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Abstract

Displaying a strong antiproliferative activity on a wide variety of cancer cells, EAPB0203 and

EAPB0503 belong to the imidazo[1,2-a]quinoxalines family of imiquimod structural ana-

logues. EAPB0503 has been shown to inhibit tubulin polymerization. The aim of the present

study is to characterize the interaction of EAPB0203 and EAPB0503 with tubulin. We com-

bine experimental approaches at the cellular and the molecular level both in vitro and in silico

in order to evaluate the interaction of EAPB0203 and EAPB0503 with tubulin. We examine

the influence of EAPB0203 and EAPB0503 on the cell cycle and fate, explore the binding

interaction with purified tubulin, and use a computational molecular docking model to deter-

mine the binding modes to the microtubule. We then use a drug combination study with other

anti-microtubule agents to compare the binding site of EAPB0203 and EAPB0503 to known

potent tubulin inhibitors. We demonstrate that EAPB0203 and EAPB0503 are capable of

blocking human melanoma cells in G2 and M phases and inducing cell death and apoptosis.

Second, we show that EAPB0203 and EAPB0503, but also unexpectedly imiquimod, bind

directly to purified tubulin and inhibit tubulin polymerization. As suggested by molecular dock-

ing and binding competition studies, we identify the colchicine binding site on β-tubulin as the

interaction pocket. Furthermore, we find that EAPB0203, EAPB0503 and imiquimod display

antagonistic cytotoxic effect when combined with colchicine, and disrupt tubulin network in

human melanoma cells. We conclude that EAPB0203, EAPB0503, as well as imiquimod,

interact with tubulin through the colchicine binding site, and that the cytotoxic activity of

EAPB0203, EAPB0503 and imiquimod is correlated to their tubulin inhibiting effect. These

compounds appear as interesting anticancer drug candidates as suggested by their activity

and mechanism of action, and deserve further investigation for their use in the clinic.
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Introduction

Imiquimod (Aldara1) is a commercially available drug approved by the US Food and Drug

Administration in 1997 to treat actinic keratosis, external genital warts, and superficial basal

cell carcinoma [1]. Imiquimod is also under evaluation and/or currently used off-label in vari-

ous malignancies. Efficacy against melanoma was demonstrated in a mouse model [2]. Used

alone, imiquimod was able to clear an invasive melanoma in a 93-year-old woman [3]. In

recent clinical trials, imiquimod used in combination was also proved efficient to treat superfi-

cial cutaneous melanoma metastases [4–6]. However, imiquimod is approved only as a topical

cream, because it induced significant side effects that led to dose reduction or cure stop when

given orally to cancer patients in a phase I clinical trial [7]. Even used as a topical treatment,

imiquimod induces uncommon systemic side effects [8]. This underlines the usefulness of

developing analogues with better efficiency and/or less general toxicity.

A series of heterocyclic compounds, the imidazo[1,2-a]quinoxalines family, nick-named imi-
qualines, was developed from structural analogy with imiquimod and synthesized by C. Deleuze-

Masquefa and P.-A. Bonnet group [9,10]. These compounds displayed a direct antiproliferative

effect on A375 highly resistant human melanoma cancer cell line, and the compound EAPB0203

(N-methyl-1-(2-phenylethyl)imidazo[1,2-a]quinoxalin-4-amine) was identified as the initial

leader of the series [11] (Fig 1). The 50% inhibitory of maximum concentration (IC50) obtained

in the A375 model for EAPB0203 was 1.57 μM, which was far lower than that obtained with imi-

quimod (70.3 μM) [11]. EAPB0203 was also cytotoxic at μM concentrations in adult T-cell leuke-

mia/lymphoma (ATLL) cell lines and primary cells [12], and in chronic myeloid leukemia

(CML) cell lines [13]. Interestingly, while imiquimod induced dose-limiting lymphocytopenia in

phase I clinical trials [7,14], EAPB0203 10 μM was not cytotoxic toward non-malignant T lym-

phocytes. EAPB0203 also significantly inhibited tumor growth in nude mice xenografted with

M4Be human melanoma cell line, to a greater extent than fotemustine [11], which was the sec-

ond most commonly used first-line systemic treatment for metastatic melanoma in Europe [15].

Further pharmacomodulation of imiqualines lead to new compounds [16]. Among them,

EAPB0503 (1-(3-methoxyphenyl)-N-methylimidazo[1,2-a]quinoxalin-4-amine) displayed a

roughly ten times stronger cytotoxic activity than EAPB0203 in A375 cells (IC50 = 0.2 μM)

[16] and in CML cells [13]. These results were confirmed by the NCI-60 DTP Human Tumor

Cell Line Screen (http://dtp.cancer.gov/), which showed a mean GI50 (50% Growth Inhibitory

Concentration) of 1.12 μM for EAPB0203 and of 0.490 μM for EAPB0503 in the 60 human

tumor cell lines tested.

Interestingly, sub-acute toxicity studies in Sprague Dawley rats receiving intravenous

EAPB0203 at 5 mg/kg once daily or EAPB0503 at 3 mg/kg for five consecutive days showed no

effect on vital organs nor on blood components [17]. Pharmacokinetic properties and metabo-

lism of EAPB0203 and EAPB0503 have been extensively studied. Metabolism occurred through

demethylation and hydroxylation reactions involving mainly cytochrome P450 3A [18].

Therefore, understanding the mechanism of action of these promising therapeutic antican-

cer molecules, displaying strong cytotoxic activity and low toxicity, is an important step to

assess their value for further development. Interestingly, TLR 7/8 agonism exerted by imiqui-

mod is considered the main mechanism explaining its anticancer activity on melanoma, via

the induction of pro-inflammatory cytokines leading to activation of DC cells/innate immu-

nity and thereby Th1 antitumoral cellular immune response along with the activation of

NF-KB [19]. Independently of TLR-7 and TLR-8 pathways, imiquimod has also been shown to

be involved in adenosine signaling via receptor-independent adenylyl cyclase inhibition, the

activation of NF-KB, and has also been shown to induce apoptosis of tumor cells at higher con-

centrations through secondary molecular mechanisms that have not been clearly elucidated.
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This pro-apoptotic activity involves caspase activation dependent of Bcl-2 [20]. Interestingly,

anti-microtubule agents are now known to induce apoptosis via inhibition of anti-apoptotic

