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A B S T R A C T

Green H2 production by solar water splitting relies entirely on the intrinsic properties of the photocatalyst. In this

study the impact of these intrinsic properties on the photocatalytic activity of anatase TiO2, the quintessential

component of state of the art photocatalytic systems was explored at the nanoscale. The exploration involved a

holistic microstructural and optical characterization of fully crystallized anatase thin films synthetized by me-

talorganic chemical vapor deposition. A combination of electron microscopy, spectroscopic ellipsometry, and

infrared spectroscopy revealed that when the deposition temperature increased, the morphology evolved from

dense to porous and columnar nanostructures. Interestingly, the columns with a complex, tree-like nanostructure

photogenerated 18 times more H2 than the densest sample. This result shows that the beneficial effect of the

morphological nano-complexification and crystallographic diversification of the exchange facets on the photo-

catalytic performance outweighs the detrimental aspects inherent to this evolution, namely the drop of the

charge carrier transport and the increase of residual stress.

1. Introduction

Research on renewable energy is vital in the current context of

global warming and societies that rely on high energy consumption.

Hydrogen is a promising source of renewable energy and catalyzed

solar water splitting (SWS) is a carbon-free method to produce it.

Numerous materials have been tested to catalyze this reaction [1,2].

Among them, TiO2 – because it is non-toxic, chemically stable,

abundant and affordable has been widely investigated as a photo-

catalytic material since Fujishima and Honda's seminal work [3–8].

Despite its high energy band-gap (3.2 eV), crystalline anatase TiO2

shows attractive opto-electronic properties. It is an indirect semi-

conductor with a long exciton lifetime [9,10]; it has a conduction band

minimum energy level below the redox potential of H+/H2 (0 V vs.

NHE) and a valence band maximum energy level above the redox po-

tential of O2/H2O (+1.23 V vs. NHE) [11,12]. In contrast with powders,

Abbreviations: SWS, solar water splitting; ALD, atomic layer deposition; MOCVD, metalorganic chemical vapor deposition; TTIP, titanium tetraisopropoxide;

FESEM, field emission scanning electron microscopy; EBSD, electron backscatter diffraction; GIXRD, grazing incidence X-ray diffraction; PF-QNM, peak force

quantitative nanomechanical; C-AFM, conductive atomic force microscopy; SE, spectroscopic ellipsometry; SEP, spectroscopic ellipsometric porosimetry; HRTEM,
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1 Torr fixed pressure, at different Td ranging from 325 to 500 °C, with

various durations that are adapted to produce films of similar thick-

nesses (~350 nm).

Film composition is investigated by X-ray photoelectron spectro-

scopy (XPS). The photoelectron emission spectra are recorded using a

monochromatized Al Kα (hν=1486.6 eV) source on a ThermoScientific

K-Alpha system with a 400 μm X-ray spot size. Depth profiling is per-

formed by means of Ar+ ion etching under 2 keV.

The crystal structure is investigated by XRD in a Bruker-D8 dif-

fractometer equipped with a Cu Kα (λKαCu=0.154 nm) anode in theta-

theta mode with a −3° offset. In addition, GIXRD is used to determine

residual stress using a 4-circles goniometer (Panalytical X'Pert)

equipped with a Cu anode (λKαCu=0.154 nm) at 40 kV and 40mA,

with Soller slits to get a nearly parallel beam, and a fast recording

detector (X'celerator, Panalytical). The sin2ψ method (11 ψ angles

ranging from−60° to 60°), in one direction (ϕ=0°), was applied to the

samples deposited on fused silica substrates. The {020} family plane

(2θ=48.08°) is analyzed from 45.7° to 51.2° with a 0.066° step, with

the step time varying between 2000 and 2700 s depending on the

sample. The XRD penetration depth is estimated at 100 nm for dense

TiO2. The modus operandi to determine the strain from XRD measure-

ments is explained in the Supplementary Information (SI section 1).

EBSD measurements are performed in a FESEM Jeol JSM 7100F

TTLS LV on the sample surface to explore crystalline orientation. 8633,

4604, and 7888 points are measured on the 500 °C, 400 °C, and 325 °C

samples, respectively, on 38 μm2 surfaces. Because each grain is probed

only once to avoid overrepresentation of one grain orientation, the

distribution remains statistical. Mid-IR (MIR) FTIR and far-IR (FIR)

FTIR spectra are recorded by Perkin Elmer Frontier, and Nicolet iS50

ThermoFischer Scientific spectrometers, respectively. Films deposited

on fused silica are investigated by transmission, total and diffuse re-

flectance spectroscopy in the 200–1650 nm spectral range, using an

Agilent-Cary 5000 spectrophotometer equipped with an integrating

sphere. Samples deposited on Si coupons are analyzed by spectroscopic

ellipsometry (SE) in the same spectral range with an incidence angle of

75° using a Semilab SE-2000 apparatus. Spectroscopic ellipsometric

porosimetry (SEP) is performed with a Semilab GES5E spectroscopic

ellipsometer (250–1000 nm) coupled with a lab-made cell in which

ethanol pressure is increased step by step to progressively acquire el-

lipsometric data adsorption isotherms in almost steady state. Before any

data acquisition, the cell is pumped down to 50 mTorr, whereas the

sample is heated up to 200 °C in the vacuumed cell for several minutes

for a complete desorption from the TiO2 film. The ellipsometry data are

analyzed on the energy range 1.24–4.25 eV by the Semilab SEA soft-

ware using a two-layer architecture. A Cody-Lorentz oscillator model is

used to describe the optical properties of the film, and a Bruggeman

effective medium approach is chosen to simulate the surface roughness.

