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Abstract Strain partitioning related to oblique plate convergence has long been debated in Northern
Lesser Antilles. Geophysical data acquired during the ANTITHESIS cruises highlight that the sinistral
strike-slip Bunce Fault develops along the vertical, long, and linear discontinuity between the sedimentary
wedge and a more rigid backstop. The narrowness of the 20- to 30-km-wide accretionary wedge and its
continuity over ~850 km is remarkable. The Bunce Fault extends as far south as 18.5°N where it anastomoses
within the accretionary prism where the sharp increase in convergence obliquity possibly acts as a
mechanical threshold. Surface traces related to subducting seamounts suggest that 80% of the lateral
component of the convergent motion is taken up by internal deformation within the accretionary prism and
by the Bunce Fault. The absence of crustal-scale, long-term tectonic system south of the Anegada Passage
casts doubt upon the degree of strain partitioning in the Northern Lesser Antilles.

Plain Language Summary Lithospheric plates are frequently bounded by subduction zones
where oceanic plates underthrust overriding plates. In most cases, this convergence is oblique to the
margin, its resulting tectonic deformation is generally due to margin-normal and margin-parallel
components of the plate convergence vector. At the Northern Lesser Antilles, the North American Plate
subducts beneath the Caribbean Plate with oblique convergence increasing from Guadeloupe to Virgin
Islands. This study aims to analyze and resolve the tectonic deformation along this margin. We acquired
marine geophysical data during ANTITHESIS cruises (2014-2016) to image the seafloor and the crustal
structure. We place a particular emphasis on the strike-slip Bunce Fault, which extends over ~850 km,
including a newly discovered 350-km segment, 20-30 km landward from the trench. Although long
strike-slip faults have already been observed at oblique subduction zones, the proximity of the Bunce Fault to
the trench is unprecedented. We conclude that the mechanical discontinuity between the sedimentary
wedge and a more rigid backstop and the sharp increase in obliquity is likely to control the location of the
trench-parallel, strike-slip deformation north of the Anegada Passage when strain partitioning to the south
may be small or taken up in more diffuse pattern.

1. Introduction

Convergence obliquity greater than 27° occurs in more than ~50% of subduction zones worldwide (Heuret,
2005) as, for instance, in Sumatra (McCaffrey, 1991), Taiwan (Lallemand et al., 1999), or the Philippines
(Quebral et al., 1996). High obliquity and strong basal friction favor strain partitioning into trench-normal
and trench-parallel components (Chemenda et al., 2000; Fitch, 1972). The trench-normal component is
taken up by fold-thrusts belts, the trench-parallel component, by strike-slip systems (Mann, 2007). The sys-
tems in the arc and forearc are frequently long (>600 km), penetrating at crustal or lithospheric scale,
bounding landward laterally moving slivers and located away from the trench (Chemenda et al., 2000;
Philippon & Corti, 2016). The Great Sumatran Fault (McCaffrey, 1991), the Median Tectonic Line in Nankai
(e.g., Ikeda et al., 2009), and the Philippines fault (Quebral et al., 1996) are major examples of such strike-slip
systems. In contrast, only few examples of strike-slip faults located close to the trench are documented. They
develop along major structural/rheological discontinuity as at the accretionary wedge backstop (Chemenda
etal., 2000; Lallemand et al., 1999), branch downward onto the subduction interface, and separate a laterally

LAURENCIN ET AL.

