C. O'neill, Y. Li, and X. L. Jin, Survival signaling in the preimplantation embryo, Theriogenology, vol.77, issue.4, pp.773-784, 2012.

D. H. Betts and W. A. King, Genetic regulation of embryo death and senescence, Theriogenology, vol.55, issue.1, pp.171-191, 2001.

I. Boumela, S. Assou, and A. Aouacheria, Involvement of BCL2 family members in the regulation of human oocyte and early embryo survival and death: Gene expression and beyond, Reproduction, vol.141, issue.5, pp.549-561, 2011.
URL : https://hal.archives-ouvertes.fr/ensl-00808957

D. Fabian, J. Koppel, and P. Maddox-hyttel, Apoptotic processes during mammalian preimplantation development, Theriogenology, vol.64, issue.2, pp.221-231, 2005.

K. Hardy, Apoptosis in the human embryo, Reviews of Reproduction, vol.4, issue.3, pp.125-134, 1999.

P. J. Hansen and J. M. Fear, Cheating death at the dawn of life: Developmental control of apoptotic repression in the BioMed Research International preimplantation embryo, Biochemical and Biophysical Research Communications, vol.413, issue.2, pp.155-158, 2011.

K. Hardy, S. Spanos, D. Becker, P. Iannelli, R. M. Winston et al., From cell death to embryo arrest: Mathematical models of human preimplantation embryo development, Proceedings of the National Acadamy of Sciences of the United States of America, vol.98, pp.1655-1660, 2001.

S. Spanos, S. Rice, and P. Karagiannis, Caspase activity and expression of cell death genes during development of human preimplantation embryos, Reproduction, vol.124, issue.3, pp.353-363, 2002.

D. Haouzi and S. Hamamah, Pertinence of apoptosis markers for the improvement of in vitro fertilization (IVF), Current Medicinal Chemistry, vol.16, issue.15, pp.1905-1916, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00379625

C. D. Pietro, M. Ragusa, and D. Barbagallo, The apoptotic machinery as a biological complex system: analysis of its omics and evolution, identification of candidate genes for fourteen major types of cancer, and experimental validation in CML and neuroblastoma, BMC Medical Genomics, vol.2, issue.1, 2009.

S. Assou, I. Boumela, and D. Haouzi, Transcriptome Analysis during Human Trophectoderm Specification Suggests New Roles of Metabolic and Epigenetic Genes, PLoS ONE, vol.7, issue.6, p.39306, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00726672

D. K. Gardner and W. B. Schoolcraft, Culture and transfer of human blastocysts, Current Opinion in Obstetrics and Gynecology, vol.11, issue.3, pp.307-311, 1999.

V. G. Tusher, R. Tibshirani, and G. Chu, Significance analysis of microarrays applied to the ionizing radiation response, Proceedings of the National Acadamy of Sciences of the United States of America, vol.98, pp.5116-5121, 2001.

T. Hamatani, T. Daikoku, and H. Wang, Global gene expression analysis identifies molecular pathways distinguishing blastocyst dormancy and activation, Proceedings of the National Acadamy of Sciences of the United States of America, vol.101, issue.28, pp.10326-10331, 2004.

N. A. Telford, A. J. Watson, and G. A. Schultz, Transition from maternal to embryonic control in early mammalian development: A comparison of several species, Molecular Reproduction and Development, vol.26, issue.1, pp.90-100, 1990.

S. Potireddy, R. Vassena, B. G. Patel, and K. E. Latham, Analysis of polysomal mRNA populations of mouse oocytes and zygotes: Dynamic changes in maternal mRNA utilization and function, Developmental Biology, vol.298, issue.1, pp.155-166, 2006.

L. Yan, M. Yang, and H. Guo, Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells, Nature Structural & Molecular Biology, vol.20, issue.9, pp.1131-1139, 2013.

R. Vassena, S. Boué, and E. González-roca, Waves of early transcriptional activation and pluripotency program initiation during human preimplantation development, Development, vol.138, issue.17, pp.3699-3709, 2011.

K. E. Latham, Endoplasmic Reticulum Stress Signaling in Mammalian Oocytes and Embryos: Life in Balance, International Review of Cell and Molecular Biology, vol.316, pp.227-265, 2015.

Y. Huang, Y. Sun, and Y. Cao, HRD1 prevents apoptosis in renal tubular epithelial cells by mediating eIF2 ubiquitylation and degradation, Cell Death & Disease, vol.8, issue.12, 2017.

N. Yagishita, K. Ohneda, and T. Amano, Essential role of synoviolin in embryogenesi, The Journal of Biological Chemistry, vol.280, issue.9, pp.7909-7916, 2005.

Y. Zhang, S. Li, Y. Xiang, L. Qiu, H. Zhao et al., The selective post-translational processing of transcription factor Nrf1 yields distinct isoforms that dictate its ability to differentially regulate gene expression, Scientific Reports, vol.5, issue.1, 2015.

D. R. Mcmillan, E. Christians, and M. Forster, Heat shock transcription factor 2 is not essential for embryonic development, fertility, or adult cognitive and psychomotor function in mice, Molecular and Cellular Biology, vol.22, issue.22, pp.8005-8014, 2002.

M. R. Tavares, I. C. Pavan, C. L. Amaral, L. Meneguello, A. D. Luchessi et al., The S6K protein family in health and disease, Life Sciences, vol.131, pp.1-10, 2015.

J. Sengupta, P. G. Lalitkumar, and A. R. Najwa, Immunoneutralization of vascular endothelial growth factor inhibits pregnancy establishment in the rhesus monkey (Macaca mulatta), Reproduction, vol.133, issue.6, pp.1199-1211, 2007.