With this full optical model, the regression goodness of fit in this range

is over 0.98. The Cody-Lorentz model enables us to probe band-to-band

transitions at the optical band edge and above the band edge, as well as

band tails in the transparent spectral domain.

Top view and cross sectional scanning electron microscopy (SEM)

micrographs of the Pt-metalized samples are obtained with a field

emission FESEM Jeol JSM 6700F instrument. Before analyzing top view

SEM images with the nanoTOPO_SEM™ software provided by

Nanometrisis, they are processed to normalize the contrast of their il-

lumination. Transmission electron microscopy (TEM) and high resolu-

tion TEM (HRTEM) data are obtained with a JEOL JEM 2100F micro-

scope. TEM specimens are prepared using a FEI Helios Nanolab600i

dual beam SEM FIB (focused ion beam). The ion column is operated at

30 kV for all steps except final cleaning of the specimen, where a vol-

tage of 5 kV and 2 kV is used. Beam currents vary between 47 nA and 15

pA. The electron beam is used to deposit a layer of C 200 nm thick over

an area of 20 μm×2 μm. The ion beam was then used to deposit a layer

of Pt 3 μm thick over the same area. The sample was lifted out in situ

and then attached to a copper support grid. Thinning of the specimen

anatase TiO2 films can be used in photocatalysis as well as in electro-
photocatalysis. They are produced by various methods: sol-gel [13], 
anodization [14], reactive magnetron sputtering [15], atomic layer 
deposition (ALD) [16] or metalorganic chemical vapor deposition 
(MOCVD) [4,17,18]. This last process interestingly enables the pro-
duction of various hierarchical morphologies that have an impact on 
the photocatalytic properties [5,19].

One way to efficiently control the morphology is the deposition 
temperature (Td), which allows obtaining nano- or microstructures that 
range from dense to columnar [20–22]. Such Td induced nanos-
tructuration results in the increase of the specific surface area and 
therefore enhances the photocatalytic activity [23]. However, an in-
crease in Td can concomitantly affect other properties, such as the 
texture, the electrical transport, the residual stress, and the nature of 
the external crystallographic facets in contact with the aqueous solu-
tion. These factors can either enhance or be detrimental to the photo-
catalytic activity [23–27]. Other aspects such as the stoichiometry can 
also influence the photocatalytic performance through the subsequent 
modification of the electronic properties.

A significant number of results has been reported on the determi-
nation of the morphology [16,18,28,29], the crystallographic phases 
[22], the mechanical residual stress [26,30], the purity [2], the elec-
trical transport [9], and the optical band-gap [31]. However, there is no 
systematic, holistic study of TiO2 films in the context of a strong mor-
phology evolution that connects all of these characteristics to the evo-
lution of their photocatalytic properties. The present work thus, focuses 
on an extended characterization of MOCVD anatase TiO2 films in order 
to investigate their photocatalytic behavior and thereby improve the 
photocatalytic performance by monitoring deposition parameters. The 
outcomes of this work can be extended to nanostructured TiO2 films 
synthesized by other techniques.

We deposit TiO2 films by thermally activated MOCVD from titanium 
tetraisopropoxide (TTIP) at six temperatures between 325 and 500 °C. 
We quantify the surface morphology of the deposited films through 
image processing and analysis of field emission scanning electron mi-

croscopy (FESEM) micrographs. We apply, for the first time, electron 
backscatter diffraction (EBSD) to determine the growth direction of the 
anatase films. We determine the intrinsic mechanical residual stress of 
the films and their evolution with Td by grazing incidence XRD 
(GIXRD), and we probe the mechanical properties at the nanoscale by 
peak force quantitative nanomechanical (PF-QNM). The electrical 
properties are investigated at the nanoscale by conductive atomic force 
microscopy (C-AFM) and at the macroscale by Hall effect measure-

ments. We fit spectroscopic ellipsometry (SE) measurements using the 
Cody-Lorentz model [32], a powerful tool to determine the thickness, 
the band-gap, and the refractive index that is affected by the porosity. 
We correlate the outcome of this comprehensive microstructural, 
electrical, electronic, and optical study with the photocatalytic activity 
measured by two techniques. First, we measure the photodegradation 
of stearic acid catalyzed by the TiO2 films by Fourier transform infra-
red (FTIR) spectroscopy, which is a variant of the Pilkington test 
[33–35]. Second, we measure the H2 photogeneration under Xe lamp 
irradiation in a controlled atmosphere by gas chromatography [36].

2. Material and methods

TiO2 films are deposited in a vertical, cylindrical, stagnant flow cold 
wall stainless steel MOCVD reactor, which has been described in detail 
elsewhere [37]. In each experiment, P light-doped (1–20 Ω.cm) and As 
high-doped (0.001–0.005 Ω.cm) n-type Si (100) wafers, and fused silica 
windows (Neyco) are placed on the heated sample holder. Titanium 
tetraisopropoxide (TTIP, 99.999%, Sigma-Aldrich) is conditioned in a 
double-walled glass bubbler and is thermally regulated at 20.5 °C. Pure 
nitrogen (99.9999% Messer) is used as both the carrier and dilution gas, 
and their flow rate is fixed to 4.7 and 52.4 sccm, respectively. All gas 
lines are thermally regulated at ca. 65 °C. Depositions are performed at
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could proceed using a gradual cross-section cleaning milling pattern, 
with a final milling beam current of 80 pA. Finally, a 5 kV and 2 kV 
cleaning steps were carried out on each side.

