment; errors bars represent deviation from the mean of the values.
(B) LmHslV can also be activated by octapeptides derived from the C-terminus of HslV from E. coli.
Assays were performed as in (A), using compounds 4 (Ac-LmC8-U2), 6 (H-EcC8-U) and 7 (Ac-EcC8-U).



Int. J. Mol. Sci. 2019, 20, 1021 6 of 20

This first series of experiments demonstrated that LmHslV was virtually inactive in the absence of
its activator, and that it could be activated by peptides derived from the C-terminus of various HslUs,
including LmHslU1, LmHslU2 and EcHslU. At this stage however, the assays were not robust, due in
large part to the poor solubility of the peptides tested.

To improve our tools, we developed a dodecapeptide series since Ramachandran et al. [15]
reported that the C-terminal dodecapeptide from E. coli HslU (EcC12-U) was about twice as potent as
the corresponding octapeptide at activating EcHslV against peptide substrates. For better aqueous
solubility, we added a hydrophilic segment composed of a D-arginine and a small PEG segment
O2Oc at the N-terminus of the peptides. Preliminary experiments led to the following reference
activator peptide derived from LmHslU2, compound 10: H-arg-O2Oc-Leu1-Gln-Lys-Asn-Val-Asn-
Leu-Ala-Lys-Tyr-Leu-Leu12-OH. This peptide, named LmC12-U2, was found to be more soluble
and to activate LmHslV much more efficiently than the LmC8-U2 peptide 4 in the presence of the
substrate Z-GGL-AMC.

A further improvement to our assays was the development of a novel fluorogenic peptide
substrate, which was more convenient to use than Z-GGL-AMC. Indeed, although the substrate
Z-GGL-AMC mostly used in the literature for the studies of HslV has proven useful, its use is
limited by its poor solubility in aqueous solutions [6,36]. In view of finding alternative substrates for
LmHslV, we tested a variety of possible fluorogenic substrates (commercial or home-made) including
Suc-LLVY-AMC, a classical substrate used for the eukaryotic proteasome, in the presence of the
reference activator peptide LmC12-U2. As shown in Figure 2, both Z-GGL-AMC and Suc-LLVY-AMC
peptides were degraded by peptide-activated LmHslV, as expected from previous work performed
on HslV of other species. Most of other tested substrates were either not- or poorly-digested by
activated LmHslV. The only exception was the fluorogenic substrate Z-EVNL-AMC (JMV4482), which
was in fact more efficiently degraded by LmHslV than Z-GGL-AMC and Suc-LLVY-AMC at 100 µM
(Figure 2). Furthermore, we observed no solubility problems at concentrations up to 300 µM whereas
Z-GGL-AMC becomes insoluble at concentrations above 100 µM. Interestingly, we observed that
Z-EVNL-AMC was also more efficiently degraded by HslV from E. coli (EcHslV) than Z-GGL-AMC,
suggesting that it could be used to probe activity for HslVs of most species.
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Figure 2. Degradation of different fluorogenic substrates by LmHslV. LmHslV (75.2 nM) was incubated
at 37 ◦C with different fluorogenic substrates (100 µM) in the presence of the activating peptide
LmC12-U2 (500 µM). The fluorescence of the free AMC group, proportional to the activity of the
sample, was measured at 2 min. intervals. With each substrate, no activity was measured in the absence
of activating peptide: for the sake of clarity, only the negative control values obtained with the substrate
ZGGL-AMC are shown.

Thanks to these improvements, we then undertook a detailed analysis of the sequence and
structural requirements for LmHslV activation, using compound 10 (LmC12-U2) as an internal
reference in all experiments and Z-EVNL-AMC as a substrate.
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2.2.2. Sequence Requirements for Activation of LmHslV by C-terminal HslU Peptides

We tested the ability of dodecapeptides derived from the C-terminal end of LmHslU1 and
LmHslU2 and of HslU from other micro-organisms to activate LmHslV.

As shown in Figure 3, the C12-U1 peptide derived from LmHslU1, 8 could readily activate
LmHslV, although it was slightly less efficient than the corresponding C12-U2 peptide. As a Tyr
residue present in LmC12-U2 but not LmC12-U1 has been identified as critical for HslV activation in
T. brucei [32], we replaced the corresponding Phe by Tyr in LmC12-U1 (compound 9). This substitution
led to an increase in activity, conversely, replacing Tyr by Phe in LmC12-U2 (compound 11) led to
decreased activity (Figure 3). This result corroborates the conclusion by Sung et al. [32] that this residue
determines a different behavior between U1 and U2 C-termini. However, its importance appears less
dramatic in L. major compared to T. brucei since peptides derived from LmHslU1 are able to bind to
and activate the protease, contrary to what has been seen in T. brucei. Of note, it is unclear at this stage
whether the different activation properties of LmC12-U1 and U2 peptides are due to a difference in
affinity and/or function between HslU1 and HslU2, or to possible differences in solubility (although
C12-U1 was significantly more soluble than C8-U1).
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Figure 3. Both peptides derived from the C-terminal end of either LmHslU1 or LmHslU2 and analogues
from other microorganisms are able to support LmHslV activation. LmHslV (75,2nM) was incubated at
37 ◦C with the peptide substrate Z-EVNL-AMC (100 µM) in the presence of peptides 8–11 and 1–15
(500 µM). A scrambled version of LmC12-U2 (44) was also included. The fluorescence of the free AMC
group, proportional to the activity of the sample, was measured at 2 min. intervals. The values are
normalized by the initial velocity observed with the reference peptide 10, LmC12-U2, set to 100%.