9573


https://orcid.org/0000-0002-7376-4357
https://orcid.org/0000-0002-0494-9550
https://orcid.org/0000-0003-2619-3341
https://orcid.org/0000-0001-5838-0577
https://orcid.org/0000-0002-4117-6411
https://orcid.org/0000-0003-1924-9423
http://dx.doi.org/10.1029/2019GL083490
http://dx.doi.org/10.1029/2019GL083490
http://dx.doi.org/10.1029/2019GL083490
http://dx.doi.org/10.1029/2019GL083490
http://dx.doi.org/10.1029/2019GL083490
mailto:muriel.laurencin@univ-brest.fr
https://doi.org/10.1029/2019GL083490
https://doi.org/10.1029/2019GL083490
http://publications.agu.org/journals/

Geophysical Research Letters

10.1029/2019GL083490

-61°W -60°W
BB, NAP A)
C___SFZ BF -
z jn ~
. g
MT  StK
Gy M
CAP 3 Stl

19°N

f‘fw
=

z i
% L
- = Q e

O \ WYX \\O

Saba v ‘( o (Y \ Q! o8
° St < T)\”‘ W
Y (
stk Barbuda B)

> ; N : 5 g
o o5 & RAPY o a5V e® oW

(km)

Figure 1. (a) Geodynamic setting of the northeastern Caribbean Plate boundary. (b) Bathymetric map showing location of
multichannel seismic data (black lines) and wide-angle seismic data (colored circles at ocean-bottom seismometer loca-
tion) recorded during cruises ANTITHESIS 1 and 3. Structures at the Anegada Passage (thin gray lines) are from
Laurencin et al. (2017) and the Bunce Fault (thick red line) from this study and ten Brink et al. (2004). Close-up in Figure 2
are located along thick black lines. Focal mechanisms for earthquakes with a Mw > 4.5 and 5.5 are, respectively, in
blue and red. (c) Bathymetric close-up corresponding to the dashed frame in (b) and showing the Bunce Fault (black arrows)
and the Malliwana Fault (small red arrows). Dashed boxes encompass 2-D close-up in Figure 3. Red arrows stand for
convergence vector between North American (NAP) and Caribbean (CAP) Plates (DeMets et al., 2000). AP: Anegada Passage,
BB: Bahamas Bank, G: Guadeloupe, H: Hispaniola, M: Martinique, MT: Muertos Trough, NLA: Northern Lesser Antilles,
PRVI: Puerto Rico Virgin Islands, SFZ: Septentrional Fault Zone, StE: St Eustatius, StK: Saint Kitts, StL: St Lucia.

moving and deforming sedimentary wedge sliver. Various studies have addressed the question of tectonic
deformation related to strain partitioning along the Antilles subduction zones: from Hispaniola to Puerto
Rico where it has been clearly identified (Mann et al., 2005; ten Brink et al., 2004) and from the Virgin
Islands to Guadeloupe where it is poorly imaged and more hotly debated (Bouysse, 1988; Bouysse &
Westercamp, 1990; Calais et al., 2016; Feuillet et al., 2002; Feuillet et al., 2011; Lépez et al., 2006; Manaker
et al., 2008; Symithe et al., 2015).

During ANTITHESIS 1, “ANTIlles THErmicité and SISmicité,” (Marcaillou & Klingelhoefer, 2013) and
ANTITHESIS 3 cruises (Marcaillou & Klingelhoefer, 2016), we acquired multibeam bathymetric data and
the first deep seismic images in the Northern Lesser Antilles (NLA) and the eastern Puerto Rico Virgin
Islands (PRVI) margin segments (Figure 1). This data set highlights a 350-km-long, trench-parallel, promi-
nent strike-slip fault (Figure 1) located 30 km from the trench. This newly discovered fault segment extends
southward from the Bunce Fault described further west by ten Brink et al. (2004). This study (1) provides
evidence for its long-term left-lateral deformation, (2) shows its southeastern extremity and the relation with
the plate convergence obliquity, and (3) highlights the geological and structural context of the fault at this
location. These observations show the influence of increasing plate convergence obliquity on the develop-
ment of subduction-linked strike-slip faults. This allows us to propose a large-scale model for active parti-
tioning systems in the NLA.
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2. Geological and Tectonic Background