Surface topography is probed by a Bruker Multimode 8 AFM ap-
paratus in PF-QNM mode with Si-tip (Tespa-V2, Bruker). The me-

chanical deformation is mapped using maximum contact force of ca. 65 
nN. The tip sensitivity and its spring constant k are determined by force 
distance curve on Si reference wafer and by thermal tune, respectively. 
The vertical nanoscale charge transport is locally probed on thin films 
deposited on highly doped Si wafers by the AFM in conductive mode 
using a SCM-PtSi (Bruker) tip. A contact force of 27 nN and a sensor 
sensitivity of 100 nA/V are used. Hall measurements are conducted in a 
DC magnetic field with AC current from a Keithley 6221 current source 
and with an amplifier MFLI from Zurich Instruments. The contacts are 
Cu/Be and the injected current is of the order of 10−7 A.

The normalized Pilkington tests follow the photodegradation of 
stearic acid under UV–visible light (above 355 nm), as described else-
where [28]. The relative quantity of stearic acid on the TiO2 films is 
analyzed every 20 min by following the most intense stearic acid FTIR 
peak intensity evolution. For each sample, the test is repeated once after 
water cleaning. After the first run, the 500 °C film is delaminated, in 
contrast with the others which present perfect integrity. Finally, TiO2 

induced water photodissociation tests are performed in a quartz reactor 
filled with a water-ethanol solution (1:1 vol) under Xe-lamp (300 W) 
illumination. The produced H2 quantity is measured every 6 h with a 
gas chromatography apparatus connected to the photodissociation re-
actor (PlotQ column (30 m) and PE-molisieve column (30 m); thermal 
conductivity detector; carrier gas: Ar).

A substantial effort has been made to ensure that only the final 
analysis for each sample is destructive or potentially destructive. To this 
end, both H2 photogeneration and stearic acid photodégradation are 
realized on different samples for each Td, which have not been exposed 
to other destructive analyses.

3. Results

3.1. Crystallographic phase and texture

The composition of the TiO2 films, which was determined on a 
preliminary basis by XPS, showed no other contamination than the 
classical surface carbon due to adsorption of organic molecules, as re-
vealed by the depth profiles.

Fig. 1a shows XRD patterns obtained in a theta-theta mode, of ca. 
350 nm TiO2 films deposited on SiO2 substrates at the different Td. In 
this figure, and in the rest of the text, the following color coding is used: 
dark blue, light blue, green, yellow, orange, and red for Td of 325, 350, 
375, 400, 450, and 500 °C, respectively.

Peaks measured at 25.4, 38.5, 48.1, 55.1, 62.7, 70.3, 75, and 76°
correspond to the (101), (112), (020), (121), (024), (220), (125), and 
(031) crystallographic planes of anatase, respectively, according to the 
99-100-9704 JCPDS powder card depicted for comparison. No peak 
from rutile or brookite is detected. All diffractograms present different 
intensity ratios than the powder reference pattern (shown in black), 
revealing textured films. Diffractograms of films deposited between 
325 °C and 400 °C are rather similar, with two major peaks (101) and 
(020) that increase slightly with increasing Td. By contrast, diffracto-
grams, of films deposited at 450 °C and 500 °C show a general and 
significant intensity decrease, along with a change in peak ratio. The 
(101) and (020) peaks vanish while the (112) and the (220) (Fig. 1b) 
peaks increase.

Khalifa also reports a general decrease of XRD peak intensity with 
increasing Td, especially above 400 °C, for TiO2 films deposited by 
MOCVD in similar conditions [22]. In this temperature range, a change 
also occurs in the relative intensities between the (101) and (112) 
peaks, with the latter becoming predominant. The author attributes this 
behavior to the decrease of the migration length of the precursor



reveal any other crystal phase. The evolution of the TO3 peak intensity

with increasing Td remains the same as previously described for normal

incidence FIR measurements. In addition, LO3 peak intensity decreases

as well, but to a lesser extent, resulting in the increase of the LO3/TO3

peak intensity ratio. In addition, a shoulder is observed at ca. 750 cm−1,

which can be related to the contribution of the LO2. The evolution of

the LO bands may be connected to the change in texture observed by

EBSD and could suggest that high Td samples have an orientation of the

crystallites that favors the LO probe [41]. Moreover, with increasing Td
the LO3 peak shifts progressively from 866 cm−1 to 842 cm−1, as

highlighted by the arrow, with a concomitant increase of the LO3/TO3

intensity ratio. This is not discussed in the literature for TiO2; however,

Primeau et al. observed a drop of the LO3/TO3 intensity ratio and an

inherent blue-shift of the LO3 band with an increase in the annealing

temperatures of SiO2 samples [42]. This behavior could be related to

the densification of the structure and the decrease of disorder. There-

fore, the observed LO3 red-shift and the increase of the LO3/TO3 in-

tensity ratio with increasing Td can be explained by the increase in

porosity and by the subsequent impact on density and disorder. Another

indirect indication of the increase in the porosity is a broad and weak

band in Fig. 2c, centered at ca. 3300 cm−1, which corresponds to the

stretching vibration of un-dissociated water [43,44]. The broad band

intensity is globally higher for the high Td samples, because of their

highest porosity (as previously shown by the emergence of the
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Fig. 2. FTIR spectra of films deposited at different Td. (a) Normal incidence FIR

spectra, (b) 70° tilted MIR spectra (c) Normal incidence MIR spectra.

