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Abstract 

Predator-prey interactions in natural ecosystems generate complex food webs that 

have a simple universal body-size architecture where predators are systematically larger 

than their prey. Food-web theory shows that the highest predator-prey body-mass ratios 

found in natural food webs may be especially important as they create weak interactions with 

slow dynamics that stabilize communities against perturbations and maintain ecosystem 

functioning. Identifying these vital interactions in real communities typically requires arduous 

identification of interactions in complex food webs. Here, we overcome this obstacle by 

developing predator-trait models to predict average body-mass ratios based on a database 

comprising 290 food webs from freshwater, marine and terrestrial ecosystems across all 

continents. We analyzed how species traits constrain body-size architecture by changing the 

slope of the predator-prey body-mass scaling. Across ecosystems, we found high body-

mass ratios for predator groups with specific trait combinations including (1) small 

vertebrates and (2) large swimming or flying predators. Including the metabolic and 

movement types of predators increased the accuracy of predicting which species are 

engaged in high body-mass ratio interactions. We demonstrate that species traits explain 

striking patterns in the body-size architecture of natural food webs that underpin the stability 

and functioning of ecosystems, paving the way for community-level management of the most 

complex natural ecosystems. 
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Introduction 

Prey rarely if ever give up their lives willingly to their predators. Predators overcome 

their prey’s resistance by being, on average, larger than their prey, yielding a systematic 

pattern in communities where the non-cannibalistic average ratio of predator-to-prey body 

mass (hereafter: body-mass ratio) is higher than unity1,2. The notable exceptions to this 

include when animals cooperate to overcome larger prey (e.g. pack hunters) and where 

consumers are parasites or parasitoids. The variation in body-mass ratios within food webs 

typically spans several orders of magnitude and includes some predators that are smaller 

than their prey3, but is dominated by situations of the larger feeding on the smaller. The 

varying body-mass ratios limit which trophic interactions are realized in a community4–6, and 

the strength of these interactions7–9. Predators typically exert the strongest feeding pressure 

on prey that are one to two orders of magnitude smaller1, while weaker interaction strengths 

are realized with prey that are smaller or larger than this size10,11. Specifically, interactions of 

predators with small prey are characterized by high body-mass ratios that yield weak 

interactions with slow dynamics, which play a central role in maintaining food-web stability12–

16 and ecosystem functioning10,17,18. Moreover, they also buffer natural communities against 

perturbations from global warming19, eutrophication20 and secondary extinction waves21. 

Therefore, identifying these unique interactions is paramount to determining the stability of 

natural food webs to perturbations and functioning, but applications of this concept to natural 

communities have been hampered by the difficulty of describing the myriads of interactions 

present in natural food webs. Using traits of predator species as proxies of body-mass ratios 

and the resulting interaction strengths that they govern could provide the means to 

understand which species are drivers of community stability and functioning without having 

to perform the often logistically and economically impossible task of quantifying entire 

interaction networks. This approach could ultimately help predict how extinctions, invasions 

and other anthropogenic environmental changes affect community stability and functioning 

through shifts in community trait structure. 

Despite the importance of understanding how species traits affect body-mass ratios, 

there is much uncertainty about these relationships. A pioneering study22 showed that 

vertebrate predators exhibit systematically higher body-mass ratios than invertebrates and 

this has been supported by subsequent analyses also documenting higher body-mass ratios 

in aquatic versus terrestrial communities1. These studies also found that predator-prey body-

mass scaling is superlinear with slopes higher than unity, meaning that body-mass ratios 

increase with body mass (see Supplementary Figure 1, red line). However, other studies 
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have proposed that the scaling relationship is either sublinear (decreasing body-mass ratios 

with body mass; Supplementary Figure 1, yellow line)2,22,23 or superlinear1,2,23,24, depending 

on the ecosystem type2,23, predator metabolic group23–25 or resource supply26. Additionally, 

besides body mass and metabolic type, little is known about how body-mass ratios vary with 

other species traits and across different ecosystem types. Predator and prey movement 

types and feeding behavior are likely to influence scaling relationships by limiting maximum 

achievable attack speeds24,27. Interaction dimensionality, which describes whether predators 

forage in three dimensions (e.g. the water column of lakes and oceans) or on two-

dimensional surfaces (e.g. epigeic terrestrial or benthic aquatic predators), also influences 

predator-prey attack rates24,28. As these variables affect the likelihood and strength of 

predator attack rates and scale with individual body mass, we expected that they should also 

modify the scaling relationship between predator and prey body masses. 