Bcl-2 family proteins [21]. Unlike imiquimod which displays pro-inflammatory properties [22],

imidazoquinoxalines showed an anti-inflammatory activity [23] associated to TNF-alpha pro-

duction impairment through activation of p38MAPK pathway and inhibition of PI3K pathway

in L929 murine fibroblast cell line. EAPB0203 has been shown to impair cell growth, block cell

cycle in G2/M phase, and activate the mitochondrial pathway leading to apoptosis in ATLL

cells. EAPB0203 negatively regulated anti-apoptotic proteins like c-IAP-1 and Bcl-XL, induced

a loss of mitochondrial membrane potential, cytochrome c cytoplasmic release, and caspases 3

and 9 activation in malignant T cells. EAPB0203 also stabilized the pro-apoptotic proteins p53

and p21 in a dose- and time-dependent manner, activated p38MAPK pathway, and inhibited

PI3K pathway [12]. More recently, EAPB0503 and EAPB0203 have been shown to inhibit

AR320, K562 and LAMA84 CML cell lines growth. EAPB0503 induced cell cycle arrest in M

phase and apoptosis, and down-regulated BCR-ABL protein. Cell growth inhibition was syner-

gistic with imatinib, and imatinib-resistant cells were sensitive to EAPB0503 [13].

The COMPARE analysis [24] of NCI 60 Cell Line screening assay results for EAPB0203

and EAPB0503 versus the standards list available at NCI showed high similarity to antimicro-

tubule agents, particularly maytansine. Based on this information, EAPB0503 and other newly

synthetized derivatives of the imidazoquinoxaline family have recently been shown to inhibit

tubulin polymerization [25]. The aim of the present study was thus to evaluate EAPB0203 and

EAPB0503 interaction with tubulin, in comparison with imiquimod.

Materials and methods

Cell culture

Melanoma A375 cell line was kindly provided by the cell culture facility of IRCM (Institut de

Recherche en Cancérologie de Montpellier, France). Cell culture products were obtained from

NH2N

N

N

N N

N NH

O

N N

N NH

EAPB203 EAPB503 Imiquimod

Fig 1. Chemical structures of studied compounds. The imidazo[1,2-a]quinoxalines family, nick-named imiqualines, was

developed from structural analogy with imiquimod. The compound EAPB0203 (N-methyl-1-(2-phenylethyl)imidazo[1,2-a]

quinoxalin-4-amine) was identified as the initial leader of the series. Further pharmacomodulation of imiqualines lead to the

new compound EAPB0503 (1-(3-methoxyphenyl)-N-methylimidazo[1,2-a]quinoxalin-4-amine).

https://doi.org/10.1371/journal.pone.0182022.g001
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Lonza (Levallois, France). Culture medium was RPMI 1640, supplemented with 10% heat-

inactivated (56˚C) fetal bovine serum, 1% penicillin-streptomycine 5000 U/mL, and 1% L-glu-

tamine 200 mM. Cells were maintained in a humidified atmosphere of 5% CO2 at 37˚C. Cells

were subcultured as to be maintained in the exponentially growing state, cell confluence never

exceeding 90%. Trypsin-versene (EDTA) was used to detach the cells, and Dulbecco’s Phos-

phate Buffered Saline (DPBS) for washes.

Compounds and reactants

EAPB0203 and EAPB0503 were synthesized as previously described [9,13,16]. Compounds

and reactants were bought from Sigma-Aldrich (Saint-Quentin Fallavier, France) unless other-

wise stated. Imiquimod was obtained from Molekula (Wessex House, Shaftesbury, Dorset,

UK). EAPB0203, EAPB0503, imiquimod, colchicine, vinorelbine, nocodazole and warfarin

were prepared as 0.1 M stock solutions in dimethyl sulfoxide (DMSO), and stored at -80˚C

until use. Working solutions of 0.1 or 1 mM were freshly prepared in culture medium for cell

experiments, or in appropriate buffer (see below) for purified tubulin experiments. Final con-

centration of DMSO never exceeded 0.1% in cell culture medium.

Proliferation kinetics

A375 cells were plated in 6-well plates at 600,000 cells/well density. Cells were treated 24 hours

later with two concentrations of EAPB0203 (0.5 and 5 μM) and of EAPB0503 (0.05 and

0.5 μM) bounding their respective IC50. Stock solutions were diluted in culture medium to

obtain the desired concentrations. Control wells received fresh culture medium alone. Time of

treatment was considered time zero. At each time point, supernatant was withdrawn and cells

were harvested by trypsinization. Supernatant and cell suspension were diluted together in cul-

ture medium, then centrifuged for 5 min at 1400 rpm to remove trypsin. Cells were resus-

pended in 500 μL DPBS, then counted using CASY Cell Counter (Roche Diagnostics, Meylan,

France). In parallel, 100 μL of cell suspension were mixed with 25 μL Trypan Blue solution

0.4% for dead cells staining, and percentage of dead cells was determined by counting at least

200 cells in various fields using a Malassez counting cell. Dead cells were removed from the

total cell count to obtain the number of living cells per well.

Cell cycle: Staining of cells in G2 and M phase

A375 cells plating, treatment and harvest were the same as described for proliferation kinetics,

and were performed in parallel. Nocodazole 50 ng/mL was used as a positive control of mitosis

phase blockade [26]. Cells were harvested 24 hours after treatment (16 hours for Nocodazole).

After centrifugation, cells were washed by dilution in DPBS containing BSA 0.5%, then centri-

fuged again. Cells were washed twice again in DPBS alone. The final pellet was resuspended in

100 μL DPBS, and 0.9 mL methanol at -20˚C was added drop by drop for fixation. The mixture

was kept on ice for 30 minutes, then frozen at -20˚C. Prior to flow cytometry, 3 mL DPBS-BSA

0.5% were added, and cells centrifuged again. Cell pellet was resuspended in 100 μL DPBS-BSA

0.5%. After a 30 minute-incubation at room temperature, 2 μL of anti-Phospho-Histone H3

(Ser10) (D2C8) XP1 Rabbit monoclonal antibody (phycoerythrin conjugate) (anti-PH3)

(Cell Signaling Technology, Ozyme, Saint-Quentin en Yvelines, France) were added. A propi-

dium iodide (PI)-RNase solution was prepared by diluting PI solution 1 mg/mL in DPBS to

1.6 μg/mL, and adding 0.1 mg RNase per mL. After 1 hour incubation at room temperature,

cells were washed twice with 1 mL DPBS, then resuspended in 500 μL PI-RNase solution. Flow

cytometry analysis was performed with FACS Calibur 2 (Plateforme Montpellier RIO Imaging,
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France), using two fluorescence channels. Cells in G2/M (stained with PI) and in M (stained

with PI and anti-PH3) phases were quantitated using FlowJo software.