molecules with increasing Td, which subsequently allows less time for 
entities to arrange themselves in dense structures and leads to the in-
crease of the nucleation rate. A high Td would favor the formation at the 
surface of the (112) plan, less dense than (101), and would explain the 
change of the texture [22]. Alternatively, the observed changes in the 
XRD pattern are attributed to the decrease of the c/a ratio arising from 
the near transition from anatase to rutile [38]. This possible initiation 
of change of phase and texture could explain the general decrease in 
intensity of the XRD pattern with increasing Td. To further investigate 
the change of texture, EBSD analysis was performed on three samples 
deposited at 325 °C, 400 °C, and 500 °C, respectively. The EBSD pole 
figures are presented in Fig. 1c with the substrate surface in the XY 
plane. Color mapping (same color level for all maps) represents the 
multiples of uniform distribution (MUD), in which a high value in-
dicates a special orientation of the corresponding crystallographic 
plane. The low Td, densely structured films present a 〈100〉 growth 
direction, revealed by the MUD value of 5 in the center of the corre-
sponding pole figure. However, if the growth was following only the 
〈100〉 direction, it would result in an additional signal pointing at ca. 
90° in the same pole figure, the two signals corresponding to the < 
100 > and 〈010〉 directions, equivalent in the tetragonal system. The 
absence of this feature means that at least one additional texture 
component exists, with another growth direction whose Miller indexes 
are different from 0 and 1. Nevertheless, the inference that < 100 > is 
one of the main growth direction at low Td, is in accordance with the 
evolution of the XRD patterns vs Td in Fig. 1a, which show that the 
(020) peak (corresponding to the < 100 > direction in the tetragonal 
system) is the most intense at low Td. The intermediate Td sample 
(400 °C) does not present any MUD value higher than 3, indicating a 
transient regime with weak texture. This could be explained by a 
transition state between low- and high-Td films. In contrast, the highest 
Td sample (500 °C) shows a 〈110〉 growth direction. The corresponding 
most intense MUD value of 8 reveals the strongest texture among all 
samples. This evolution is consistent with XRD results in Fig. 1b, which 
show that the intensity of the (220) peak increases with increasing Td 

and reaches a maximum at 500 °C. There is strong evidence of at least 
one more texture component in this sample. Indeed, the {110} pole 
figure shows not only the central disk and a circle at ca. 90°, both be-
longing to the texture component already mentioned, but also a sup-
plementary ring at ca. 25°. Furthermore, the {001} pole figure shows a 
ring at ca. 50°, in addition to the ring at ca. 90° that belongs to the first 
texture component.

Fig. 2a shows the FIR-FTIR spectra of the TiO2 films normalized by 
their thicknesses as a function of Td. The FIR transmission spectra were 
obtained with normal incidence. The spectra present peaks at 260 and 
440 cm−1, which correspond to the anatase transverse optical phonons 
TO1 and TO3, respectively, as reported by González et al. [39]. Two 
broad shoulders centered at ca. 340 and 400 cm−1 are noticeable. The 
first shoulder corresponds to the TO2 contribution. With increasing Td, 
the TO1 and TO3 bands experience a general broadening, corresponding 
to the greater contribution of the previously mentioned shoulders, and 
an intensity decrease resulting from the increase in the porosity. 
Therefore, the TO2/TO1 intensity ratio increases.

Moreover, a third shoulder emerges at ca. 520 cm−1 at 375 °C and 
above. The increase of the intensity of this broad shoulder with in-
creasing Td is explained by the progressive increase of voids among the 
crystallites [29].

Fig. 2b shows MIR-FTIR spectra with an incidence angle of 70°. This 
configuration enables probing the longitudinal optical (LO) modes, 
which have a wave vector perpendicular to the film surface, in addition 
to the TO modes. This phenomenon, known as Berreman effect, has 
been highlighted by Trasferetti et al. [40] to identify the LO and TO 
bands of anatase, rutile, and amorphous TiO2. In the present case, the 
FTIR analysis shows that the films are composed of anatase only, with 
two major peaks around 440 cm−1 (TO3) and 855 cm−1 (LO3), in 
agreement with XRD and Raman analysis (not shown here) that did not



porosity. In contrast with CL, which already reaches a plateau at 375 °C,

the spatial periodicity saturates only at the end of the morphological

transition when the compact structures have been completely elimi-

nated and the vertical columns cover the whole surface. This is due to

the method of evaluating the spatial periodicity, which is sensitive to

the presence of large features when mixed morphologies, composed of

compact and columnar structures, co-exist. Complementary to CL,

which marks the beginning of the surface morphological transition at

375 °C, the spatial periodicity is an indicator of the end of the transition

400°C 400°C

375°C 375°C

350°C 350°C

325°C 325°C

500°C

200 nm

500°C

450°C 450°C

(a)

(b)

(g)

(h)

(i)(c)

(d) (j)

(k)(e)

(f) (l)

Fig. 3. FESEM images of samples deposited at different Td, (a–f) plan-view on

the left, (g–l) 25° tilted cross-sections on the right. The scale bar is the same for

every images.

520 cm−1 contribution), which results in a higher amount of water 
adsorbed on the surface.