Interestingly, we found that peptides from T. brucei (TbC12-U2, 13) and P. falciparum (PfC12-U, 14)
also efficiently activated LmHslV and were twice and 1.5-fold, respectively, as potent as LmC12-U2.
In addition, as observed in the octapeptide series, the E. coli analogue EcC12-U (15) was as potent
as LmC12-U2 (Figure 3). These results demonstrate that a given HslV could be activated by HslU
C-terminal segments from various sources. They are in agreement with the high conservation of this
segment and suggest that a same HslU C-terminal mimetic could represent a general HslVU assembly
inhibitor. As expected, a scrambled version of LmC12-U2 (compound 44) has no activity (Figure 3).

To assess the relative importance of side-chains in its activity, Ala-scanning was performed on
the reference compound 10 (LmC12-U2) and concerned the last eight residues of the peptide except,
of course, the Ala residue at position 8 (compounds 16–22). Figure 4A shows that five out of the last
6 residues of LmHslU2 C-terminal end are essential for activity (compounds 18–22 display very low
or no activity). This result is in agreement with similar data obtained with EcC8-U peptide [15] and
with the high conservation of these residues among all known HslU sequences. It was hypothesized
that Ala8 is essential as this residue is not conserved. This was confirmed by the synthesis of cyclic
analogues (see below).
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to compound LmC12-U2, measured as in (A). 
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its corresponding D isomer (compounds 23–28). Figure 4B shows that replacement of residues 7, 9–
12 led to analogues (compounds 23, 25–28, respectively) with no activity. In the case of Ala8 
(compound 24), a residual activity was observed. In the crystal structure of HslVU of Haemophilus 
influenzae [8], the C-terminal segment of HiHslU forms a short helix involving residues 
corresponding to the Asp6-Tyr10 segment of LmC12-U2 and ended by two residues in 
β-conformation. Therefore, as such modification is known to destabilize α-helices or to significantly 
change β-conformation, it can be hypothesized that any D-residue in this segment does not allow the 

Figure 4. Sequence requirements for activation of LmHslV by C-terminal LmHslU2 peptides.
(A) Alascan. Percentage of initial velocity relative to compound LmC12-U2. Fluorescence was measured
for 30 min incubation at 37 ◦C of LmHslV (2 µg) with 100 µM JMV4482 (Z-EVNL-AMC) in the presence
of 500 µM peptides. (B) D-scan. Percentage of initial velocity relative to compound LmC12-U2. Activity
was measured as in (A). (C) Truncated peptides. Percentage of activity relative to compound LmC12-U2,
measured as in (A).

Next, D-scanning was performed on the last six residues of LmC12-U2, each being replaced by its
corresponding D isomer (compounds 23–28). Figure 4B shows that replacement of residues 7, 9–12 led
to analogues (compounds 23, 25–28, respectively) with no activity. In the case of Ala8 (compound 24),
a residual activity was observed. In the crystal structure of HslVU of Haemophilus influenzae [8], the
C-terminal segment of HiHslU forms a short helix involving residues corresponding to the Asp6-Tyr10

segment of LmC12-U2 and ended by two residues in β-conformation. Therefore, as such modification
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is known to destabilize α-helices or to significantly change β-conformation, it can be hypothesized that
any D-residue in this segment does not allow the peptide to display the bioactive conformation. Even
though the peptide backbone would have the native conformation, the orientation of the side-chain of
the D-residue would be different.

We then synthesized peptides progressively shortened from the N-terminus of LmC12-U2 to
assess the minimal length required for measurable LmHslV activation. Peptides were tested as two
versions: one N-terminally acetylated analogue (compounds 4, 32, 34, 36) and/or one analogue with
the hydrophilic segment arg-O2Oc (compounds 29, 30, 31, 33, 35). Figure 4C shows that a minimum
of six residues is required. As expected, we observed a gradual increase in potency when extending
the peptide length, the reference 10, LmC12-U2, being by far the most potent activator. Accordingly,
the analogue with the hydrophilic segment was always found to be slightly more potent than the
acetylated counterpart, most likely because it is longer. These results suggest that the N-terminal
hexapeptide of LmC12-U2 helps the C-terminal part to acquire the bioactive conformation for HslV
binding and activation. This is in agreement with the estimations of the minimum length of peptides
required to stabilize a relatively stable α-helix portion in solution [37].