Cell death and apoptosis

A375 cells plating, treatment and harvest were the same as described for proliferation kinetics.

Cells were harvested 24, 48 and 72 hours after treatment. Treated cells were double-stained

using Annexin V-FITC /7-AAD kit (Beckman Coulter, Villepinte, France), following the pro-

vider’s procedure. Briefly, binding buffer was diluted to tenth with distilled water and kept on

ice. Harvested cells were washed with DPBS-BSA 0.5%, then with DPBS and finally with 1 mL

ice-cold DPBS, then centrifuged at 4˚C. Cell pellets were resuspended in 200 μL 1X binding

buffer and kept on ice. 10 μL Annexin V-FITC solution and 20 μL of 7-AAD Viability Dye

were added to 100 μL cell suspension. After a 30-minute incubation on ice in the dark, 400 μL

1X binding buffer were added. Samples were kept on ice until flow cytometry analysis, within

a time period not exceeding 30 minutes. Flow cytometry analysis and quantitation of dead

cells (Annexin V and 7-AAD positive) and apoptotic cells (Annexin V positive and 7-AAD

negative) were performed as described above for cell cycle.

Tubulin binding evaluation by Surface Plasmon Resonance (SPR)

Tubulin was prepared from pig brain according to the purification procedure described by

Williams and Lee [27]. Surface Plasmon Resonance (SPR) technology was used to evaluate

binding to purified tubulin. All analyses were performed on T200 apparatus (GE Healthcare,

Montpellier, France) at 25˚C. Purified tubuline was covalently immobilized on a CM5 flow

cell sensor chip (GE Healthcare) by EDC/NHS (N-(3-dimethylaminopropyl)-N’-ethylcarbo-

diimide hydrochloride / N-hydroxysuccinimide) activation according to the manufacturer’s

instructions. Reference flow cells were prepared with the same activation procedure, but with-

out protein or with an irrelevant protein (Anti-GST antibody). EAPB0203, EAPB0503 and

imiquimod were injected at different concentrations in HBS-EP+ buffer adjusted at 3%

DMSO at a flow rate of 30 μL/min on the different flow cells. Concentrations tested were lim-

ited by aggregation phenomenon, which occurred for EAPB0203 above 25 μM, as determined

by dynamic light scattering, with an increased particle size and a polydispersity index superior

to 0.7 (S1 Fig). No aggregation was observed for colchicine at 200 μM. The binding values

were collected after subtraction of the reference flow cell response and solvent correction.

Each experiment series included blanks (running buffer), colchicine and warfarin as positive

and negative control respectively. The standard error was calculated from four different

experiments.

Polymerization of purified tubulin in vitro

Tubulin was prepared from pig brain according to the purification procedure described by

Williams and Lee [27]. Tubulin polymerization was monitored turbidimetrically at 350 nm

with a MC2 spectrophotometer (Safas, Monaco) equipped with a thermal-jacketed cuvette

holder. The reaction mixture was prepared at 0˚C, and contained PEM buffer, 25% glycerol

(v/v), 1 mM Guanosine Tri Phosphate (GTP), and 2.4 μM tubulin. GTP and tubulin were

added at the very last minute. EAPB0203, EAPB0503, imiquimod and colchicine stock solu-

tions were diluted in DMSO to the desired concentration, and 1 μL of the compound solution

was added to the reaction medium. The same volume of DMSO alone was used for negative

control. For testing of high concentrations of imiquimod, and for warfarin used as negative

control, 20 μL of diluted imiquimod, warfarin or of DMSO alone had to be added. The final

volume of the sample was 200 μL. The reaction was started by placing the cuvette in the
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spectrophotometer cell compartment thermostated at 37˚C. Ice was added 45 minutes later to

initiate depolymerization to check for signal specificity.

Kinetics of purified tubulin assembly in vitro was characterized by parameters Amax,

t1/10, p and kobs, as described by Bonfils et al [28]. Amax is the maximum absorbance pla-

teau value measured in the assay, and reflects polymerized tubulin amount. t1/10 is the

abscissa value of the Amax/10 absorbance. p is the slope of the plot log(A(t)/Amax) versus
log(t) during the elongation process, ie from 1 min to the time of 80% Amax. The value of

p is indicative of the number of successive steps in the nucleation process. The pseudo-

first order rate constant of elongation, kobs, is determined by plotting ln(1 –A(t)/ Amax)

as a function of time.

Microtubule network observation by immunofluorescence

A375 cells plating and treatment were the same as described for proliferation kinetics.

A375 cell line was treated for 24h with EAPB0203, EAPB0503 and imiquimod at various

concentrations (2 and 5 times their respective IC50 as determined in A375 cells). Colchi-

cine (1 μM) was used as positive control. Culture medium with a similar DMSO concen-

tration was used as negative control. Interphase microtubule network was visualized by

direct immunofluorescence. Culture medium was removed and cells fixed with methanol.

Cells were then incubated with a mouse monoclonal anti-β-tubuline antibody (Mouse

clone TUB 2.1, T4026, Sigma-Aldrich) for 1.5h, followed by incubation with a secondary

Rhodamine-labeled anti-mouse antibody for 1.5h. After washing, cells were colored with

Hoechst (Life Technologies, Saint-Aubin, France). Microtubule network (green) and

nuclear DNA (red) were visualized using a Leica DMRM fluorescence microscope with a

63x magnification. Images were obtained using a JAI CV-M1 camera and Isis software,

and merged using Adobe photoshop software.