At the northeastern limit of the Caribbean Plate, along the Lesser Antilles subduction zone, the North
American Plate subducts beneath the convex NLA and PRVI margin segments with a plate convergence rate
of ~20 mm/year in a ~N254° direction (DeMets et al., 2000). The plate convergence obliquity, relative to
trench-normal direction, progressively increases along the trench as it curves northwestward (Figure 1).
Obliquity ranges from ~0° to 75°, from the latitude of Guadeloupe to Puerto Rico Trench, respectively.
Farther west, the subduction turns into a sinistral strike-slip plate boundary to the west of Hispaniola
(Figure 1; e.g., Sykes et al., 1982; Mann & Burke, 1984). Various studies have addressed the question of tec-
tonic deformation related to strain partitioning along NLA and PRVI margins. Mann et al. (2005) summarize
these tectonic studies at the PRVI microplate between southward underthrusting along the Puerto Rico
Trench and northward underthrusting along the Muertos Trough. The collision of the Bahamas Bank with
the northern Caribbean margin since the late Paleogene (e.g., Pindell & Kennan, 2009) led to inception of the
North Caribbean strike-slip Plate boundary and motion partitioning along the NLA-PRVI margins as the
trench curvature initiated (Legendre et al., 2018). During the Miocene, the Anegada Passage possibly accom-
modated transtensive relative motion between Caribbean and PRVI block in response to this collision (e.g.,
Jany et al., 1990; Mann et al., 2005). Later on, this transtensive extension was stopped and the structures are
recently reactivated by a left-laterally partitioning system (Figure 1; Laurencin et al., 2017) as also substan-
tiated by GPS data interpretation (Jansma & Mattioli, 2005). To the north of the Anegada Passage, the strike-
slip Bowin Fault extends eastward the Septentrional Fault of Hispaniola and connects with the left-lateral
strike-slip Bunce Fault (Grindlay et al., 2005). The Bunce Fault extends over 530 km between 68.5°W and
62.3°W located at only 10-20 km landward from the Puerto Rico Trench (ten Brink et al., 2004). To the south
of the Anegada Passage, Feuillet et al. (2002; 2011) interpreted arc-perpendicular grabens in the forearc
domain and a set of en echelon short transtensional right-stepping faults along the volcanic arc from
Martinique to Saint Kitts as the expression of strain partitioning. Lopez et al. (2006) proposed that discrepan-
cies between predicted directions of North America and Caribbean Plates convergence and slip vectors of
thrust fault earthquakes suggest that the NLA forearc moves independently as a block distinct from both
major plates. These observations led them to propose that a ~800 x 300 km northward drifting arc-forearc
sliver extends from southern Martinique Island up to the Puerto Rico Trench. Tectonic interpretations based
on GPS networks located onshore NLA Islands, only, result in diverging conclusions. Based on kinematic
models of microblocks derived from GPS data, without considering the Bunce Fault, the PRVI and NLA
margin segments possibly undergo oblique subduction either without any strain partitioning (Calais et al.,
2016; Manaker et al., 2008; Symithe et al., 2015) or with left-lateral strike-slip relative motion (Jansma &
Mattioli, 2005).

3. Data and Processing

Coincident multichannel seismic (MCS) lines Ant01 and Ant06 and wide-angle seismic data AN1 and AN6
(Figure 1) were acquired using a 3.75-km-long 300-channel-streamer, 39 ocean-bottom seismometers and
7699-in.> tuned air gun array. MCS quality-control and processing were performed with SolidQC® and
GEOVATION?®, respectively, as detailed in Laurencin et al. (2017). AN1 and AN6 P wave velocity (Vp) mod-
els were built using a forward modeling approach (Zelt & Smith, 1992; Figure 2). Methods, processing, velo-
city modeling, and resolution tests are described in Laurencin et al. (2018). We also processed multichannel
bathymetric data acquired during these cruises and calculated digital elevation models at 100- and 75-m grid
spacing using the CARAIBES® software. This digital elevation model was further analyzed using free soft-
ware Qgis. Uninterpreted MCS lines and bathymetric map are provided in the supporting information.