2.2.3. Structural Requirements for Activation of LmHslV by C-terminal LmHslU2 Peptides

As mentioned above, when interacting with HslV, the C-terminal hexapeptide segment of HslU in
H. influenzae forms a short helical structure, the C-terminal leucine residue being distended from this
helix portion [8]. Assuming that a similar conformation should be adopted by every C-terminal HslU
segments because of their high sequence conservation, we introduced a conformational constraint
aiming at favouring the formation of this helix portion.

It is well known that linking the two side-chains of residues i and i+4 can help to stabilize an
α-helix conformation [38]. As Ala8 is the only residue considered to be non-essential in the C-terminal
hexapeptide segment, this position was chosen as the i+4 position and therefore, i residue was Asn4.
In addition, the segment i-i+4 contains residues present in the expected helix portion.

As a first choice, we prepared the cyclic compounds 37–43 where the side-chains of residues
4 and 8 are linked through a lactam bridge. Molecular modelling based on the crystal structure of
H. influenzae (pdb 1G3I) confirmed that the bridge moiety of the cyclic peptide 37 points away from
the HslV interface, suggesting that this modification should be well tolerated. The two residues
involved in the cyclization are aspartyl at position 4 and any diaminoacyl residue at position 8. This
offers the advantage to keep the asparaginyl moiety at position 4. During synthesis, these residues
were introduced with their side-chains being protected with an allyl and an aloc groups, respectively.
After assembly, these two residues were selectively deprotected using phenylsilane (24 equiv.) and
Pd(PPh3)4 (0.2 equiv.) in DCM, and the free carboxylic and amino groups were coupled on the solid
phase in the presence of HBTU reagent (Scheme 1).
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First, Asn4 and Ala8 were substituted by an aspartyl and a lysine residue, respectively. Four cyclic
peptides were prepared with LL (37), DL (38), LD (39) and DD (40) aspartyl/lysyl combinations in
order to evaluate the importance of stereochemistry. All four compounds were able to activate the
digestion of the fluorogenic substrate by HslV with relative potencies of 55%–85%, the less potent
being the DD (40) analogue and the most potent being the LL (37) one (Figure 5). It is noteworthy that
the cyclic LD (39) analogue, which contains a D-residue at position 8 was much more potent than the
linear compound 24, which also contains a D-residue (ala) at the same position. This result suggests
that cyclization could compensate a localized conformational disruption caused by the D-residue.
We assessed the importance of cycle size by making analogues with the LL combinations Asp/Orn
(41) and Asp/Dap (42), decreasing the cycle size by one and three atoms, respectively. As shown on
Figure 5, the activity decreased when decreasing the cycle size, the shortest cyclic analogue 42 being
almost half as active as the reference peptide.
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Figure 5. Effect of conformational constraints on HslV activation by HslU C-terminal peptides. HslV
activity was measured in the presence of various cyclic analogues of LmC12-U2 and LmC9-U2. Values
are expressed as percentage of initial velocity relative to compound LmC12-U2.

Therefore, no increase in activity was observed when further constraining the peptide backbone.
However, interestingly, when removing the three N-terminal residues of compound 37, outside the
cyclic region, the resulting cyclic [Asp4, Lys8]-LmC9-U2 compound (43) was found to be almost as
active as the reference peptide 10, and therefore, more potent than the corresponding linear LmC9-U2
peptide 29 (Figure 5). This observation indicates that the cycle helped to stabilize the bioactive
conformation of the C-terminal region. In agreement with our study of the impact of peptide length,
these results support an important role of the N-terminal region in stabilizing the conformation of the
C-terminal one.

In conclusion, cyclization allows a decrease in the size of the activating peptide without impairing
HslV activation potency.

To assess the effective influence of these modifications on peptide conformation, several
compounds (three linear 10, 29, 30, and two cyclic 37, 43) were studied by circular dichroism in
aqueous buffer with or without trifluoroethanol (TFE), a co-solvent with helix-promoting properties
(Table 2 and Figure S2). As expected because of their small size, all peptides mainly display random
conformation with very low helix content. Addition of TFE led to a moderate increase of the helicity
and the largest variation was affected with 25% TFE, whereas 50% TFE only slightly increased it further.
The CD analysis of the linear LmU2 peptides (10, LmC12-U2; 29, LmC9-U2; 30, LmC8-U2) in the
presence of TFE showed that their propensity to adopt α-helix structure was similarly low. The most
significant effect was observed with the cyclic peptides. Indeed, the LmC12-U2 analogue 37 showed
about 20% helix content at 50% TFE. The C9-U2 analogue 43 showed lower helix content compared to
37, probably because of its shorter length, but the content was still slightly higher than its linear parent
peptide 29. Overall, the helix content was not clearly related to the HslV activating potency.
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Table 2. α-Helix content estimation on the basis of θ values at = 222 nm a.