The crystallinity of the highest Td sample was investigated by TEM 
as follows: the diffraction pattern of a selected area was divided in six 
sections and the six resulting dark field images were superimposed (Fig. 
S1, SI). Since bright parts are crystalline (and well oriented) in dark 
field images, if a dark part is crystalline on the superimposition image, 
then every brighter section is crystalline as well. For this reason, the 
area in the small black square on the figure, which is one of the darkest 
parts of the probed sample zone, was investigated by high resolution 
TEM (HRTEM). Its fast Fourier transform, also presented in Fig. S1b 
(SI), reveals diffraction spots corresponding to the crystallographic 
planes of anatase. It is thus concluded that the entire area and, conse-
quently, the film as a whole (considering the good homogeneity of the 
sample), is crystalline. Fig. S2b–c (SI) shows the diffraction pattern of 
two encircled areas of the dense lowest Td sample (325 °C) and Fig. 
S2b–c (SI) shows the summit of a grain and its crystallographic plans: 
both reveal that this film is entirely crystalline.

3.2. Morphology

The morphological evolution of the TiO2 films with Td is studied by 
FESEM. Fig. 3 presents top-down (left) and 25° tilted cross-sectional 
(right) FESEM micrographs of the TiO2 films. With increasing Td, both 
surface and cross-sectional micrographs show a decrease in the size of 
the various structures, with morphologies evolving from dense and 
angular structures to isolated and nanostructured tree-like columns. It is 
noticeable that the films deposited at 325 and 350 °C show similar 
morphologies, and the same holds for those deposited at 450 and 
500 °C. The transition from compact to columnar morphology is in-
itiated at 375 °C, as shown by the subdivision of grains on the top-down 
micrograph (left). The morphology evolves further at 400 °C, at which 
point a rather disordered columnar structure emerges. The evolution of 
the morphology with the increase of Td is accompanied by a significant 
increase in the porosity: at 375 °C, it is manifested only between grains, 
whereas at 400 °C and above, it is also manifested in the small features 
that can be observed within the columns. Therefore, the specific surface 
area of the films increases considerably with increasing Td.

Images were analyzed with the nanoTOPO_SEM™ software (Fig. 4) 
to achieve a quantitative description of the film morphology. Fig. 4a 
shows the evolution of the correlation length (CL) and the spatial per-
iodicity, which are related to the grain size and density, with Td. Fig. 4b 
shows the evolution of skewness and kurtosis, which are related to the 
porosity.

The CL describes distances with pixels of same grey levels on the 
FESEM images. Therefore, in the present case, it depends on the grain 
size and illustrates its evolution. With increasing Td, CL decreases 
drastically from 67 nm at 325 °C to 13 nm at 375 °C, and then reaches a 
plateau. This behavior is attributed to the co-existence of two grain 
sizes in the surface morphology of films deposited between 350 and 
450 °C. Since CL is calculated from the short-distance behavior of the 
autocorrelation function of image pixels, it is more sensitive to the 
smaller size: consequently, in the present case, it captures the very first 
appearance of the columnar structure in surface morphologies at 
375 °C.

The spatial periodicity is calculated from the inverse of the spatial 
frequency, which corresponds to the more prominent peak of the 
Fourier transform of the FESEM image. For samples deposited at 325 
and 350 °C, which are characterized by closely packed structures, the 
spatial periodicity value is ca. 500 nm. This evaluation of the size of the 
repeat unit corresponds to the width of a pack with different local 
elevations. Increasing Td results in an overall decrease in the spatial 
periodicity. Stabilization occurs for the samples deposited at 450 and 
500 °C: ca. 88 nm. In this case of discrete surface features, this value 
describes the mean distance between one side of a column and the 
equivalent position on the next column, including the inter-columnar



that occurs at 450 °C.

Skewness and kurtosis (Fig. 4b) are two parameters describing the

shape of the grey level histogram of images. Kurtosis describes the

flatness of the histogram, thereby discriminating the case in which

there is a strong contribution of the dark and light pixels (kurtosis< 3)

from the images in which the vast majority of pixels is around the mean

grey level (kurtosis> 3). Kurtosis values are higher than 3 for the three

samples deposited between 325 and 375 °C, corresponding to a sig-

nificant contribution for these samples from mean grey pixels, and

consequently to relatively flat surfaces with small local slopes. For the

three samples deposited at the highest Td, kurtosis values are lower than

3 because of the greater contribution of brighter pixels (corresponding

to the extremities of columns) and darker pixels (corresponding to the

porosity among columns). Skewness characterizes the symmetry of the

histogram; i.e. whether the darker (skewness< 0) or the lighter

(skewness> 0) pixels are the more prominent. It becomes negative

above 375 °C, revealing the gradual darkening of the micrographs that

marks, the emergence of the inter-columnar porosity.

Fig. 4c illustrates the evolution of the arithmetical mean deviation

(Ra) and the root mean squared (Rq) roughness of the assessed profile

with increasing Td. The Ra and Rq of films deposited at 325 °C equal 33

and 42 nm, respectively. These values show consistent evolution, i.e.

they monotonically decrease with increasing Td and are stabilized at

5 nm at 450 °C and above. A complementary approach to the estimation

of the roughness is provided by SE analysis, where roughness is simu-

lated by a surface layer composed of a volume fraction of void and of

TiO2 following the Bruggeman effective medium approximation. Fig. 4c

also shows the evolution of the thickness of this roughness layer vs Td.

The thickness is 40 nm at 325 °C, which then decreases to 28 nm at

375 °C and finally increases to reach the maximum value of 42 nm at

500 °C. Whereas the three lowest Td samples give consistent roughness

results regardless of the probing technique (photons or mechanical

probe), the values for the columnar samples depend strongly on the

probing method, namely on its depth sensitivity. SE analysis seems to

take into account the beginning of the inter-columnar void below the

summits, in contrast with the AFM tip, which cannot probe the porosity

among adjacent columns at a fine scale.