Insert Fig. 1 here 

Here, we provide a comprehensive assessment of how species traits modulate 

predator-prey body-mass scaling relationships and body-mass ratios in natural, complex 

food webs across an unprecedented range of ecosystems. To do so, we collated the most 

extensive global food-web database (GlobAl daTabasE of traits and food Web Architecture, 

GATEWAy version 1.0) to date, comprising 290 food webs (with 222,151 feeding links 

between 5736 species; see Supplementary Table 1) distributed across the globe (Fig. 1), 

and including information on four different species traits and five ecosystem types (see 

Supplementary Table 2). First, we analyzed the scaling of predator and prey body masses 

over 17 orders of magnitude (fresh masses ranging from the 2  10-9 g protozoan Bodo 

saltans, to the 275  106 g sperm whale Physeter microcephalus). Some prior studies 

advocated the use of major axis regressions to account for the bidirectional causality 

between predator and prey body mass1, whereas others used mixed-effects models to 

include random effects of the study2. As these two types of analyses are mutually exclusive 

in traditional statistics, we used Bayesian modelling to implement a combination of major 

axis regressions with mixed effects. Second, we tested for the importance of co-factors in 

this scaling relationship (ecosystem type, predator and prey metabolic types, interaction 

dimensionality, predator and prey movement types). These analyses address relationships 

between species traits and food-web architecture across ecosystems. Third, we developed 

predictions of average body-mass ratios of predators by their traits, which identifies 

ecological attributes that broadly predict ecological perturbation stability and functioning in 

natural communities without requiring detailed knowledge of complex food-web structure. 
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Results 

In our first analysis, we addressed the scaling of predator and prey body masses. 

Ordinary least squares (OLS) regressions relating these two variables generate different 

slopes depending on which variable is chosen as the independent variable (Fig. 2, magenta 

and blue lines). This discrepancy arises because there is no unidirectional causal 

relationship between the two variables and because both have measurement errors of the 

same magnitude, which renders major axis regression the appropriate tool for analyzing 

these data31. Thus, we used Bayesian modelling to fit a major axis regression, which makes 

no assumptions about a causal relationship between the variables. The major axis 

regression showed that the overall allometric scaling relationship between predator and prey 

body mass was superlinear, exhibiting a slope higher than unity (Fig. 2, black solid line, 

Bayesian major axis regression, slope = 1.315, 95% CI: 1.307-1.323). This suggests that the 

body-mass ratios between predators and their prey increase with the masses of prey and 

predators (i.e. the distance between the regression line and the dashed diagonal indicating 

equally sized predator-prey pairs). On average, interactions between relatively large 

predator and prey species are characterized by higher body-mass ratios than interactions 

between smaller species. The Bayesian approach also allowed us to fit mixed-effects 

models to the data, particularly the random effects on the intercept of the different studies 

(database variable: link.citation; see Supplementary Table GATEWAy metadata). This 

yielded a very similar scaling relationship as the non-mixed major axis regression (Fig. 2, 

green line). Based on the similarity of the results and statistical arguments (see Methods), 

we have based the following analyses on Bayesian major axis regressions, while results of 

the analyses with Bayesian mixed-effects major axis regressions are shown in the 

supplement. 

Insert Fig. 2 here 

In our second analysis, we used major axis regressions to fit six models of predator-

prey body mass scaling that each contained one co-variable (ecosystem type, predator or 

prey metabolic type, predator or prey movement type, interaction dimensionality; see 

Supplementary Table 2 for variable description). Model comparisons demonstrated that 

adding any of these co-variables improves the fit substantially over the simple scaling model 

(Table 1, lower WAIC scores indicate higher model adequacy). According to these WAIC 

ranks, the best-performing models included predator metabolic type (rank 1) or predator 

movement type (rank 2) as co-variables, whereas models including the same trait variables 
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of the prey led to lower ranks (Table 1, ranks 4 and 6). Hence, WAIC values suggested that 

predator traits were more important for determining body-mass scaling than prey traits. 