Compound θmre (deg.cm2.dmol−1) at 222 nm (Helicity%)

N Name 0% TFE 25% TFE 50% TFE

10 LmC12-U2 −1186 (3) −3727 (10) −4328 (12)

29 LmC9-U2 −1711 (5) −4130 (11) −4733 (13)

30 LmC8-U2 −1377 (4) −3519 (10) −3592 (10)

37 c[Asp4,Lys8]-LmC12-U2 −1626 (5) −6143 (17) −7628 (21)

43 c[Asp4,Lys8]-LmC9-U2 −2225 (6) −5026 (14) −5140 (14)
a 100% helicity at λ = 222 nm for θ = −36,000 [39].

Finally, as the interaction of the HslU complex with HslV is multivalent, we explored the effect of
LmC12-U2 dimerization. It is well known that oligomeric peptide ligands usually present synergetic
affinity toward their receptor by increased avidity [40]. The distance (43.8 Å) on HslV between two
adjacent pockets accommodating HslU C-terminal ends was measured using the HiHslV crystal 3D
structure (PDB code 1G3I) [8], in order to design an appropriate spacer to link two dodecapeptides.
According to this distance, we designed two different monomers, each containing three O2Oc units,
with either a 3-azidopropanoyl or a pentynoyl moiety at their N-terminus. The two monomers were
then linked together in solution by Huisgen cycloaddition using a copper catalyst (click chemistry) to
yield the dimer 12 leading to a 1,2,3-triazole heterocycle (Scheme 2).
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Scheme 2. Synthesis of the LmC8-U2 (n = 0) and LmC12-U2 (n = 1) dimers (5 and 12).

The dimer was tested in comparison with the reference peptide 10 under usual conditions. HslV
activity in the presence of the dimer was about twice that reached with the monomer (Figure S3).
Similar results were obtained for the corresponding dimer of LmC8-U2 5 (not shown). As the dimer
concentration corresponds to double concentration in monomer, these results indicate that dimerization
is not enough to induce a synergetic effect.

2.3. LmHslV Activation by LmC12-U2 Is Accompanied by a Conformational Rearrangement of the Dodecamer

We analyzed the effect of LmC12-U2 on LmHslV by electron microscopy and cryo-electron microscopy.
Images of negatively stained LmHslV incubated or not with the peptide LmC12-U2 were similar,

displaying a uniform field of round shaped particles having an average diameter of ~11–12 nm
(Figure 6A). We computed two-dimensional class averages from HslV and HslV-LmC12-U2 particles.
They correspond to the average of particles presenting the same orientation, resulting in the increase
of the signal to noise ratio and subsequently allowing us to observe the structural features more clearly.
In both complexes, top, side and intermediate views were easily distinguishable, as presented in insets
Figure 6B,C.
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the two last views correspond to the top, side and intermediate views, respectively. (C) Selected 
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wide, with the tilt angle between opposed HslV subunits less pronounced, while on the other hand, 
the central channel appears larger. Although we took care to avoid an over representation of 
preferential views that could induce some structural distortions in 3D reconstructions, such artifacts 
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revealing that most structural differences observed between 3D reconstructions of HslV and 
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Figure 6. Structural characterization of negatively stained LmHslV and LmHslV-LmC12-U2 particles.
(A) Field of HslV particles stained with 1% uranyl acetate. Scale bar, 50 nm. (B) Selected
two-dimensional class averages and 3D reconstruction of HslV. The two first, the two following
and the two last views correspond to the top, side and intermediate views, respectively. (C) Selected
two-dimensional class averages and 3D reconstruction of HslV incubated with LmC12-U2. Selected
class averages are presented as in B. Each two-dimensional class average represents a square of
27.6 nm × 27.6 nm.

A star-like shape motif presenting six globular domains is visible from the top views, while side
views display a rectangular shape structure with vertical and elongated densities. According to an
iterative procedure based on the IMAGIC V software and described in the “experimental procedures”
section, we computed the three-dimensional reconstructions of HslV and HslV-LmC12-U2 at 24 Å and
26 Å resolution, respectively. LmHslV is organized as a dimer of hexamers presenting a D6 symmetry.
When visualizing complexes from side view, HslV subunits from the two opposed hexamers present a
small tilt angle with respect to the vertical axis. In the presence of LmC12-U2, HslV complex presents
a similar structural organization, though with some obvious structural discrepancies. In particular,
the dodecamer appears more elongated and less wide, with the tilt angle between opposed HslV
subunits less pronounced, while on the other hand, the central channel appears larger. Although
we took care to avoid an over representation of preferential views that could induce some structural
distortions in 3D reconstructions, such artifacts could not be totally excluded. Consequently, we
conducted a full examination of 2D class averages, revealing that most structural differences observed
between 3D reconstructions of HslV and HslV-LmC12-U2 were initially visible in 2D class averages as
shown in Figure 7.
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Figure 7. Comparison of LmHslV and LmHslV-LmC12-U2 class averages corresponding to top and
side views. Top and side views of HslV and HslV-LmC12-U2 are displayed separately in two panels.
In each panel, the first row corresponds to the original class averages while the second row corresponds
to the same class average superimposed either by a round circle of 12.5 nm diameter or a rectangle of
12.2 nm × 8.8 nm.
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We superimposed a circle of 12.5 nm diameter and a rectangle of 12.2 nm × 8.8 nm on the top and
side views, respectively. The outer space between HslV-LmC12-U2 subunits and the circle in the top
view is more pronounced than for HslV. The centre is heavily stained, indicating the central channel is
larger in HslV-LmC12-U2 than in HslV. In side views, HslV is constrained in the rectangle whereas a
space between HslV-LmC12-U2 and the lateral edges of the rectangle is unambiguously present. In
the orthogonal direction, the white density of HslV-LmC12-U2 goes outside the upper limit of the
rectangle indicating a longer distance than HslV.