Combination with colchicine and vinorelbine for cytotoxicity

A375 cells were seeded in 96 well-plates at 20,000 cells per well. Treatment was applied 24

hours later. Control cells received culture medium only. Higher concentrations for the

test were chosen based on previously determined IC50 values, and were 2.81 x 10-5M for

EAPB0203, 1.6 x 10-6M for EAPB0503, 1.34 x 10-7M for colchicine, 3.06 x 10-4M for vinor-

elbine, and 1.17 x 10-4M for imiquimod (for IC50 evaluation method, see [16]). For each

combination test, cells were treated with each compound alone and with the constant

ratio combination, at the higher concentrations chosen and concentrations obtained by

nine serial half dilutions. Cell viability was assessed 48h after treatment, using the 3-

(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) test. Chou and

Talalay method was used to calculate a combination index [29,30], using the CalcuSyn

software (Biosoft, Cambridge, UK). Briefly, the median effect equation correlates the drug

dose to cytotoxicity as follows:

fa=fu ¼ ðD=DmÞm

where D is the dose, Dm is the dose necessary to obtain the median effect, fa is the fraction

affected by the dose and fu is the fraction unaffected by the dose (fu = 1 –fa), and m

embodies the sigmoidicity of the dose-effect curve. This equation is used to calculate Dx,

the dose that kills x % of cells. The Combination Index (CI) is then calculated as follows:

CI ¼ ðDÞ
1
=ðDxÞ

1
þ ðDÞ

2
=ðDxÞ

2

CI<1, CI = 1 and CI>1 respectively mean a synergy, an additive effect or an antagonism.
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Molecular modeling of interaction with tubulin

Molecular docking in silico was used to investigate the possible binding modes of EAPB0203,

EAPB0503 and imiquimod on the colchicine binding site of tubulin. The AutoDock Vina pro-

gram was used [31]. AutoDock Tools [32] was used for tubulin (PDB1SA0, Bos taurus) and

ligands preparation to generate pdbqt files. Water molecules and colchicine were removed

from PDB1SA0, polar hydrogens and Gasteiger partial charges were added. Ligands were

obtained on the data base ZINC [33] in.mol2 files, and prepared the same way, with assign-

ment of all flexible covalent bonds. A grid of 40x40x40 points in x,y,z axes and a space of

0.375 Å was centered on colchicine binding site (center: 116, 556x89, 199x6,541). For each

run, the first ten more stable conformations were considered. Docking results were handled

using the opensource PyMOL Molecular Graphics System, Version 1.7.4 Schrödinger, LLC.

Predicted binding affinity is calculated based on the score function used by Autodock Vina

(ΔG = ΔGH-bond + ΔGvdw + ΔGhydrophobic + ΔGcomformation), which is composed of a confor-

mation-dependent component (including intra- and intermolecular steric, hydrophobic

and hydrogen interactions) and a conformation-independent component (taking into

account the number of rotative bonds between ligands atoms). Each contribution is given a

different weight to score function [34].

Competition with colchicine for tubulin binding: Fluorescence of the

colchicine-tubulin complex

We used an intrinsic property of colchicine, which makes a fluorescent complex when bound

to tubulin (λexc = 365nm, λem = 435nm) but is not fluorescent in solution [35]. Tubulin (3 μM)

was incubated with colchicine (3 μM) for 30 minutes at 37˚C to form complexes. EAPB0203,

EAPB0503, imiquimod, nocodazole (positive control) and vinorelbine (negative control) were

then added at different concentrations (5, 15, 20 and 30 μM), then incubated for 60 minutes at

37˚C. Fluorescence spectra were recorded after excitation at 365 nm. Fluorescence was cor-

rected for blank and imiqualines slight fluorescence when necessary with equimolar solutions.

Data analysis

Linear regressions and statistical tests were performed using GraphPad Prism software

(GraphPad Software, Inc., La Jolla, USA).

Results

EAPB0203 and EAPB0503 inhibit cell proliferation and display

cytotoxicity

EAPB0203 and EAPB0503 at the highest concentration tested (5 and 0.5 μM respectively)

totally inhibited A375 cell growth until 72h (Fig 2), the number of cells decreasing slightly with

time. When used at the lowest concentration (0.5 and 0.05 μM respectively), EAPB0203 and

EAPB0503 had no effect on cell proliferation kinetics. Interestingly, EAPB0503 at 0.5 μM con-

centration had a similar effect as EAPB0203 at 5 μM, confirming its roughly ten times higher

cytotoxic activity.

EAPB0203 and EAPB0503 block cell cycle in G2 and M phases and

induce apoptosis

Nocodazole 50 ng/mL used as positive control led to 37.8% (Standard Deviation (SD) 9.87)

cells blocked in M phase after 16h treatment. EAPB0203 and EAPB0503, respectively at 5 and
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0.5 μM, induced accumulation of treated A375 cells in G2/M and M phase after 24h (Fig 3).

Proportion of cells in G2/M grew from 23.0% (negative control) to 56.9% (EAPB0203 5 μM)

and 54.9% (EAPB0503 0.5 μM). Consistently, proportion of cells in M grew from 2.35% to

22.7% and 23.4% respectively. Accumulation in M was not sufficient to account for G2/M

accumulation, suggesting also G2 accumulation. Increase in mitotic index was associated with

a decrease in cells in G0/G1 (first Peak), as illustrated in S2 Fig. Accumulation of treated cells

in G2/M and M phases was negligible at 48h, and totally disappeared at 72h. EAPB0203 5 μM

induced apoptosis in more than 20% of the cells after 48 and 72h, while percent of apoptotic

cells remained below 5% for untreated cells (Fig 3). Percent of necrotic cells strikingly

increased from 13.8% after 48h to 25% after 72h, while the maximum percent of dead cells for

untreated cells was 11.2% after 72h. A similar trend was observed for EAPB0503 0.5 μM, but

the percent of apoptotic cells reached 41.6% after 72h. Representative cytometry results are dis-

played in S3 Fig.

EAPB0203, EAPB0503 and imiquimod bind tubulin

A SPR approach was used to evaluate the direct binding of EAPB0203, EAPB0503 and imiqui-

mod to tubulin immobilized on a CM5 sensor chip. The experiment was validated by a dose

effect experiment performed on colchicine (S4 Fig). The resulting KD of 21 μM was in accor-

dance with the literature [36]. As expected, warfarin showed no binding to tubulin with no

detectable signal. A specific dose-dependent binding to tubulin was observed for EAPB0203,
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EAPB0503 and imiquimod (Fig 4). A linear regression was performed between test compound

concentrations and binding response. Slope was significantly different from zero for imiqui-

mod, and EAPB0503, but not EAPB0203. The binding responses of test compounds were

higher than colchicine responses (Fig 4), but under or equal to the calculated stoichiometric

binding level (20–25 RU). KD could not be determined due to higher concentration limit asso-

ciated to aggregation.