4. Observations: The Bunce Fault

A prominent bathymetric lineament parallel to the deformation front is located 20 to 30 km arcward of the
trench, offshore from Barbuda to the Virgin Islands (Figure 1c). Trench-parallel, obliquely oriented bathy-
metry reveals that the N112° trending lineament is mostly rectilinear with local discontinuities from I to J
(Figure 1c). To the NW, from J to K, the lineament veers slightly and connects westward to the N90° striking
Bunce Fault observed offshore Virgin Islands and Puerto Rico (ten Brink et al., 2004; Figure 1c). At depth, in
MCS lines, this lineament corresponds to steep planes that converge downward likely soling out onto the
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Figure 2. Three-dimensional seismic bathymetry view for lines Ant01 (a) and Ant06/Ant17 (b) with corresponding Vp model, ANO1 (c) and AN06 (d), derived from
wide-angle data converted in second two-way travel time. See thick black lines in Figure 1 for location. Pale colors in (c) and (d) extend velocity models where

unconstrained by seismic data.

plate interface and outcropping at the seafloor, for instance at CDP 4600-5300 in Line Ant01 (Figure 2a) and
at CDP 2700-3200 in Line Ant06 (Figure 2b; see also MCS lines in the supporting information). These steep
planes vertically offset the seafloor and the internal reflectors define negative (Figure 2a) or positive
(Figure 2b) flower structures. In map view, sigmoidal left/right-stepping fault segments connect through
bathymetric depressions/highs (Figures 2, 3a, and 3b) indicating transtensive/transpressive relays, which
are typical of sinistral strike-slip deformation. The length, linearity, steepness, and flower shape of the
fault are consistent with a strike-slip system at a mature stage of its development (Martinez et al., 2002),
showing that the Bunce Fault extends south as far as 18.65°N.

WAS-derived seismic velocities and MCS lines highlight the nature of margin structures along which the
Bunce Fault developed at the PRVI (Line Ant01) and NLA (Line Ant06) margin segments. These data reveal
contrasted seismic facies and velocities across the Bunce Fault. Vp changes rapidly across the fault zone,
with a significant arcward increase of the vertical gradient. From the deformation front to the fault, velocity
varies vertically from 2.5 km/s beneath the seafloor to 3 km/s above the interplate contact at 10-km depth
(Figures 2c and 2d). In contrast, at similar depths to the southwest of the fault, velocity varies vertically from
2.5 to 5.5-6 km/s. Thus, at crustal depth, velocity increases landward from 3 to 5.5-6 km/s across the Bunce
Fault (Figures 2c and 2d). In addition, this lateral velocity contrast coincides with a drastic change in the
seismic facies in MCS lines. On the trenchward side of the fault, MCS data show series of landward dipping
reflectors typical of in-sequence thrusts in imbricated fold and thrust belt of an accretionary prism. The
thrust faults outcrop at the seafloor, shift upward local reflector packages, and sole out at depth onto the
interplate contact (Figures 2a and 2b). These dipping reflectors are associated with trench-parallel bathy-
metric lineaments that bound folded ridges and piggyback basins. In contrast, on the landward side of the
fault, the smoother seafloor tops a ~1-s two-way travel time thick upper seismic unit of irregularly bedded
reflectors. This unit unconformably rests upon high-amplitude low-frequency reflections at the roof of a
2.5-s two-way travel time thick chaotic, poorly reflective lower seismic unit. These units likely correspond
to the forearc sedimentary basin and the high-velocity margin current basement, respectively. Thus, wide-
angle Vp and seismic facies indicate that the sinistral strike-slip Bunce Fault separates the 20- to 30-km-wide
accretionary prism from a crustal margin backstop.