To obtain a deeper insight into the morphology of the columnar

500 °C film, we compare TEM and FESEM micrographs in Fig. 5. The

sample is 15° tilted in the plane of the images on all TEM images. The

FESEM cross-section image, Fig. 5a, shows bottom-up oriented, cypress-

like columns, illustrated by the inset scheme. The surface micrograph of

Fig. 5b shows compact triangular superstructures, which are
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Fig. 5. Electron microscopy images of the 500 °C anatase film. (a) Cross-section FESEM image. (b) Top-view FESEM image. (c–d) Cypress-like TEM image. (e–f) Fir-

like TEM image. (g) HRTEM of the cypress-like summit. (h) HRTEM of the apparent conical-shaped summit.



different deformation areas remain, whereas at higher Td (450 °C and

500 °C) the deformation is homogenous over the surface. At low Td, the

diversity in mechanical responses is probably linked to small variations

in the Young's modulus as a function of crystallographic orientation

[45]. At high Td, we link the decrease in the diversity of deformation

areas to the general decrease in the grain size, which means that what is

probed at higher Td is the mechanical response of a group of nanos-

tructured tree-like columns with different crystallographic planes. It is

also noticeable that the mean deformation under a fixed applied force

increases globally with Td, i.e. with the change in morphology from

dense to columnar. This is compatible with the increase in the porosity

within and between the grain, which enables easier deformation.

The residual stress of the films was investigated by GIXRD. For all

samples, the residual stresses are compressive and increase from

−150 ± 20MPa at 325 °C to−300 ± 100MPa at 450 °C, as shown in

the inset of Fig. 6g. These values are low compared to the Young's

modulus of bulk (195 GPa [45]) and the stress of anatase films reported

in the literature for different deposition techniques (sol-gel:

−2185MPa [46], sputtering: −890MPa [26], ALD: −700MPa [45]).

As mentioned in Section 2 of the SI, these anatase films are supposed to

be quasi-isotropic and two stress origins can be considered: σg, the film

growth stress induced during the deposition and σth, the thermal stress

induced by the difference in the thermal expansion coefficients of the

SiO2 substrate and the TiO2 film during cooling after deposition. The

residual stress can be a mixture of thermal and growth stress. For the

films deposited, the estimates of thermal stress σth in the film range

between 798 and 1256MPa, as shown in Section 2 in SI. Therefore,

excluding the thermal stress, the growth stress for all the samples is

strongly compressive, ranging between −948 and −1425MPa. This

compressive growth stress is very likely to ensue from the evolution of
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comparable with the top view scheme of cypress-like columns. Bottom-

up oriented cypress-like columns are also visible in the TEM cross-
section in Fig. 5c–d. However, in some rare cases, the layers of the 
structure are oriented toward the substrate, resembling a fir-like mor-

phology as shown in Fig. 5e–f. We conclude that the layered structures 
present a wide range of orientations, with an apparent predominance 
toward the top. Fig. 5 (panels g and h) shows HRTEM micrographs of 
two columns, a cypress-like summit and an apparently conical one, 
which may represent the same structure from two different perspec-
tives. All micrographs highlight the high specific surface of the 500 °C 
samples formed by such columnar morphology.

TEM analysis indicates that the column summits are monocrystal-

line. In contrast with the low Td morphology composed of monolithic 
grains, this 500 °C film morphology composed of a forest of tree-like 
nanostructures is far more complex. It exhibits small-scale details and 
large variability in the orientation of the films. Therefore, taking into 
account the different sides of each column and column layer, this im-
plies that the columnar structure exhibits a higher diversity in the 
crystallographic facets at the surface than the dense films.

3.3. Mechanical characteristics

Fig. 6a–c presents the AFM surface micrographs of the 325, 375 and 
450 °C samples. The observed morphology is in agreement with the 
FESEM images. Deformation maps of the same probed sample area for a 
maximum applied force of 65 nN are shown in Fig. 6d–f. Fig. 6g is the 
deformation occurrence diagram of the six samples. The dense 325 °C 
film exhibits a mechanical response to stress that differs from one grain 
facet to another, resulting in the observation of six main different de-
formation areas (see the blue arrows). For intermediate Td, three



the morphology and texture.

3.4. Electrical characteristics

Fig. 6h–j shows the current maps of the TiO2 samples deposited at

325, 375, and 450 °C, probed under negative voltage. The maps show a

decrease in the maximum current (see the current scale on the right)

with the increase of Td. However, these maximum values are related to

very small areas of the maps. Therefore, the mean values are more

representative of the evolution of the electrical properties of the films.

Under the same applied voltage of -3 V, they are −108, −6, and 0 nA

for samples deposited at 325, 375, and 450 °C, respectively. They take

into account the conductive area ratios, which are 50, 14, and 10%,

respectively. The general decrease in charge transport with the increase

in Td follows the appearance of the columnar structures and of the in-

crease in the porosity.

Hall effect measurements on samples deposited at 325 and 400 °C

evidence the n-type character of the TiO2 films. It is reasonable to as-

sume that the samples deposited at intermediate Td, i.e. 350 and 375 °C,

are n-type semiconductors as well. Furthermore, charge carrier density

for the 325 °C sample is 1 ± 0.3×1018 cm−3 and that for the sample

deposited at 400 °C is 2.9 ± 0.2× 1018 cm−3. This increase implies a

decrease in the charge mobility, which can be attributed to the in-

creased complexity of the morphology with the emergence of voids

between and inside the nanostructures.