EAPB0203, EAPB0503 and imiquimod inhibit purified tubulin

polymerization

As shown in Fig 5, at concentrations lower than or equal to 10 μM, EAPB0203 and EAPB0503,

as well as colchicine, dose-dependently inhibited polymerization of tubulin, while imiquimod

had no effect. Indeed, the parameter Amax, considered as proportionally related to the mass

concentration of tubulin polymer [28], was decreased by EAPB0203, EAPB0503 and colchi-

cine. Strength of the effect was differential, with EAPB0503 > colchicine > EAPB0203. Poly-

merization was totally prevented by colchicine at 10 μM, and EAPB0503 at 5 and 10 μM.

Nucleation process seemed to be delayed by EAPB0203 and EAPB0503, but not colchicine, as

reflected by the increase in t1/10, while no effect was observed on p parameter. The pseudo-first

order elongation rate kobs was decreased by EAPB0203 and EAPB0503, but not colchicine, sug-

gesting a slowdown and impairment of elongation process. Since imiquimod IC50 in A375

cells (70.3 μM) was much higher than IC50 of EAPB0203 or EAPB0503 (1.57 and 0.2 μM

respectively) [11], we assessed the effect of imiquimod on tubulin polymerization at higher

imiquimod concentrations. From 320 μM, imiquimod decreased Amax and kobs, and increased

with propidium iodide and anti-phospho histone H3 antibody (M). Flow cytometry was used to determine the percentage of cells in G2/M

and M phases of the cell cycle. (B) After the indicated time, cells were stained with 7-AAD and Annexin V. We used flow cytometry to

determine the percentage of necrotic and secondary necrotic cells (Annexin V and 7-AAD positive) and early stage apoptotic cells

(Annexin V positive and 7-AAD negative).

https://doi.org/10.1371/journal.pone.0182022.g003

0

5

10

15

20

25

R
el

at
iv

e 
R

es
po

ns
e 

(R
U

)

Imiquimod EAPB0203 EAPB0503

3.12 µM

6.25 µM

12.5 µM

25 µM

Colchicine

Fig 4. EAPB0203, EAPB0503 and imiquimod bind tubulin. Binding levels of EAPB0203, EAPB0503 and imiquimod

were determined by surface plasmon resonance on immobilized tubulin at different concentrations (n = 4, except for

colchicine n = 1).

https://doi.org/10.1371/journal.pone.0182022.g004

Imidazoquinoxaline anticancer derivatives and imiquimod: Interaction with tubulin and cytotoxicity

PLOS ONE | https://doi.org/10.1371/journal.pone.0182022 August 10, 2017 10 / 21

https://doi.org/10.1371/journal.pone.0182022.g003
https://doi.org/10.1371/journal.pone.0182022.g004
https://doi.org/10.1371/journal.pone.0182022


0

0.2

0.4

0.6

0.8

1

1.2

A
m

ax
 v

s 
C

on
tr

ol

0

0.5

1

1.5

2

2.5

3

3.5

4

t1
/1

0 
vs

 C
on

tr
ol

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

p 
vs

 C
on

tr
ol

ko
bs

 v
s 

C
on

tr
ol

A B

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Colchicine Imiquimod EAPB0203 EAPB0503

0

0.2

0.4

0.6

0.8

1

1.2

0

2

4

6

8

10

0

2

4

6

8

10

12

14

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6

A
m

ax
 v

s 
C

on
tr

ol
t1

/1
0 

vs
 C

on
tr

ol
p 

vs
 C

on
tr

ol
ko

bs
 v

s 
C

on
tr

ol

Imiquimod Warfarin

0.1 µM 0.5 µM 1 µM 10 µM 160 µM 320 µM 640 µM
1600 µM

5 µM
1000 µM

Fig 5. EAPB0203 and EAPB0503, and imiquimod at high concentrations, inhibit polymerization of tubulin in

vitro. Purified tubulin polymerization was quantitated by turbidimetry measurement at 350 nm with or without (blank)
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(1,600 μM) as negative control. Various parameters representative of the polymerization process were calculated:

Amax (maximum absorbance plateau value), t1/10 (abscissa value of the Amax/10 absorbance), p (slope of the plot log
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first order rate constant of elongation, determined by plotting ln(1 –A(t)/ Amax) as a function of time). The ratio to
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6. (A) EAPB0203, EAPB0503, imiquimod and colchicine at 0.1 to 10 μM concentrations. (B) Imiquimod at 160 to
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https://doi.org/10.1371/journal.pone.0182022.g005
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t1/10 and p (Fig 5). Hence, imiquimod’s effect on tubulin polymerization displayed the same

profile as EAPB0203 and EAPB0503, except for the increase in p, suggestive of an increase of

nucleus size. A linear regression was performed between test compound concentrations and

each polymerization parameter, which confirmed our observations. Indeed, for Amax, t1/10

and kobs, slope was significantly different from zero for imiquimod, EAPB0203 and

EAPB0503. For the parameter “p”, slope was significantly different from zero for imiquimod

only.

EAPB0203, EAPB0503 and imiquimod disturb microtubule network in

A375 cells

A homogeneous well-defined microtubule network was observed for control cells, with micro-

tubules orientated from the center to the periphery of the cell. Many mitotic cells with a

mitotic spindle were visualized. EAPB0203, EAPB0503 and imiquimod markedly disorganized

the microtubule network at a concentration of 5 times their respective IC50 (Fig 6), in a man-

ner that differed from colchicine, which totally prevented microtubule polymerization (S5

Fig). The cytoskeleton was inhomogeneously distributed, morphology was rounder, and adhe-

sion to coverslips was reduced, which might be associated to destabilization of tubulin cyto-

skeleton. Later than 24h, very few mitotic cells could be observed, consistently with apoptotic

death of cells blocked in M as evaluated by flow cytometry. These qualitative observations illus-

trate that, in addition to interacting with purified tubulin in vitro, the test compounds also

modify microtubule structure in cells.

EAPB0203, EAPB0503 and imiquimod display an antagonist cytotoxic

effect with colchicine

Most compounds that inhibit tubulin polymerization bind two major domains of tubulin:

vinca and colchicine domains [37,38]. In order to identify whether EAPB0203 and EAPB0503

would bind one of those well-identified sites, we combined them with colchicine and vinorel-

bine and measured the effect of the combination on cytotoxicity in A375 cells. Chou-Talalay

method was used to calculate a combination index (CI) with Calcusyn software [29,30]. After

calculation of CI at various concentrations (Fig 7), we found that EAPB0203, EAPB0503 and

imiquimod were acting antagonistically to colchicine on cytotoxicity (CI>1). A synergistic

effect was oppositely obtained with vinorelbine (CI<1), which was less clear for imiquimod.