We also decided to observe frozen-hydrated HslV and HslV-LmC12-U2 complexes in cryo-EM.
Figure S4 shows a view of HslV-LmC12-U2 complexes. Most of particles display a star-like shape motif
representative of top views. Side views are also clearly visible as indicated by white arrows. Cryo-EM
maps of HslV and HslV-LmC12-U2 were computed at 25 Å resolution. They are consistent with
those previously obtained in negative stain. Consequently, although at low resolution, the structural
differences between HslV and HslV-LmC12-U2 were clearly observed, supporting that HslV undergoes
global structural reorganization upon LmC12-U2 binding.

3. Discussion

Since its first description in bacteria more than 20 years ago, a large amount of information has
been collected on the protease HslVU, including the discovery of its existence in primordial eukaryotes.
Yet, many aspects of HslVU’s role and mechanism of action are still poorly understood. However,
a key mechanism for HslV functioning is its activation upon binding of its partner HslU. Our data
provide novel insight on this issue.

3.1. Structural Requirements for Activation of LmHslV by C-terminal LmHslU2 Peptides

Since peptides corresponding to the C-terminus of HslU are able to activate HslV active
sites [15,32,35], we used peptides derived from the C-termini of LmHslU1 and LmHslU2 to analyze
activation of LmHslV. The dodecapeptides that we developed based on previous data [15], N-terminally
extended by a hydrophilic moiety, were found to be much better tools than octapeptides for LmHslV
activation, probably in part due to better solubility but also because of higher affinity related
to a better conformational stability (see below). These dodecapeptides were thus used to study
structure-activity relationships.

Ala-scan, D-scan and truncations allowed us to show that as expected from a previous study [15],
five out the last six C-terminal residues of LmC12-U2 were essential to bind and activate LmHslV,
and that six residues seem to be the minimal length to activate LmHslV (Figure 4). Of note however,
the large difference observed between LmC12-U2 and LmC6-U2 indicates that additional N-terminal
residues have an important role. Knowing that these residues are less conserved in HslUs than the
last C-terminal hexapeptides, and that most of them are not in contact with HslV residues within the
binding pocket, as shown in HiHslVU crystal structure [8], this role is likely to be more conformational
than due to a direct contribution to binding.

As the HiHslU C-terminal segment was shown to be folded as a short helix flanked by
residues in the extended conformation when interacting with HslV [8], we hypothesized that a
similar conformation should be adopted by every C-terminal HslU segment. To favour the α-helix,
we designed several cyclic analogues with a lactam bridge linking the side-chains of an aspartyl and a
lysyl residue at positions 4 and 8, respectively. The wild-type L-Asp/L-Lys analogue 37 was found
to be the more potent cyclic analogue. Removing the three N-terminal residues outside the cycle
(compound 43) did not reduce the activity compared to LmC12-U2 (10) and its cyclic analogue 37, in
contrast to the difference observed between the linear peptides LmC12-U2 (10) and LmC9-U2 (29).
This result confirms the conformational role of the N-terminal part of LmC12-U2.

Interestingly, the presence of D-Asp and/or D-Lys led to compounds (38–40) with about 60%
activity relative to LmC12-U2 10. This result is somewhat surprising as the replacement of Ala8 by its
D-enantiomer (compound 24) led to an 80% decrease in activity, indicating that the cyclisation allowed
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for partial compensation of the local conformational disturbance and/or steric hindrance caused by
the D-side substituent.

3.2. Specific Roles of HslU1 and HslU2

An intriguing feature of Trypanosomatids is the presence of two isoforms of HslU (HlsU1 and
HslU2) in their genome. Evolutionary analyses suggest that HslU1 is more distant in sequence
from bacterial HslUs than HslU2 [33]. In addition, it is noteworthy that LmHslU1 and LmHslU2
(sequences accession numbers Q4QFH5 and Q4QIO3, respectively) differ significantly in their I-domain
(U1, residues 107–221 and U2, residues 144–303), which is involved in protein substrate recognition and
unfolding. This suggests that the two HslU proteins target different types of protein substrates and/or
play distinct mechanistic roles in substrate recognition. To clarify this issue, a lingering problem is to
understand whether both HslUs are able to bind to and activate HslV, and whether both proteins work
together (i.e., in a heterohexamer) or independently (i.e., as homohexamers) in HslV regulation.