To the east of I (I letter on Figure 1), the morphologic expression of the Bunce Fault changes from a narrow
deformation zone to a 60-km-long, 30-km-wide anastomosing system that vanishes southward (Figures 1
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relative plate motion (N254-264°) and mass wasting direction trending parallel to the trailing edge of the scars (N210 + 10°). Discrepancy between those
directions highlights northwestward motion of the margin wedge (explanations in the text) of ~80% of the convergence rate. See black frames in Figure 1c for

location of 2-D views.

and 4). To the north of this anastomosing system, straight N140° trending bathymetric slope lineaments
show the surface trace of outcropping thrust faults in the prism (Figure 4). In contrast, within the
anastomosing system, the thrusts surface traces are left-laterally shifted, in sigmoidal shape (see white
ellipses in Figure 4) along N100-110° directed short bathymetric lineaments that converge toward the
Bunce Fault in I. This system departs from the trend of the margin backstop whose orientation changes
from N110° to N130°, as identified on MCS lines (red dots in Figure 4). Further south, Line Ant45, for
instance, confirms the absence of flower structure located at the accretionary prism backstop at this
latitude (supporting information). In contrast, at CDP 2000-2200 and 2800-3000, this line shows small
and shallow flower structures that sole out downward onto thrust fault in the prism and correspond with
N110° trending bathymetric lineaments (Figure 4). The MCS and bathymetric data thus define
anastomosing strike-slip fault segments connecting with the accretionary wedge thrusts and folds belt that
are therefore likely to accommodate oblique slip at the eastern ending of the Bunce system. This
termination is located near an abrupt change in the trench orientation, which results in a southward
decrease in convergence obliquity, from 49° to 16° (Figure 1). Thus, conversely, the northward sharp
increase in convergence obliquity possibly acts as a mechanical threshold favoring the onset of strike-slip
deformation. This deformation generates a diffuse zone of oblique slip along short fault segments within
the accretionary prism that merge northwestward within short distances into a long rectilinear mature
strike-slip fault located at the backstop of the accretionary wedge.

In oblique convergent margins, where seamounts enter the trench and interact with the margin wedge, the
azimuth of deformation traces left behind them, compared to plate convergence direction, allows estimating
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Figure 4. (a) The morphostructural and (b) the slope maps at the southern end of the Bunce Fault (see location of I in
Figure 1) showing the anastomosing system. White ellipses show thrust surface expressions shifted by left-lateral
motion by the Bunce Fault lineament terminus. (c) 3-D seismic-bathymetry view for Line Ant45 in the accretionary prism.

the lateral motion of the wedge (e.g., Dominguez et al., 1998; Ranero & von Huene, 2000). When this
azimuth is subparallel to plate convergence vector, the wedge lateral motion is insignificant. In any case,
this azimuth provides a rough estimate for this lateral motion. The North American Plate is covered with
seamounts (Laurencin, 2017) that approach the trench with N254-264° direction (DeMets et al., 2000;
Jansma & Mattioli, 2005). In contrast, the surface deformation traces for subducting seamounts are
directed N210 + 10° (Figures 3c and 3d). Given the curved shape of these traces, a 20° uncertainty is
assumed. This ~50 + 10° angle to the northwest of the plate convergence vector with respect to the
seamount-related deformation traces indicates a northwestward displacement of the margin wedge.

5. Discussion: Strain Partitioning in the NLA
5.1. Left-Lateral Deformation

This ~50 + 10° angle to the northwest of the plate convergence vector with respect to the seamount-related
deformation traces indicates a northwestward motion of the margin wedge of 80 + 10% of the plate conver-
gence. This rough estimate suggests a 1.6 + 0.2-cm/year lateral motion of the accretionary prism. This
motion is taken up partly by internal deformation within the accretionary prism and partly by sinistral
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strike-slip motion along the Bunce Fault. In absence of additional constraints from in situ GPS data, seismo-
logical monitoring and geological sampling, an estimate for slip rate along the Bunce Fault is speculative.
The ages of the Bunce Fault and of the innermost accretionary units are unknown. Moreover, the bathy-
metric map does not show any lineament across the backstop and the sedimentary prism, whose lateral shift
could provide constraints about this slip rate. As a result, seamount-related deformation traces provide a
rough estimate for maximum slip rate along the Bunce Fault. Considering the hypothesis of a laterally mov-
ing nondeformable rigid sliver, the slip rate along the Bunce Fault would be 1.6 + 0.2 cm/year.