Insert Table 1 here 

While the overall relationship was superlinear (Fig. 3, black solid lines), the 

relationships for ectotherm and endotherm vertebrate predators exhibited strong sublinear 

scaling, implying that the body-mass ratios of vertebrate predators decrease with their body 

mass (Fig. 3a). As vertebrate prey often have vertebrate predators, a similar pattern might 

be expected for the scaling relationship within the prey metabolic groups. Surprisingly, we 

found superlinear scaling for all vertebrate prey groups (Fig. 3b). Together, these results 

suggest that the sublinear scaling characterizes vertebrate predators irrespective of whether 

their prey are vertebrate or invertebrate species.   

The second most important co-variable in our analyses was predator movement type. 

Interestingly, we found that swimming, flying and sessile predators exhibit superlinear 

scaling relationships that are similar to the overall model, whereas walking predators exhibit 

sublinear scaling (Fig. 3c). Although many walking predators feed on walking prey, our 

analyses of the prey movement type show superlinear scaling across groups (Fig. 3d). 

Similar to the metabolic groups, this implies that changes in predator-prey body-mass ratios 

are mainly driven by predator movement type, irrespective of prey movement type. Together, 

our analyses of species’ traits suggest that the traits of predators have stronger implications 

for scaling relationships and body-mass ratios than the traits of their prey. 

Insert Fig. 3 here 

Comparing the two environmental characteristics showed that ecosystem type (WAIC 

rank 3) improved the model substantially more than interaction dimensionality (2D vs. 3D; 

rank 5, Table 1). Among ecosystem types, marine, stream and terrestrial aboveground 

ecosystems follow superlinear scaling similarly to the overall relationship (although streams 

followed steeper scaling relationships), whereas lake and terrestrial belowground 

ecosystems exhibit sublinear scaling, parallel to each other (Fig. 4a). Both 2D and 3D 

interaction dimensionality demonstrate superlinear scaling with a slope similar to the overall 

pattern. However, 3D interactions tend to involve predator-prey pairs with greater body-mass 

ratios compared to 2D interactions (Fig. 4b). Although many marine or lake interactions 

occur in the pelagic 3D part of the ecosystem, ecosystem type does not completely overlap 

with interaction dimensionality as these aquatic ecosystems also include benthic 2D 

interactions. 
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Insert Fig. 4 here 

Finally, we addressed how well we can predict which predators in a food web have the 

highest average body-mass ratios compared with their prey in the absence of information on 

food-web structure and traits of the prey species. The statistical models thus included the 

predator traits (body mass, metabolic and movement type) and ecosystem type as 

independent variables (“predator-trait model”, see Methods for details and Supplementary 

Table 4 for parameters). The overall predator-trait model fitted the data well (Fig. 5a). We 

found that predictive accuracy varied across ecosystem types and with the fraction of target 

predators (Fig. 5b). We anticipated that typically a low fraction of predators will be chosen for 

applied population management and used a fraction of target predators of 25% as an 

arbitrary example to illustrate our results (Fig. 5b, grey area; note that qualitatively similar 

results could be obtained for any fraction of 30% or lower). At this fraction of target 

predators, the accuracy of the predator-trait model predictions is almost always higher than 

the prediction accuracy when the same fraction of predators is chosen at random (Fig. 5b, 

diagonal line). An exception to this pattern were the terrestrial belowground systems (Fig. 

5b), potentially as a consequence of the substantially higher degree of omnivory in soil 

communities29 or the widespread use of poison by soil predators32. In contrast, the predator-

trait model had high accuracy in streams (89%), marine (61%), terrestrial aboveground 

(64%) and lake ecosystems (61%), exceeding the 25% accuracy of random predictions (Fig. 