In accordance with the hypothesis that both HslUs interact with and activate HslV, in this
manuscript we show that peptides corresponding to the C-terminal end of both LmHslU1 (1 and 8)
and LmHslU2 (4 and 10) are able to activate LmHslV (Figures 1 and 3), even though LmHslU1 peptides
were systematically less efficient than their LmHslU2 counterpart. However, these observations seem
to be in striking contradiction with data obtained with T. brucei counterparts showing that although the
C-terminal octapeptide of TbHslU2 (TbC8-U2) efficiently activates TbHslV, the corresponding peptide
from TbHslU1 (TbC8-U1) cannot do so [32]. The interpretation for the absence of the effect of TbC8-U1
was that it lacks at the antepenultimate position a critical tyrosine, present in TbHlsU2 (Tyr494) but
replaced by a phenylalanine in TbHslU1 [32]. Indeed, we confirmed an important role for this residue,
since we found that replacing Phe by Tyr in LmC12-U1 (9) led to a large increase in potency whereas
replacing Tyr by Phe in LmC12-U2 (11) led to the reverse effect (Figure 3). Since the C-terminal ends of
LmHslU1 and TbHslU1 are identical and both lack the critical antepenultimate tyrosine that is present
in both LmHslU2 and TbHslU2 (see Figure S5A), the simplest hypothesis is that the difference for
HslV activation between both organisms resides not in the peptides but in the HslV moiety. The fact
that the C-terminal octapeptides from E. coli (EcC8-U) can activate LmHslV (this manuscript) but not
TbHslV [32] is consistent with this notion, even though a direct comparison between our experiments
and those of Sung and colleagues [32] is complicated due to the fact that the peptide concentrations
were not indicated in the TbHslV study.

Indeed, a possible explanation for the differential effect of HslU1 peptides in L. major and in
T. brucei could reside in the different structures of the HslU-binding pockets of Lm- and TbHslV. In
fact, it has been suggested [32] that the critical role of the antepenultimate tyrosine in TbHslU2 is
linked to the fact that TbHslV residues accommodating TbHslU C-termini (namely Ile54, Met57 and
Thr114) are smaller than those found in EcHslV or HiHslV (respectively Phe54, Phe57 and Gln114).
According to this hypothesis, the presence of the antepenultimate tyrosine in TbHslU could favor tight
binding into the large pocket of TbHslV, thanks to a hydrogen bond that can be established between
the hydroxyl group and Ala79 main chain atoms of TbHslV [32]. Our analysis of the X-ray structure
(pdb 1G3I) suggests that the tyrosine could also form a hydrogen bond with Lys80 in HslV. Following
this rationale, and since LmHslV possesses a phenylalanine at position 54, as EcHslV and HiHslV
(see Figure S5B), the smaller HslU-binding pocket of LmHslV might not require an antepenultimate
tyrosine in LmHslU, explaining why it can accommodate HslU1.

Altogether, our results support the idea that both HslU1 and U2 are functional partners of HslV
in trypanosomatids, with the big caveat that it is unclear how much results obtained with C-terminal
peptides can be extrapolated to the native, full-length proteins. If it is the case, then an important
question is whether they interact with HslV independently to each other or not. The fact that in T. brucei
the protein HslU1 might not be able to bind to HslV by itself suggests not, but further analyses are
necessary to clarify this issue.
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Finally, another intriguing conclusion of our work is that the binding of HslUs to HslV is not
optimal, indeed, our data indicate that much higher activation of LmHslV can be achieved with HslU
C-termini of other organisms than L. major, or by mutations of LmHslUs (Figure 3). Most likely it is
important for HslVU functioning that the binding between its two sub-complexes is not too tight.

3.3. Conformational Rearrangement upon LmHslV Activation

In bacteria, both a widening of its pores [11,12] and an allosteric regulation of its catalytic
sites [14,15] seem to cooperate in HslV activation. However, this process remains ill-understood. Our
observations showed that LmHslV presents an overall architecture similar to the other previously
characterized HslVs. However, EM analyses of HslV structure after both negative staining and cryo-EM
reveal unsuspected global structural rearrangements of LmHslV upon activation by LmC12-U2,
involving a widening of the central channel and a lengthening and narrowing of the dodecamer
accompanied by a slight shift of HslV subunits.

The widening of central pores is consistent with observations related to bacterial HslV activation,
but other changes in the overall structure of HslV were not observed compared to crystal structures of
free and HslU-bound (i.e., activated) bacterial HslVs [8,11,14,41,42]. However, it is interesting to note
that a “twist-and-open” mechanism has been described for bacterial HslV upon HslU binding [9]. This
twist of the HslV ring associated to a widening of its pores somehow resembles, albeit at a smaller
scale, the structural reorganization observed for LmHslV. It is thus possible that LmHslV evolved by
amplifying the initial conformational rearrangement already present in its bacterial ancestor, possibly
as a mechanism to tighten the regulation of its activity.