5.2. Convergence Obliquity Variation and Anastomosing Strike-Slip Fault

Analogue modeling (Martinez et al., 2002) and in situ observations (Jarrard, 1986; McCaffrey, 1992) suggest
that low subduction obliquity (~15°) is sufficient to trigger strain partitioning. These results are consistent
with the Central Lesser Antilles and NLA where convergence obliquity increases progressively northward
from ~0° to 16° from Guadeloupe to Antigua latitudes then changes to 49° north of the 18.5°N kink in the
deformation front (Figure 1). The strike-slip Bunce system easternmost termination is currently located near
this increase in convergence obliquity (Figure 1). In contrast, to the south of 18.5°N kink, where the obli-
quity is low, bathymetric and seismic data acquired during ANTITHESIS (this study and Laurencin, 2017)
do not image localized strike-slip deformation in the accretionary wedge or at the backstop. We conclude
that deformable accreted sediments, low basal friction and arcward dipping, discontinuous, deformed back-
stop (Laigle et al., 2013) tend to impede strike-slip deformation localization at low to intermediate plate con-
vergence obliquity. In contrast, the sharp increase in this obliquity at 18.5°N possibly acts as a mechanical
threshold favoring strain partitioning that focusses strike-slip deformation at trench-parallel, vertical and
continuous rheological discontinuity of the current wedge backstop.

5.3. Bunce Fault Proximity to the Trench

The 850-km-long Bunce Fault is located intriguingly close to the trench in the NLA and offshore Puerto Rico,
compared to more inland strike-slip faults in Hispaniola. Ten Brink and Lin (2004) proposed that this varia-
tion in the strike-slip fault distance to the trench, from Puerto Rico to Hispaniola, is related to different dis-
tributions of Coulomb stress in the forearc region, as a result of the change from the nearly trench-parallel
slip on the Puerto Rico subduction interface to the more perpendicular subduction slip beneath Hispaniola
(ten Brink & Lin, 2004). This explanation may not be suitable to the southeast of Puerto Rico, where slip obli-
quity for thrust earthquakes decreases down to ~30° and to a few degrees south of Barbuda (Lopez et al.,
2006; Figure 1). This obliquity is close to that at Hispaniola, but the Bunce Fault remains close to the trench
over an additional 350-km-long distance. The data presented here support an alternate explanation for this
proximity to the trench. The Bunce Fault branches out at the backstop (i.e., at the transition between the
accretionary prism and the lithified forearc basin sediment and crustal basement rocks), which is a long
and continuous inherited weakness zone in the margin. Previous studies pointed out the control of this
weakness in localizing the strike-slip motion at backstop (e.g., Chemenda et al., 2000). However, strike-slip
faults associated to wedge weakness at a short distance from the deformation front are usually local as in
Nankai (Tsuji et al., 2014) or Southern Ryukyu (Lallemand et al., 1999).

The Bunce Fault forms a structural boundary separating the very narrow, sediment-starved trench, or defor-
mation front. A larger sediment supply would have probably resulted in a wider prism and a greater distance
between the trench and the fault. Thus, in the context of long-term margin erosion, we cannot rule out the
scenario of a strike-slip system that initiated at greater distance from the trench, at the rear of an initially
larger and progressively eroded accretionary domain. However, the Bunce Fault proximity to the trench is
likely to be primarily controlled by the major mechanical weakness at the toe of the prism backstop which
has the exceptional character of being straight and both vertically and laterally sharp over long distances.