5b, diagonal line in the grey area). This implies that for these ecosystems the predator-trait 

model improves the predictions by a factor between 2.44 (marine and lake ecosystems) and 

3.56 (streams), which is close to the maximum improvement factor of 4 (occurring with 100% 

prediction accuracy relative to the 25% random prediction accuracy at a fraction of target 

predators of 25%, grey shaded area in Fig. 5b).  

Insert Fig. 5 here 

Discussion 

Using a global database of 290 food webs we show that (1) the overall allometric 

scaling relationship between predator and prey body mass is superlinear, implying that the 

largest species have the highest body-mass ratios and that (2) predator traits (metabolic and 

movement type) are more important than prey traits in determining these scaling 



Predator traits and food-web architecture 

10 

relationships. Subsequently, we developed a predator-trait model that successfully predicted 

the predators with the highest average body-mass ratio. Food-web theory has shown that 

these high body-mass ratios yield weak interactions with slow dynamics that are critically 

important for buffering communities against external perturbations and maintaining 

ecosystem functioning10,12–15,17,18. Historically, these theoretical results have had little real-

world application, as they require the logistically challenging task of assessing all or at least 

a large fraction of the food-web links. By focusing on predator traits and ecosystem type 

while discarding prey traits and the specific links of the food-webs, our predator-trait model 

provides a generalizable and feasible solution that can bridge the gap between food-web 

theory and applied ecosystem conservation. For instance, our results suggest that 

population protection of small vertebrates (e.g. mustelids) and large swimming (e.g. sharks) 

or flying predators (e.g. birds of prey) might be most effective at buffering natural 

communities against external perturbations such as extinctions, invasions, pollution, 

eutrophication and warming. This trait-based approach enables the management of 

perturbation vulnerability in natural communities without detailed knowledge of the food-web 

structure.  

Within the debate over the allometric scaling relationships of predator and prey body-

masses in natural food webs, the superlinear relationship presented here is consistent with 

some prior studies1,2,23, while deviating from others that demonstrate sublinear scaling2,22,23. 

Our comparison of regression methods suggests that this discrepancy could be partially 

attributed to the alternative use of major axis regressions1 (consistently yielding superlinear 

scaling) or ordinary least square (OLS) regressions2,22,23 (suggesting superlinear or sublinear 

scaling depending on which is the independent variable). Our comparison of the two OLS 

regressions with either predator or prey mass as the independent variable reveals 

substantial uncertainty as they make opposite predictions on how body-mass ratios scale 

with predator and prey mass, and there is no a priori argument over which OLS regression 

should be preferred. Hence, major axis regressions are the most appropriate statistical 

method because: (1) there is no a priori expectation for a causal relationship between 

predator and prey mass, and (2) both body masses are quantified with the same 

measurement error31. Our results show that major axis regression is not only statistically 

more appropriate but also that the choice of statistical approach has important biological 

implications for interpretation of the allometric scaling relationship. This approach, combined 

with our newly compiled food-web database, has enabled refining our understanding of how 

the scaling relationship between predator and prey body mass varies across ecosystems 

and between predator-prey combinations of different movement type and metabolic group. 

Despite the overall superlinear relationship between predator and prey body mass, our 

analyses identified several species’ traits and ecosystem characteristics that are associated 
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with a sublinear scaling relationship. Most notably, both ectotherm and endotherm vertebrate 

predators demonstrate strong sublinear scaling, making predator metabolic type the most 

important factor among those we considered for predicting predator-prey body-mass scaling 

relationships. Consistent with previous research1,22,23, we found that large vertebrate 

predators tend, on average, to feed on prey that are more equally sized (e.g. orcas feeding 

on minke whales), whereas small vertebrate predators consume relatively smaller prey (e.g. 

arctic foxes preying on lemmings). This result suggests that large and small vertebrate 

predators may be constrained by different factors, such as the limitations of maximum attack 

speed which are only experienced by the largest species27. Interestingly, some (often large) 

vertebrate predators hunt in groups to attack larger prey to improve their attacking success 

and overcome the body mass and speed constraints. Indeed, the next most important factor 

in our analysis was predator movement type, which separates species categories of different 

speeds (e.g. flying predators are faster than walking predators). In our analysis, walking 

predators demonstrate sublinear scaling in contrast to all other movement types. The highest 

body-mass ratios were observed for the largest swimming and flying predators. Further 

investigations of the physiological constraints related to predator movement type, metabolic 

type and relative predator-prey body masses on predator feeding rates would help illuminate 

the processes behind these observed patterns. 