3.5. Optical characterization

In order to determine the optical band-gap Eg of the films, we plot in

Fig. 7a the Tauc plot of the absorption coefficient α for indirect semi-

conductors. Despite the fact that all films present similar thicknesses

determined by SE and by FESEM (295–435 nm), it is clear that inter-

ference fringes below the optical absorption edge disappear for low Td
films (< 400 °C). This is because of light scattering caused by larger

nanostructures above 300 nm that clearly emerge below 400 °C, as

shown by FESEM and AFM (Fig. 3 and Fig. 6a–c). This is confirmed by

the diffuse reflectance spectra showing a significant increase in in-

tensity while Td decreases to below 400 °C (Fig. S3a, SI). In addition, we

also analyze the optical properties below the band-gap by SE using the

exponential Urbach formalism of the Cody-Lorenz model i.e. the slope

Eu and the demarcation energy Et between the Urbach tail transition

and the band edge [47]. The evolution of Eu with Td (Fig. S4, SI) is the

inverse of the evolution of the reflected diffuse light intensity. There-

fore, we can conclude that the loss of light in the transparent spectral

domain is probably because of scattering and not because of Urbach

states. Moreover, scattering seems to be the main cause of the reflec-

tion, since the total (Fig. S3b Si) and diffuse (Fig. S3b.a SI) reflectance

spectra are very similar in the UV range. At 285 nm, both spectra show

a major increase with decreasing Td, from 8 to 27% and 0.5 to 25%

respectively. This means that at low Td, up to 25% of the intensity of

light is lost for the photocatalytic process because of scattering.

The insert of Fig. 7a shows that Eg determined by transmission

spectroscopy decreases monotonously from 3.25 at 500 °C, which cor-

responds to bulk anatase, to 2.94 at 375 °C. Despite the difficulty of

determining the optical band edge from the linear part of the Tauc plot

because of interferences and scattering, this monotonous trend is si-

milar to the one estimated by SE on the entire series (see Fig. 7a). A

slight shift is observed between the two measurements, which has al-

ready been observed with various Si alloys and may be inherent to the

Cody-Lorentz model [47].

The decrease of Eg with decreasing Td could result from the pro-

gressive increase of the content of shallow donor levels caused by in-

trinsic defects as oxygen's vacancies (Ov) and/or Ti
3+ oxidation states.

Valence band spectra from XPS measurements of samples deposited at

325 and 450 °C are similar, as shown in Fig. S5a (SI), which would point

to an apparent downshift of the conduction band of low Td samples.

However, we do not detect any distinctive signatures of Ti3+ or Ov in

surface XPS spectra (Fig. S5b, c–h, SI). Indeed, the 531.8 eV contribu-

tion can be related to oxygen from adsorbed carbon species or OH

groups, as well as Ov [48]. Also, depth analysis with argon cluster

sputtering would induce a reduction effect that would bias the results.

Moreover, Hall effect measurements show an increase in the con-

centration of charge carriers with the increase of Td. Therefore, the

decrease in the optical absorption threshold with decreasing Td could be

partly related to the progressive increase of scattering (Fig. S3, SI).

Nevertheless, the SE band-gap also decreases with Td despite the use of

an Urbach tail contribution for the deconvolution of the scattering. This

suggests that the band-gap may be narrowed with decreasing Td.

Fig. 7b shows the ellipsometric angles Ψ and Δ of the sample de-

posited at 350 °C, and the simulated SE data using the film architecture

displayed in the inset of Fig. 7c. It is worth noting the high fit quality in

the transparent region and above the absorption edge. Furthermore, the

refractive index n and the extinction coefficient k reported in Fig. S6

(SI) using the Cody-Lorentz model are similar to previous SE spectra

used to analyze amorphous and crystalline anatase [32,49,50]. We

observed an increase in n with decreasing Td (Fig. S6, SI). This increase

of n is caused by the rise in the density. Thus, the rise of the optical

reflection (Fig. S3b Si), which is mainly due to scattering, is explained

by the concomitant increase of the size of the nanostructures and the

refractive index.

Fig. 7c shows the volume fractions of void (fvoid) vs Td estimated

from n@633 nm of the films, and of bulk anatase following the Lorentz-

Lorenz equation. In this case, fvoid is an estimate of the total porosity,

including the closed porosity, whereas the volume fraction of ethanol

resulting from SEP corresponds only to the open mesoporosity with a

maximum pore size of ca. 20 nm. We attribute the difference between

the results to the fact that the large mesoporosity and macroporosity

cannot be filled by ethanol by capillary condensation. The closed
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porosity, inaccessible to ethanol, could be negligible in the porous

structure. No model using effective medium approximations composed

of void and crystalline and/or amorphous anatase could significantly fit

the SE data, since it cannot accurately describe band-gap and scattering

intensity variations. Therefore, the values reported in Fig. 7c inset vs Td
are only indicative. However, the increase of both volume fractions

with increasing Td reflects the increase in porosity within and between

the nanostructures, which is apparent in the FESEM and HRTEM images

(Fig. 5).

3.6. Photocatalytic evaluation

To study the evolution of the SWS photocatalytic properties of the

TiO2 films vs Td, two tests were carried out. First, water photo-

dissociation rates are quantified by the cumulative H2 production.