Consistently, a synergistic effect has been described for vinorelbine and colchicine combina-

tion [39]. These results strongly suggest that EAPB0203, EAPB0503 and imiquimod might

bind tubulin on the colchicine binding site, and not on the vinca-alcaloïds binding site.

EAPB0203, EAPB0503 and imiquimod can bind tubulin on the

colchicine-binding site

To confirm the hypothesis raised by SPR and combination studies, we first investigated the

possible binding modes of EAPB0203, EAPB0503 and imiquimod on the colchicine binding

site of beta-tubulin, using molecular docking in silico. The docking method was validated by

redocking colchicine on the colchicine binding site: the experimental crystallography confor-

mation and the lowest energy conformation predicted by Autodock Vina were similar (RMSD

of 0,568 Å between the two structures) (S6 Fig). Among the binding modes generated for

EAPB0203, EAPB0503 and imiquimod, the lowest energy modes corresponded to a superposi-

tion with colchicine (Fig 8).
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Twenty-nine residuals were identified as being involved in colchicine binding to beta-tubu-

lin [40]. The C ring of colchicine interacts with a specific zone (labeled in orange in Fig 8)

through Van Der Waals contacts with Valα181, Serα178, and Valβ315. Interestingly, the same

hydrophobic interactions were involved for EAPB0503 and EAPB0203, and to a lower extent

for imiquimod, which does not contain a phenyl ring. Colchicine ring A is buried in a second

hydrophobic pocket (labeled in blue in Fig 8). The methoxy group in 3 position is involved in

a hydrogen bond with the thiol group of Cysβ241. This conformation was also found for

EAPB0203, EAPB0503 and imiquimod, whose quinoxaline and quinoline aromatic rings are

in close contact with Cysβ241. A similar conformation is frequently found among colchicine

site pharmacophores, and is considered essential to activity [41]. Moreover, the conformation

obtained is compatible with hydrophobic contacts between methylamine group and Alaβ250

Fig 6. EAPB0203, EAPB0503 and imiquimod disturb microtubule network in A375 cancer cell line. A375 cells were treated by EAPB0203, EAPB0503

and imiquimod at the indicated concentrations for 24h. Beta-tubulin was stained using a mouse monoclonal anti-β-tubulin antibody and a secondary

Rhodamine-labeled anti-mouse antibody. Nuclei were stained with Hoechst. Microtubule network (green) and nuclear DNA (red) were visualized using a

Leica DMRM fluorescence microscope with a 63x magnification. Representative images are displayed here.

https://doi.org/10.1371/journal.pone.0182022.g006
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and Leuβ242, and with an hydrogen bond to Cysβ241 (3.4 Å), which could explain the higher

biological activity of EAPB0203 and EAPB0503 when compared to other compounds of the

imidazo[1,2-a]quinoxalines family with a different substitution [9]. In the case of colchicine,

in addition to the hydrogen bond to Cysβ241, a carbonyl group on the C ring is involved in a

hydrogen bond to Valα181. This highly energetic bond to Valα181 is also found for

EAPB0503, whose lowest energy conformation shows a favorable position of methoxyphenyl

(3.1 Å). Autodock Vina algorithm predicts similar affinity for colchicine (score of -9.1 kcal/

mol), EAPB0203 and EAPB0503 (both -8.9 kcal/mol), while imiquimod displays less affinity

(-7.3 kcal/mol).

To confirm the involvement of the colchicine binding site of beta-tubulin in the interaction

of EAPB0203, EAPB0503 and imiquimod with tubulin, we studied the competition of

EAPB0203, EAPB0503 and imiquimod with colchicine for tubulin binding. When nocodazole

(used as positive control of colchicine site binding) but also EAPB0203, EAPB0503 and imiqui-

mod were added to colchicine and tubulin, fluorescence decreased dose-dependently (Fig 8),
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suggesting that these molecules were competing with colchicine for binding to tubulin. Con-

trarily, vinorelbine, which binds to another site, did not decrease fluorescence, and actually

increased fluorescence, suggesting a potential synergistic action. Addition of 30 μM EAPB0203

induced no reduction of fluorescence, which might be related to aggregation phenomena dis-

turbing the fluorescent signal (S1 Fig). These results strongly suggest that EAPB0203,

EAPB0503 and imiquimod bind tubulin on the colchicine site.

Discussion

Anti-microtubule agents are known to target the tubulin cytoskeleton and suppress microtu-

bule dynamics, which leads to aberrant mitotic spindle, cell cycle blockade in G2/M phases,

and finally induces apoptotic cell death [38]. Consistently, through a cluster of complementary

results, we demonstrated in the present paper that EAPB0203 and EAPB0503, strong antiproli-

ferative agents from the imidazo[1,2-a]quinoxalines series, display an anti-microtubule activ-

ity. First, we observed that EAPB0203 and EAPB0503 impaired A375 cell proliferation,

blocked cell cycle in G2 and M phases, and induced apoptotic cell death. Second, we showed

that EAPB0203 and EAPB0503 dose-dependently inhibited purified tubulin polymerization in

a cell-free system, with a strength similar to colchicine, and at cellular level demolished micro-

tubule network organization in A375 cell line. Finally, we demonstrated that EAPB0203 and

EAPB0503 bound tubulin and interacted with the colchicine binding site. SPR analysis showed

a direct dose-dependent specific binding to tubulin. Our molecular docking data suggested an

interaction with the colchicine-site of β-tubulin, which was confirmed by colchicine-site bind-

ing competition studies. The latter finding was in line with combination studies, which showed

an antagonistic cytotoxic effect of EAPB0203 and EAPB0503 with colchicine, but a synergistic

cytotoxic effect with vinorelbine.