5.4. Overview of Strike-Slip Structures in the Margin

In the following, we present an overview of the published structural observations for major lithospheric tec-
tonic deformation related to the strain partitioning at NLA margin. The inherited E-W trending forearc seg-
ment of the Anegada Passage has been reactivated in a sinistral strike-slip system that connects eastward to
the Bunce Fault (Figures 1 and 5; Laurencin et al., 2017). GPS data indicate that relative block motions are
taken up along the Anegada Passage, with low velocity of 1.2 mm/year, (Jansma & Mattioli, 2005) up to 1.8
mm/year (Calais et al., 2016), close to the uncertainty estimate.
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Figure 5. Summary of observed and imaged tectonic structures interpreted as related to strain partitioning at the PRVI
and NLA margin segments. BB: Bahamas Bank, G: Guadeloupe, H: Hispaniola, M: Martinique, MT: Muertos Thrust,
MP: Mona Passage, NLA: Northern Lesser Antilles, PR: Puerto Rico, PRVI: Puerto Rico Virgin Islands block, St K: Saint
Kitts, VI: Virgin Islands. BoF: Bowin Fault and SFZ: Septentrional Fault Zone after Grindlay et al. (2005). The location of
the accretionary wedge backstop in the Central Antilles is from Laigle et al. (2013).

To the southeast, right-stepping short en echelon faults system (Figure 5) are discontinuously distributed
along the arc from Martinique to Saint Kitts islands (Feuillet et al., 2002, 2011) and do not extend farther
northwest through the Saba's Bank (Lebrun et al.,, 2017) and the Anegada Passage (Laurencin et al.,
2017). This tectonic system differs from hundreds-of-kilometer-long, crustal-scale, continuous strike-slip
systems observed along forearcs and arcs undergoing strain partitioning: the Great Sumatran Fault
(McCaffrey, 1991), the Median Tectonic Line in Nankai (e.g., Ikeda et al., 2009), and the Philippine fault
(Quebral et al., 1996).

In contrast with the Greater Antilles margin, these observations question about the total amount of relative
motion along tectonic structures related to strain partitioning to the south of the Anegada Passage. Analogue
(e.g., Leever et al., 2011) and numerical (e.g., Chemenda et al., 2016) modeling show that the early stages of
strike-slip deformation consist in oblique short en echelon normal to transtensive faults, which progressively
rotate to a direction more closely parallel to the shear strain and coalesce in a long and continuous strike-slip
system. The en echelon fault system along the Lesser Antilles arc has not yet coalesced into a mature strike-
slip fault suggesting that, on a longer time scale, the total amount of slip accommodated by this system
is low.

In addition, identified earthquakes associated to this system, south of Guadeloupe show normal-faulting
mechanisms. Only two strike-slip events occurred along a fault segment north of Montserrat (Gonzalez
et al., 2017, and references therein). Moreover, although GPS networks are located onshore arc islands only,
geodetic modeling does not confirm systematic differential motion between forearc and back-arc domains
(Symithe et al., 2015). A wider GPS location in an E-W direction would provide more solid constraints on
this point. As a result, interpretations concerning the amount of strain partitioning in the forearc diverge.
Calais et al. (2016) interpret oblique slip with no partitioning at the scale of PRVI and NLA block, while
Turner et al. (2008) propose a laterally moving and internally deforming Northern Lesser Antilles
Arc/Forearc sliver.

The straight long 850-km-long Bunce Fault limits a narrow and thin sedimentary prism. Thus, in the
absence of a major long-term tectonic system at crustal scale, plate motion at NLA could be mostly unparti-
tioned south of the Anegada Passage. Alternately, strain partitioning could be taken up along pervasive short
systems in a more diffuse pattern at margin scale, possibly owing to low interplate friction or lesser obliquity.
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