An intriguing question is how such a reorganization can occur without ATPase activity in a
LmHslV dodecamer, which has a structure that is quite constrained. Crystal structures of latent
and activated LmHslV will most likely be necessary to solve this question. It is already established
that upon HslU binding, the HslV structure is dynamic enough to undergo both a reorganization of
the pores and conformational changes that are propagated up to the active sites [43]. Thus, we can
suppose that there is a plasticity in the manner that HslV subunits are assembled that might eventually
authorize major conformational changes at a small energetic cost.

3.4. Drugging HslVU

Because of its essential role in trypanosomatids and absence in humans, the HslVU complex
represents a promising target to extend the presently limited drug arsenal to fight against these deadly
parasites. As the catalytic mechanism of HslV is shared with the proteasome, developing drugs
specifically targeting HslV active sites without affecting the host proteasome is extremely challenging.
In this context, one alternative and relevant approach is to develop compounds targeting HslVU
assembly instead of its catalytic sites. One evident angle of attack is the interaction of the HslU
C-terminal segment with HslV, which is involved in both complex assembly and HslV activation, and
to design molecules that will prevent HslU association by occupying its binding pockets on HslV. Our
present data show that there is room to develop compounds that have much more affinity for these
pockets than HslUs. Furthermore, in principle there is the possibility to multimerize such molecules
to increase avidity and efficiently compete with HslU, even though our present data indicate that
dimerization might not be sufficient for such a synergistic effect. It is obvious that the size of the
molecules, as well as their targeting of the parasite mitochondrion, are the main constraints that might
limit their development into drugs that could be used in patients. However, although the longest
peptides tested in this study (i.e., dodecapeptides) were by far more potent than the shorter ones, we
were able to decrease the peptide length without a decrease in activity by conformational stabilization.
Our results make us confident that even shorter peptides or peptidomimetics with similar or enhanced
activity will be discovered through further careful exploration of structure-activity relationships. These
studies are ongoing in our laboratories.
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Independently of its future development, our present approach shows the value of using peptides
to probe the structural requirements allowing strong binding into the HslU-binding pockets of HslV.
Furthermore, an unexpected result of our peptide-based approach was to show that their binding
energy was enough to support an important conformational shift of the protease. Interestingly, this
conformational reorganization might be a novel entry point towards specific inhibition of parasitic
HslVs, as one might imagine blocking it, thus, preventing HslV activation with small molecules
binding into regions critical for HslV reorganization.

4. Materials and Methods

4.1. Material

All peptides (Table 1 and Table S1) were assembled on a 2-chloro-trityl resin following either
manual or microwave-assisted solid phase synthetic protocols with Fmoc as the Nα-protecting group
and HBTU or HATU/DIEA as coupling agents. Their synthesis as well that of the substrate JMV4482
(Z-EVNL-AMC) routinely used for activity tests are described in detail in the Supplementary Materials.
Suc-LLVY-AMC and Z-GGL-AMC were purchased from Bachem. pET-Duet-1 plasmid with inducible
E. coli C-terminally 6His-tagged HslV were kindly given by Dr Chin Ha Chung from the Department
of Biological Sciences of Seoul National University.

4.2. Methods

Cloning of LmHslV: LmHslV gene was amplified with its mitochondrial signal sequence using
DNA from Leishmania major Friedlin strain and subcloned into PQE60 vector to obtain the C-terminally
6xHis-tagged LmHslV protein. For expression in E. coli, LmHslV-6His was subcloned without its
mitochondrial targeting signal into the vector pRSET-B.

Protein expression: The proteins of interest (L. major and E. coli HslV, both with a C-terminal
6xHis tag), were expressed overnight at 20 ◦C in E. coli BL21 (LB medium + ampicilline 100 µg/mL),
by adding 1 mM IPTG in a culture with an OD between 0.5 and 0.8.

Protein purification by Ni2+-NTA chromatography: All purification steps were performed at 4 ◦C.
Bacteria cultures (usually 500 mL) were centrifuged at 4000 RPM for 15 min, the pellet was collected,
washed with PBS, then resuspended in 45 mL lysis buffer (PBS 2X, 10 mM Tris-HCl pH 8.0, 1 mM
EDTA). Bacteria were then lysed with a high-pressure homogeneizer (Emulsiflex-C3, Avestin, Ottawa,
Canada). 5 mL of 10% Triton X-100 (1% final) was added to the homogenate, which was then clarified
by centrifugation (1,2000× g, 20 min). The supernatant was collected and incubated overnight with
500 µL of Ni-NTA beads (Qiagen, les Ulis, France) pre-equilibrated with PBS 2X. After their collection,
the Ni-NTA beads were successively washed (several column volumes) with (1) PBS 2×, 1% Triton
X-100, (2) PBS 2×, 30 mM imidazole and (3) Tris-HCl 20 mM pH 8.0, 30 mM imidazole. Elution
(2 mL) was performed with 250 mM Imidazole in 20 mM Tris-HCl pH 8.0. Purified proteins were then
dialyzed overnight against 20 mM Tris-HCl pH 8.0, 100 mM NaCl, 0.5 mM EDTA, 10% Glycerol, 5 mM
MgCl2 and 1 mM DTT (buffer A).