The present findings are consistent with previously published results regarding the mode of

action of EAPB0203 and EAPB0503. EAPB0503 has recently been shown to inhibit tubulin

polymerization [25]. EAPB0203 and EAPB0503 have been shown to impair cell growth, block
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cell cycle in G2/M phase, and induce apoptosis in ATLL cells (EAPB0203) and CML cells

(EAPB0503). Furthermore, as shown in malignant T cells, EAPB0203 negatively regulated c-

IAP-1 and Bcl-XL anti-apoptotic proteins, stabilized p53 and p21 pro-apoptotic proteins, and

activated p38MAPK pathway [12]. Similar downstream regulation of p53, p21, c-IAP, Bcl-XL

and MAPK has been described for anti-microtubule agents [42,43]. These findings are in favor

of a close cause consequence relationship between antimicrotubule activity and the cytotoxic-

ity mechanisms observed with these compounds. We envision that our next studies could ben-

efit from further identification of the effects that contribute the most to cytotoxicity through a

concentration dependent comparative analysis of cellular effects, which could in turn guide

pharmacomodulation and inform on the pharmacological potential of these compounds. Due

to their role in mitosis and cell division, microtubules and their dynamics are a major target

for anticancer drugs, cancer cells being more vulnerable due to a higher rate of division [44].

Based on the success of the chemically diverse class of anti-microtubule drugs (with various

tubulin-binding sites), it has been argued that microtubules represent the best cancer target

identified so far. It seems likely that drugs of this class will continue to be major chemothera-

peutic agents, despite the development of more selective approaches [44,45]. More specifically,

the colchicine-site has been described as one of the most important target for tubulin polymer-

ization inhibitors. In the hope of developing novel useful drugs with favorable pharmacological

profiles, a large number of molecules with structural diversity has been identified as interacting

with the colchicine site of tubulin and some have been shown to exert an anticancer activity by

leading to G2 arrest and apoptosis [46,47]. For example, the molecule BAL27862 is currently

in phase I clinical trial [48]. To our knowledge, among described pharmacophores of tubulin

colchicine domain [48,49], no structure is related to imidazoquinoxaline structure. EAPB0203

and EAPB0503 hence represent unique colchicine domain binding compounds. In spite of the

recent discovery of many novel pharmacophores, increasing the library of available com-

pounds could facilitate the identification of appropriate pharmacokinetic properties in order

to obtain a highly potent, low toxicity anti-microtubule agent for the treatment of cancers.

A totally unexpected and nevertheless major result was also obtained in the present study:

we happened to observe for the first time that the marketed drug imiquimod might bind to the

colchicine-binding site of tubulin, and could accordingly inhibit tubulin polymerization,

although at higher concentrations than EAPB0203 and EAPB0503. Imiquimod was not

included in proliferation, cell cycle or apoptosis tests because it displays a very low cytotoxicity

in A375 cells (IC50 70.3 μM), which is consistent with the insubstantial induction of cell death

by imiquimod alone reported by Weber et al. [50]. Imiquimod was initially included in tubulin

binding SPR assays as a negative control, which led to the unexpected discovery that imiqui-

mod actually also bound tubulin. Imiquimod is a marketed and well-known drug. The main

mechanism of action of imiquimod is associated to immune stimulation involving alpha-inter-

feron induction [51] through modulation of Toll-like receptor 7 (TLR7) [52]. A direct pro-a-

poptotic effect of imiquimod has also been described in various skin cancer cell types,

including melanoma, and involved the mitochondrial pathway of apoptosis, as suggested

by Bcl-2–dependent cytosolic translocation of cytochrome c [53,54]. Treatment with imi-

quimod was also reported to induce cell cycle arrest at the G2/M phase in TRAMP-C2

mouse prostate cancer cells, and apoptosis via the mitochondrial-dependent pathway [55].

Consistently with our results, the above studies were conducted at high concentrations of

imiquimod, at least 5 μg/mL (i.e. 20.8 μM, imiquimod weighing 240.3 g/mol). Although

not formally demonstrating a causative link between interaction with tubulin and cytotoxic

activity, we observed that the concentrations needed to inhibit tubulin polymerization (0.5,

5 and 320 μM for EAPB0503, EAPB0203 and imiquimod respectively) were in the same

range as the cytotoxic concentrations (0.2, 1.57 and 70.3 μM for EAPB0503, EAPB0203
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and imiquimod respectively) for the three molecules evaluated. In contrast, and as could

be expected, effect on tubulin polymerization was not correlated to TLR7 agonist activity,

which was observed at a much lower concentration for imiquimod (from 1 μg/mL or

4.16 μM) while no TLR7 agonist activity was observed for EAPB0203 and EAPB0503 even

at 100 μg/mL (above 300 μM) (S7 Fig). However, as stated by Narayan et al. [22], the exact

mechanism of action of imiquimod is still largely undefined. We discovered that imiqui-

mod bound to tubulin and was able to inhibit purified tubulin polymerization. Further-

more, our results are consistent with the binding of imiquimod to the colchicine site of

tubulin. To our knowledge, no interaction between imiquimod and tubulin had been

reported before. Even though further studies are needed to confirm this interaction, our

results bring a new stone to the understanding of the mechanism of action of imiquimod.

Supporting information

S1 Fig. Aggregation of EAPB0203, EAPB0503, colchicine and imiquimod as evaluated

using dynamic light scattering. We measured the mean particle size of EAPB0203,

EAPB0503 and imiquimod at different concentrations in HBS-EP+ buffer which was used in

the SPR experiments presented in Fig 4. After dissolving the compounds with sonication, the

solutions were allowed to equilibrate for 2 hours. Experiments were limited by aggregation

phenomenon, which occurred for EAPB0203 above 25 μM with an increased particle size and

a polydispersity index superior to 0.7.

(EPS)

S2 Fig. Representative dot plot of cells in G2/M and M phases measured by flow cytometry,

used to elaborate Fig 3A. A375 cells were treated with using Phospho-Histone H3 (phycoery-

thrin conjugate, PE) and propidium iodide (PI) as described in Materials and methods. Flow

cytometry analysis was performed with FACS Calibur 2, using two fluorescence channels.

Cells in G2/M (stained with PI) and in M (stained with PI and anti-PH3) phases were then

analyzed using FlowJo software.

(EPS)

S3 Fig. Representative dot plot of dead and apoptotic cells measured by flow cytometry,

used to elaborate Fig 3B. A375 cells were harvested 24, 48 and 72 hours after treatment and

double-stained using Annexin V-FITC /7-AAD kit as described in Materials and methods.

Flow cytometry analysis and quantitation of dead cells (Annexin V and 7-AAD positive) and

apoptotic cells (Annexin V positive and 7-AAD negative) were performed using the FlowJo

software.