Generally, our model selection results suggest that predator metabolic and movement 

traits had much stronger effects on the scaling relationship than the equivalent prey traits. 

This is partially supported by the greater similarity between the major axis regression 

(accounting for bi-directional causalities) and the OLS regression with prey body mass as 

the dependent variable. We therefore conclude that top-down prey selection by predators 

has a stronger effect on prey mass than does the bottom-up influence of prey mass on 

predator masses. It is likely that both top-down and bottom-up influences are important, but 

our results indicate the dominance of the former, which stimulated the development of the 

predator-trait models of our third analyses predicting which predators have the highest 

average body-mass ratios across food webs. 

Our results also identify ecosystem type as an important co-factor of the predator-prey 

body-mass scaling relationship, which is generally consistent with prior studies23,24,33. We 

expected this effect to be partially explained by the habitat dimensionality of the interaction 

(2D or 3D), which has important consequences for the strength of predator attack rates24,28. 

Although we found an effect of interaction dimensionality with overall higher body-mass 

ratios in 3D than in 2D habitats, surprisingly it did not explain the different scaling 

relationships between different ecosystem types. This may be explained by the fact that the 

ecosystem type varies across food webs, whereas variance in interaction dimensionality 

plays an important role across the different predator-prey pairs with food webs. The superior 
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explanatory power of the model including ecosystem type compared to that including 

interaction habitat dimensionality suggests that there are ecosystem characteristics not 

related to dimensionality, such as laminar viscosity, that may have a stronger effect on 

predator-prey interactions. We found relatively high body-mass ratios and a very steep body-

mass scaling relationship in stream ecosystems. The streams exhibit some differences to 

the other ecosystem types of our database: (1) the higher physical drag force of the water, 

(2) the higher dependence on allochthonous resources, (3) the dendritic environmental

structure, and (4) the relatively narrower range of body masses included in our data. While 

each of these points could be responsible for the difference in scaling relationships, the last 

point calls for additional data on stream interactions between larger species such as fish to 

see if the steep increase in the scaling relationship holds. While terrestrial aboveground and 

marine interactions exhibited superlinear scaling relationships as the overall relationship, 

those of lake and terrestrial belowground systems were sublinear. Furthermore, the lack of 

vertebrate predators with high body masses and high body-mass ratios may at least partially 

explain this for soil communities, but this surprising result requires more mechanistic 

investigation of the so far untested similarity between lake and belowground interactions. 

Our approach to characterize predator-prey body-mass ratios in natural food webs has 

some limitations. First, in order to encompass a wide range of body masses, taxonomy and 

ecosystem types, we assume that interacting individuals have population-average body 

masses34. As in prior studies1,22,23,33, we rely on population-averaged body masses, since we 

do rarely have measurements for the actual body masses of the interacting individuals. 

Thus, for many predator species, particularly those with ontogenetic diet shifts, actual body-

mass ratios are likely to have a lower variation than body-mass ratios calculated from 

population averages. Unfortunately, the lack of individual data for entire food webs across 

ecosystems hampers any alternative approach. As prior comparisons of individual-based 

versus population-based food webs have shown34,35, our population-based approach likely 

underestimates the intercepts of the scaling relationships. Second, the study sampling 

design, environmental factors such as temperature and the species’ phylogeny may also 

affect the scaling relationship25,36–38, and these would ideally be included as co-variables in 

the analyses. As these data were not systematically available for the data sets included, we 

accounted for them by random effects in mixed models2, which leaves the need for more 

detailed analyses for future studies. As major axis regressions with random effects are not 

generally available, we addressed this issue by using Bayesian models throughout the 

study, which allowed comparisons with hierarchical models including random effects (i.e. 