Analytical gel filtration analysis of recombinant LmHslV: LmHslV (10 µg) was loaded on a
gel filtration column (Superose 12 PC 3.2/30) equilibrated with buffer A; 15 fractions of 100 µL
were collected.

Activity assay: The peptidase activity of recombinant LmHslV was assessed by measuring the
fluorescence of AMC released after hydrolysis of the fluorogenic substrates Z-GGL-AMC or JMV4482
(Z-EVNL-AMC), 100 µM. LmHslV activation was obtained by addition of activating peptides (see
type and concentration in the figure legends). Activity buffer: 25 mM Tris-HCl pH 8.0, 1 mM DTT,
0.5 mM EDTA and 5 mM MgCl2. Most of the experiments were performed in a final volume of 50 µL
in black 96-well microplates (Fisher Scientific, Illkirch, France. Fluorescence was measured using a
spectrofluorimeter (BIO-TEK Instrument, Inc., Winooski, VT, USA): filters 360/340 for excitation and
460/440 for emission.
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Electron microscopy: In this study, LmHSLV samples were observed both by TEM after negative
staining and by cryo-EM. LmHslV was diluted at 150 nM (final concentration) in 25mM Tris-HCl pH
8.0, 0.5 mM EDTA, 5mM MgCl2, 1 mM DTT, in the presence or absence of 500 µM of the activating
peptide LmC12-U2. Samples were then preincubated during 30 min at 37 ◦C. For negatively stained
samples, three microliters of samples at a final concentration ranging from 0.05 to 0.1 mg/mL were
applied for 2 min to glow discharged carbon-coated grids, and staining with 1% uranyl acetate for
1 min. For cryo-EM experiments, three microliters of LmHSLV samples at ~1–2 mg/mL were applied
to glow-discharged Quantifoil R 2/2 grids (Quantifoil Micro tools GmbH, Grossloebichau, Germany),
blotted for 1s and then flash frozen in liquid ethane using the semi-automated plunge freezing device
CP3 (Gatan inc.) at 95% relative humidity. Images were recorded on a JEOL 2200FS FEG operating at
200 kV equipped with a 4 k × 4 k slow-scan CDD camera (Gatan Inc., Pleasanton, CA, USA) under
low-dose conditions (total dose of 20 electrons/Å2) in the zero-energy-loss mode with a slit width of
20 eV. Images were taken at a nominal magnification of 50,000 × and 100,000 × for negative staining
and cryo-EM, respectively, with defocus values ranging from 0.6 to 2.5 µm. Magnifications were
calibrated from cryo-images of tobacco mosaic viruses.

Image processing: Images were checked for drift or astigmatism and particles extracted
semi-automatically using e2evalimage and e2boxer, respectively, from the Eman2 package [44]. All next
steps of image processing were performed using IMAGIC V software [45] according to the method
presented in Bron et al. [46]. Briefly, the phase-contrast-transfer function was corrected by phase
flipping using defocus parameters obtained using Gctf [47]. As the initial iterative alignments
of negatively stained LmHslV particles revealed common structural features with other already
characterized HslV, particles were then consequently aligned iteratively against the envelop of bacterial
HslV (pdb 1NED) filtered at 40 Å using the multi-reference alignment program. Images were then
grouped into classes and averaged using the MSA (multi-statistical alignment) procedure. The best
class averages were then used as references to perform a new alignment cycle of particle images.
Basically, two or three alignment cycles were performed. The best class averages covering all Euler
orientations were then selected in avoiding over representation of preferential views and used to
compute a three-dimensional model by angular reconstitution with the envelop of bacterial HslV (pdb
1NED) filtered at 40 Å as a reference. The three-dimensional structures were iteratively refined in
comparing the reprojections of the three-dimensional models with their corresponding class averages.
The best results were obtained when applying a D6 symmetry. The resolution of maps was estimated
using an FSC (Fourier shell correlation) coefficient of 0.5 [48]. Surface representations of EM-maps
were performed using Chimera software [49].

Sequence alignments: All sequence alignments were performed using the ClustalW software
(http://embnet.vital-it.ch/software/ClustalW.html).

Supplementary Materials: Supplementary Materials can be found at http://www.mdpi.com/1422-0067/20/5/
1021/s1.
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DCM Dichloromethane
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EM Electronic microscopy
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Suc Succinyl
TFE Trifluoroethanol
TIS Triisopropylsilane
Z Benzyloxycarbonyl
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