(EPS)

S4 Fig. Evaluation of the affinity of colchicine to tubulin as measured by surface plasmon

resonance. Kinetic response profile (A), and maximum response plotted against concentration

of Colchicine (B). This dose effect experiment performed on colchicine enabled us to calculate

a resulting KD of 21 μM, in accordance with the literature, which permitted to validate our

experimental set up to measure the affinity of EAPB0203, EAPB0503 and imiquimod to tubu-

lin.

(EPS)

S5 Fig. Colchicine (1 μM) prevents microtubule polymerization in A375 cancer cell line

after 24h. Beta-tubulin was stained using a mouse monoclonal anti-β-tubulin antibody and a

secondary Rhodamine-labeled anti-mouse antibody. Nuclei were stained with Hoechst. Micro-

tubule network (green) and nuclear DNA (red) were visualized using a Leica DMRM
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fluorescence microscope with a 63x magnification. Two representative images are displayed

here.

(EPS)

S6 Fig. Comparison of natural crystallographic conformation (A) and conformation pre-

dicted by molecular docking (B) of colchicine on the colchicine site of beta-tubulin (PDB:

1SA0) using Autodock Vina. (C) Chemical structure of Colchicine.

(EPS)

S7 Fig. Evaluation of TLR7 agonist activity of EAPB0503, EPAB0203 and imiquimod, in

comparison with the control TLR7/8 agonist R848 (resiquimod). We observed activation of

human and murine TLR7 reporters in HEK2903 cells for imiquimod from 1 μg/mL or

4.16 μM, while no TLR7 agonist activity was observed for EAPB0203 and EAPB0503 even at

100 μg/mL (above 300 μM). (A) Dose response to human TLR7 on NF-kB reporter HEK293

(HEK-Blue™-hTLR7, Invivogen) (B) Dose response to murine TLR7 on NF-kB reporter

HEK293 (HEK-Blue™-mTLR7, Invivogen).

(EPS)

S1 File. Experimental raw data and images used to generate all figures.

(ZIP)
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50. Weber A, Kirejczyk Z, Potthoff S, Ploner C, Häcker G. Endogenous Noxa Determines the Strong Proa-

poptotic Synergism of the BH3-Mimetic ABT-737 with Chemotherapeutic Agents in Human Melanoma

Cells. Transl Oncol. 2009 Jun; 2(2):73–83. PMID: 19412422

51. Sidky YA, Borden EC, Weeks CE, Reiter MJ, Hatcher JF, Bryan GT. Inhibition of Murine Tumor Growth

by an Interferon-inducing Imidazoquinolinamine. Cancer Res. 1992; 52:3528–33. PMID: 1377595

52. Hemmi H, Kaisho T, Takeuchi O, Sato S, Sanjo H, Hoshino K, et al. Small anti-viral compounds activate

immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol. 2002 Feb; 3(2):196–

200. https://doi.org/10.1038/ni758 PMID: 11812998

53. Schön MP, Bong a. B, Drewniok C, Herz J, Geilen CC, Reifenberger J, et al. Tumor-Selective Induction

of Apoptosis and the Small-Molecule Immune Response Modifier Imiquimod. J Natl Cancer Inst. 2003

Aug 5; 95(15):1138–49. PMID: 12902443

54. Schön MP, Wienrich BG, Drewniok C, Bong AB, Eberle J, Geilen CC, et al. Death receptor-independent

apoptosis in malignant melanoma induced by the small-molecule immune response modifier imiquimod.

J Invest Dermatol. 2004 May; 122(5):1266–76. https://doi.org/10.1111/j.0022-202X.2004.22528.x

PMID: 15140231

55. Han J-H, Lee J, Jeon S-J, Choi E-S, Cho S-D, Kim B-Y, et al. In vitro and in vivo growth inhibition of

prostate cancer by the small molecule imiquimod. Int J Oncol. 2013 Jun; 42(6):2087–93. https://doi.org/

10.3892/ijo.2013.1898 PMID: 23588478

Imidazoquinoxaline anticancer derivatives and imiquimod: Interaction with tubulin and cytotoxicity

PLOS ONE | https://doi.org/10.1371/journal.pone.0182022 August 10, 2017 21 / 21

https://doi.org/10.1371/journal.pone.0004881
http://www.ncbi.nlm.nih.gov/pubmed/19293927
http://www.ncbi.nlm.nih.gov/pubmed/12678749
http://www.ncbi.nlm.nih.gov/pubmed/12975575
http://www.ncbi.nlm.nih.gov/pubmed/1255766
https://doi.org/10.1038/nature02393
https://doi.org/10.1038/nature02393
http://www.ncbi.nlm.nih.gov/pubmed/15014504
https://doi.org/10.1021/jm050809s
http://www.ncbi.nlm.nih.gov/pubmed/16451061
https://doi.org/10.1007/s002800050989
https://doi.org/10.1007/s002800050989
http://www.ncbi.nlm.nih.gov/pubmed/10501907
http://www.ncbi.nlm.nih.gov/pubmed/10047525
https://doi.org/10.1038/nrc1317
http://www.ncbi.nlm.nih.gov/pubmed/15057285
http://www.ncbi.nlm.nih.gov/pubmed/10655426
https://doi.org/10.1007/s11095-012-0828-z
http://www.ncbi.nlm.nih.gov/pubmed/22814904
http://www.ncbi.nlm.nih.gov/pubmed/10825137
https://doi.org/10.1016/j.jmb.2014.02.005
http://www.ncbi.nlm.nih.gov/pubmed/24530796
https://doi.org/10.1002/cmdc.201100361
https://doi.org/10.1002/cmdc.201100361
http://www.ncbi.nlm.nih.gov/pubmed/21990124
http://www.ncbi.nlm.nih.gov/pubmed/19412422
http://www.ncbi.nlm.nih.gov/pubmed/1377595
https://doi.org/10.1038/ni758
http://www.ncbi.nlm.nih.gov/pubmed/11812998
http://www.ncbi.nlm.nih.gov/pubmed/12902443
https://doi.org/10.1111/j.0022-202X.2004.22528.x
http://www.ncbi.nlm.nih.gov/pubmed/15140231
https://doi.org/10.3892/ijo.2013.1898
https://doi.org/10.3892/ijo.2013.1898
http://www.ncbi.nlm.nih.gov/pubmed/23588478
https://doi.org/10.1371/journal.pone.0182022