mixed-effects models). Although the mixed effects model results do not change our findings 

substantially (see Supplement for a comparison between mixed and non-mixed Bayesian 

models) and, due to potentially confounding clustering effects (see Methods), we have 
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focused our analysis on the model without mixed effects. Third, our analyses were restricted 

to predator-prey interactions, whereas interactions of other consumer types such as 

parasites, parasitoids or herbivores were excluded. As these interaction types are typically 

characterized by different body-mass ratios1,39,40, future studies should address their scaling 

relationships in our GATEWAy database. Fourth, we employed simple scaling relationships 

with up to one single co-variable to gain an in-depth mechanistic understanding, whereas 

models with interactions between multiple co-variables were omitted from our analyses of 

the predator-prey body-mass scaling. These more complex relationships with higher order 

interactive effects, however, could be addressed by black box approaches such as machine 

learning algorithms, which could provide accurate predictions of food-web structures32. Fifth, 

our study illustrates systematic differences in body-mass ratios across ecosystem types and 

species’ traits, whereas explanations for these differences remain to be revealed by studies 

integrating mechanistic models with our data. 

Our analyses provide insights into how predator and prey body masses scale with 

each other in natural food webs. The discovery that predator traits are more important than 

prey traits in predicting body-mass scaling and that ecosystem type has a greater effect than 

interaction dimensionality offers new possibilities for understanding and predicting 

differences in food-web structure, community stability and ecosystem functioning across 

community and ecosystem types. Specifically, our results highlight that critically important 

high body-mass ratios occur in interactions with predators that are (1) small vertebrates or 

(2) large swimming or flying species. With only three species traits (body mass, metabolic

and movement type), our models were able to predict which 25% of the predators possess 

the highest average body-mass ratios with surprisingly high accuracy in most ecosystem 

types (58-89%). We anticipate that this accuracy will be increased by additional species 

traits (e.g. predation strategy, use of poison, sub-habitat association) that compose the 

multiple dimensions of natural food webs6,32. Our trait-based food-web analyses enable 

generalizations of food-web theory from the food webs studied to the vast majority of 

communities for which only species and trait information is available. Updated with additional 

traits, this approach has great potential for managing ecosystem functioning and stability 

against external perturbations such as pollution, eutrophication and warming without full 

knowledge of food-web structure. The trait-based body-mass ratio approach therefore 

presents an important integration of food-web theory with applied ecosystem management 

that provides a theoretical foundation for the community-level conservation of the most 

complex natural ecosystems. 
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Methods 

We compiled a global database of traits and food-web architecture (GATEWAy version 

1.0, see Supplement), where each link is characterized by the taxonomy and trait variables 

of both the consumer and the resource (see Supplement metadata for variables). We 

included food webs with (1) a sufficient quality in terms of taxonomic resolution, which 

prevents nodes aggregating species with very different trophic interactions; (2) a reasonable 

completeness integrating all trophic levels and community compartments; (3) trait 

information for the trophic species including at least their population-averaged body mass, 

their metabolic type and their movement type (see Supplementary metadata table for 

definitions); (4) information for each trophic link such as the type (e.g. predacious), the 

dimensionality (2D and 3D) and the classification (individual-based and non-individual-

based) (see Supplement metadata table for definitions); (5) descriptors for the ecosystems 

such as the ecosystem type and the geographic location. 

In our analyses, we focused on predatory (variable: interaction.type) and individual-

based (variable: interaction.classification) interactions. The former excludes interactions of 

other types (e.g. herbivorous, detritivorous, parasitic, parasitoid), whereas the latter discards 

interactions of consumers attacking groups, swarms or films of resources (e.g. filter feeding, 

grazing). Some of the studies included in our database sampled the same ecosystem at 

different locations, resulting in replicated predator-prey species pairs29. To avoid 

pseudoreplication, each unique combination of taxonomy, life stage, and individual body 

mass for predator and prey species was included only once. After exclusion of interactions 

with missing variables, the resulting data included 88,197 unique predator-prey interactions 

among the original 222,151 feeding links. 