Fig. 8a shows the amounts of H2 as a function of time produced by

photocatalysis by the films deposited between 450 and 325 °C, corre-

sponding to the entire range of morphologies. All films display constant

H2 production throughout the 66 h of the analysis, as shown by the

linearity of the curves, revealing their high stability. Furthermore, the

repeatability of the experiments has been established by testing a

450 °C sample thrice and acquiring the same results. After 66 h, the

well-organized, nanotree-shaped TiO2 (450 °C) displays the highest

cumulative H2 production of 78.9 mmol.m−2. After the same duration,

the TiO2 with disorganized columns (400 °C) shows a production of

only 36.2 mmol.m−2, i.e. less than half of the production of the film

deposited at 450 °C. The intermediate, 375 °C sample displays a pro-

duction of 12mmol.m−2 and the two dense TiO2 show similar pro-

duction quantities of 3.6 and 4.4 mmol.m−2 for 350 and 325 °C, re-

spectively. The well organized columnar film shows the best

photocatalytic performance, which is far better than the others. Com-

parison of these results with the literature is difficult because of the

diversity of the reported photocatalytic protocols used, in terms of so-

lutions, protocol pressure, normalization, or intensity of the light source

[51].

A second photocatalytic analysis was performed by the Pilkington

test, shown in Fig. 8b, following the photodegradation of stearic acid

under UV-light illumination. The results of three samples (325, 375 and

450 °C) exhibiting the three characteristic morphologies are shown,

revealing that the photocatalytic activity of the high Td sample is better

than the 375 and the 325 °C ones. The highest photodegradation rate is

close to the rate from PECVD-processed pure anatase TiO2 film reported

by Zhou et al [34].

The straight hierarchy between the photodegradation rates of the

three samples shown on the Fig. 8b can be attenuated by the other

samples results (Fig. S7, SI) that show, for instance, that the 400 °C

sample is more efficient than the 450 °C sample. Additional results on

Fig. S7 (SI) also show that initially, the sample deposited at 350 °C is

more active than the one deposited at 325 °C.

Both analyses show the strong tendency of higher Td samples to

show higher photocatalytic activity. For H2 photogeneration, there is

only one small exception to this trend – the samples deposited at 325

and 350 °C – since the former exhibits slightly better activity than the

latter. However, as described earlier, several samples do not follow the

trend for stearic acid photodegradation. These exceptions are not sur-

prising when one considers the fact that competition among a number

of properties and characteristics results in the final photocatalytic

performance of the materials. This is especially the case given that the

properties do not show a steady evolution with Td. For instance, this is

the case with the mean current probed by C-AFM, which shows a strong

early decrease with the increase of Td, or for the evolution of XRD

patterns, in which significant change begins only at 450 °C. Moreover,

the evolution of some properties is not quite monotonous: for example,

the porosity as determined by ellipsometry between 325 and 350 °C.

Finally, the initial amount of stearic acid on surface samples could be

different from one sample to another because of specific surface dif-

ferences between them, which could explain the fact that stearic acid

photodegradation results show more exceptions to the general trend.

Therefore, the 400 °C sample, which is less porous than the 450 °C one,

could have less acid stearic to photodegrade in the first place. For all

these reasons, we focus in the following discussion on only the general

trend, which is indisputable.

4. Discussion

The strong increase in the morphological complexity of anatase

films obtained with increasing Td has a positive impact on the photo-

catalytic performance. This impact can be analyzed by the following

photocatalytic mechanisms: carrier photogeneration, carrier con-

centration, carrier transport, and properties of the surfaces exposed to

the aqueous catalytic solutions. Changes in the morphology of TiO2

films with increasing Td have been reported extensively in the litera-

ture. Taylor et al. [21] observed the same morphological evolution of

MOCVD TiO2 films from TTIP. According to them, the increase of Td
results in the decrease in the migration length of active species and in a

concomitant decrease in the number of hops before reaction. Therefore,

at low Td, reactive species have time to diffuse, which results in large

and compact structures, whereas high Td favors nucleation and leads to

preferential growth on pre-existing structures. This, in turn, leads to the

formation of the columnar complex nanotrees, which GIXRD reveals to

be compressed, and more subject to deformation under fixed applied

force. This growth mechanism leads to highly porous films at high Td,

estimated to be ca. 26 vol% of void by SE. Further evidence is provided

by FTIR, which shows a significant decrease in the number of TieO
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Fig. 8. Photocatalytic evaluation of samples deposited at different Td, (a) H2 photogeneration, (b) Pilkington test.



high Td samples to the strong increase in the specific surface area. This

increase is induced by spaces between the nanotree-like columnar

structures and possibly by the smaller space within each column, which

were observed by both FESEM and HRTEM, in accordance with FTIR

analyses. We also observe a significant increase in the porosity with

increasing Td. The maximum volume fractions of void corresponding to

the open mesoporosity (estimated by SEP) and full porosity (estimated

by SE) were 9% and 26%, respectively. Moreover, we observe a de-

crease in the optical reflection with increasing Td, which is mainly

caused by scattering and which may favor the photocatalytic process. In

addition, the inherent increase in the diversity of the exposed crystal-

lographic facets with the increase in the morphological complexity may

have a positive impact on the H2 production performance as well.

Notably, we show for the first time by EBSD a change of one of the main

growth direction:< 100> at 325 °C and<110>at 500 °C. However,

we observe a decrease of the charge mobility, which is detrimental to

the photocatalytic performance, as could be the case with the increase

in the residual compressive stress. Therefore, we have performed an

extended investigation of the nanoscale electrical and electronic prop-

erties with regard to the crystallographic properties of the nanotree-

shaped TiO2. The results of this analysis will be published in a forth-

coming paper.
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