First, we analyzed the reduced data for the relationship between the base-10 

logarithms (log10) of predator and prey body masses [gram fresh mass]. We compared the fit 

of two ordinary least squares (OLS) regressions (either predator mass or prey mass as the 

dependent variable) to that of a major axis regression and a mixed-effects major axis 

regression including random effects on the intercept of the different studies (variable: 

link.citation). Traditional methods only allow to fit either major axis regressions or mixed 

models with random effects. Hence, our aim of comparing major axis regressions with and 

without random effects (i.e. random intercepts for each study) could only be achieved by 

realizing models that were fitted by Bayesian methods using the RStan package30 (see 

supplementary statistical methods for details). Consistent with traditional major axis 

regressions, we minimized the sum of squared orthogonal distances of the observations 
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(x,y) to the regression line31 instead of the vertical distance (y) as in OLS (model I) 

regressions.  

Second, we used Bayesian major axis models to compare the fit of the simple scaling 

model to six models, whereby each included one co-variable: ecosystem type, predator or 

prey metabolic type, predator or prey movement type or interaction dimensionality (see 

Supplementary Table 2 for variables). Overall, the results were mostly consistent between 

the mixed-effects and non-mixed models. The mixed-effects models fit the relationships 

separately for each study. As the body-mass ranges within studies do not cover the entire 

body-mass gradient and the number of data points within studies is much lower than in the 

entire database, some of the fitted scaling relationships can become arbitrary as single 

points can strongly affect the slope. Averaging across all slopes and all intercepts using 

hierarchical approaches can lead to clusters of such arbitrary slopes, which can exert 

substantial leverage on the average relationship across all studies. In our data, the clustering 

remained even when using random intercepts and a fixed slope across all studies. 

Therefore, the mixed-effects modelling of our data suffered from two limitations: (1) it loses 

information about the overall trend across the whole database (i.e. none of the study-specific 

scaling relationships spans the entire body-mass gradient), and (2) the joint mean slope and 

intercept are affected by partially arbitrary slopes (data sets with few points). As both 

regressions also yielded qualitatively similar results, we report the results of the non-mixed 

major axis regressions in the manuscript (Figs. 3, 4) with comparisons to the fits of the mixed 

major axis regressions in the supplement (Supplementary Figures 2-7). Model comparison 

(based on their WAIC values, Watanabe-Akaike Information Criterion) of these seven 

models (the simple model without co-variable and the six models with one co-variable each) 

provided a ranking of their performance, and we used the model parameters to gain an 

understanding of how they modify the relationship. In the analysis of predator-prey body-

mass scaling, we refrained from analyzing more complex models with interactions between 

these co-variales for three reasons: (1) they imply impossible combinations (e.g. swimming 

predators in terrestrial ecosystems), (2) their higher order interactions hamper the 

mechanistic understanding of individual effects, and (3) their strong collinearity causes 

interference between factors. 

Third, we analyzed our database for the dependence of the predators’ average 

predator-prey body-mass ratios on predator traits (body mass, metabolic and movement 

type) and ecosystem type. To avoid circularity in the statistical model (predator body mass in 

both the dependent and independent variables), we fitted Bayesian major axis regressions 

with log10 prey mass as the dependent and log10 predator mass as the independent variable 

with the co-variables predator metabolic type, predator movement type, and ecosystem type. 

We restructured the resulting predator-trait model equation to calculate the effect of the 
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independent and co-variables on predator-prey body-mass ratios. By discarding prey 

species traits, these analyses allow prediction of which predators in a community have the 

highest average body-mass ratios without knowledge of the predator-prey links.  

The accuracy of this approach was determined in a five-step cross-validation process. 

First, we chose one of the food webs (“test data”) and ranked its predators according to their 

empirical average body-mass ratios. Second, we ran the predator-trait regression model 

described above in the remaining database containing the other 289 food webs (“training 

data”) to predict the predators’ average body-mass ratios depending on their traits. Third, we 

calculated the proportion of predators that were correctly predicted by this “predator-trait 

model” (hereafter: accuracy) for a fraction x of the highest ranked predators of the test-data 

food web (hereafter: fraction of target predators). For example, a fraction of target predators 

of 0.1 implies that the 10% highest ranked predators (i.e. those with the highest average 

body-mass ratios) of the empirical “test data” are compared to the 10% highest ranked 

predators as predicted by the predator-trait model of the “training data”. An exemplary 

accuracy of 0.8 would indicate an 80% overlap between the two species lists. Fourth, this 

assessment of prediction accuracy was systematically replicated across a gradient in the 

fraction of target predators x between 5% and 95% (steps of 5%). Finally, these four steps 

were repeated for each of the 290 food webs independently to calculate the average 

accuracy across food webs depending on the fraction of target predators. 
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Table 1: Comparison (Watanabe-Akaike Information Criterion, WAIC) of six predator-prey 

body-mass scaling models with one co-variable. Bayesian major axis models (ma) as in Fig. 

3 and Fig. 4 of the main manuscript and mixed Bayesian major axis models as in 

Supplementary Figures 2-7. 

Bayesian ma Bayesian ma mixed 

Co-variable WAIC Rank WAIC rank 

Predator metabolic group 2.414 x 105 1 2.229 x 105 1 

Predator movement type 2.720 x 105 2 2.520 x 105 2 

Ecosystem type 2.722 x 105 3 2.566 x 105 4 

Prey metabolic group 2.807 x 105 4 2.563 x 105 3 

Interaction dimensionality 2.818 x 105 5 2.616 x 105 6 

Prey movement type 2.830 x 105 6 2.605 x 105 5 

None 2.859 x 105 7 2.657 x 105 7 
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Figure legends 

Fig. 1: The global distribution of food webs in GATEWAy (GlobAl daTabasE of traits and 

food Web Architecture, GATEWAy version 1.0, see Supplement). 

Fig. 2: Overall scaling of predator and prey body mass assessed by four regression 

methods (n=88,197). Ordinary least squares regression (OLS) of prey mass depending on 

predator mass (blue line), ordinary least squares regression of predator mass depending on 

prey mass (magenta line), Bayesian major axis regression (black line), mixed Bayesian 

major axis (ma) regression with random intercepts (green line). Bayesian regression 

parameters are the means of the posterior distributions. The dashed line indicates equal 

body masses of predator and prey for comparison. All body masses are gram fresh masses. 

See Supplementary Table 3 for model parameters. Our extensive statistical considerations 

hold that the Bayesian major axis regression (black line) is the most appropriate model. 

Fig. 3: Species’ traits constrain the scaling of log10 predator body mass with log10 prey body 

mass (n=88,197): (a) predator metabolic type, (b) prey metabolic type, (c) predator 

movement type, (d) prey movement type. Solid black lines represent the overall scaling 

relationship, and the colored lines show the relationships for subgroups. Bayesian 

regression parameters are the means of the posterior distributions. Dashed lines indicate 

equal body masses of predator and prey for comparisons. See Supplementary Table 3 for 

model parameters. 

Fig. 4: Ecosystem characteristics constrain the scaling of log10 predator body mass with 

log10 prey body mass (n=88,197): (a) ecosystem type, (b) interaction dimensionality. Solid 

black lines represent the overall scaling relationship, and the coloured lines show the 

relationships for the subgroups. Bayesian regression parameters are the means of the 

posterior distributions. Dashed lines indicate equal body masses of predator and prey for 

comparisons. See Supplementary Table 3 for model parameters. 

Fig. 5: The predator-trait model predicts the target predators with the highest body-mass 

ratios across different ecosystem types (color code) (n=7296). (a) Observed versus 

predicted average body-mass ratios characterize the goodness of fit (R²=0.633, 

RMSE=0.914). Dashed diagonal line shows where observations and predictions are 

identical. (b) Accuracy (proportion of correct predictions) in an out-of-sample food web 

depending on the fraction of target predators to be predicted. The diagonal line characterizes 

predictions when predators are chosen at random. Grey area corresponds to an exemplary 
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fraction of the 25% of the predators with the highest body-mass ratios. See Supplementary 

Figure 8 for variation in accuracy across the individual food webs. 