N. J. Hannan, P. Paiva, K. L. Meehan, L. J. Rombauts, D. K. Gardner et al., Analysis of fertility-related soluble mediators in human uterine fluid identifies VEGF as a key regulator of embryo implantation, Endocrinology, vol.152, issue.12, pp.4948-4956, 2011.

D. Haouzi, H. Dechaud, S. Assou, C. Monzo, J. D. Vos et al., Transcriptome analysis reveals dialogues between human trophectoderm and endometrial cells during the implantation period, Human Reproduction, vol.26, issue.6, pp.1440-1449, 2011.

F. Haimovici and D. J. Anderson, Effects of Growth Factors and Growth Factor-Extracellular Matrix Interactions on Mouse Trophoblast Outgrowth in Vitro1, Biology of Reproduction, vol.49, issue.1, pp.124-130, 1993.

J. Artus, J. Panthier, and A. Hadjantonakis, A role for PDGF signaling in expansion of the extra-embryonic endoderm lineage of the mouse blastocyst, Development, vol.137, issue.20, pp.3361-3372, 2010.

J. Artus, M. Kang, M. Cohen-tannoudji, and A. Hadjantonakis, PDGF signaling is required for primitive endoderm cell survival in the inner cell mass of the mouse blastocyst, Stem Cells, vol.31, issue.9, pp.1932-1941, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-02075472

M. Singh, P. Chaudhry, and E. Asselin, Bridging endometrial receptivity and implantation: Network of hormones, cytokines, and growth factors, Journal of Endocrinology, vol.210, issue.1, pp.5-14, 2011.

J. Adjaye, J. Huntriss, and R. Herwig, Primary differentiation in the human blastocyst: Comparative molecular portraits of inner cell mass and trophectoderm cells, Stem Cells, vol.23, issue.10, pp.1514-1525, 2005.

Z. Chen, X. Kang, and L. Wang, Rictor/mTORC2 pathway in oocytes regulates folliculogenesis, and its inactivation causes premature ovarian failure, The Journal of Biological Chemistry, vol.290, issue.10, pp.6387-6396, 2015.

C. Shiota, J. Woo, J. Lindner, K. D. Shelton, and M. A. Magnuson, Multiallelic disruption of the rictor gene in mice reveals that mTOR complex 2 is essential for fetal growth and viability, Developmental Cell, vol.11, issue.4, pp.583-589, 2006.

J. P. Medema, L. Planelles-carazo, G. Hardenberg, and M. Hahne, The uncertain glory of APRIL, Cell Death & Differentiation, vol.10, issue.10, pp.1121-1125, 2003.

W. Roth, B. Wagenknecht, and A. Klumpp, APRIL, a new member of the tumor necrosis factor family, modulates death ligand-induced apoptosis, Cell Death & Differentiation, vol.8, issue.4, pp.403-410, 2001.

S. Assou, T. Anahory, and V. Pantesco, The human cumulusoocyte complex gene-expression profile, Human Reproduction, vol.21, issue.7, pp.1705-1719, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00069371

K. Kelly, E. Manos, G. Jensen, L. Nadauld, and D. A. Jones, APRIL/TRDL-1, a tumor necrosis factor-like ligand, stimulates cell death, Cancer Research, vol.60, issue.4, pp.1021-1027, 2000.

F. Wang, L. Chen, and H. Ni, APRIL depletion induces cell cycle arrest and apoptosis through blocking TGF-1/ERK signaling pathway in human colorectal cancer cells, Molecular and Cellular Biochemistry, vol.383, issue.1-2, pp.179-189, 2013.

C. Bossen and P. Schneider, BAFF, APRIL and their receptors: Structure, function and signalling, vol.18, pp.263-275, 2006.

Y. Guillemin, P. Lalle, G. Gillet, J. Guerin, S. Hamamah et al., Oocytes and early embryos selectively express the survival factor BCL2L10, Journal of Molecular Medicine, vol.87, issue.9, pp.923-940, 2009.

Z. Xue, K. Huang, and C. Cai, Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing, Nature, vol.500, issue.7464, pp.593-597, 2013.

M. Santonocito, M. R. Guglielmino, and M. Vento, The apoptotic transcriptome of the human MII oocyte: Characterization and age-related changes, Apoptosis, vol.18, issue.2, pp.201-211, 2013.

H. Zhang, W. Holzgreve, and C. Geyter, Bcl2-L-10, a novel anti-apoptotic member of the Bcl-2 family, blocks apoptosis in the mitochondria death pathway but not in the death receptor pathway, Human Molecular Genetics, vol.10, issue.21, pp.2329-2339, 2001.

J. Guérin, A. Cornut-thibaut, S. Giscard-destaing, S. Pouvreau, Y. Guillemin et al., Subcellular dynamics of the maternal cell death regulator BCL2L10 in human preimplantation embryos, Human Reproduction, vol.28, issue.3, pp.729-739, 2013.

Z. Shao and H. Schwarz, CD137 ligand, a member of the tumor necrosis factor family, regulates immune responses via reverse signal transduction, Journal of Leukocyte Biology, vol.89, issue.1, pp.21-29, 2011.

I. Boumela, S. Assou, D. Haouzi, H. Déchaud, O. Aït-ahmed et al., Developmental regulated expression of antiand pro-apoptotic BCL-2 family genes during human early embryonic development, Current Medicinal Chemistry, vol.21, issue.11, pp.1361-1369, 2014.

P. G. Hendrickson, J. A. Doráis, and E. J. Grow, Conserved roles of mouse DUX and human DUX4 in activating cleavagestage genes and MERVL/HERVL retrotransposons, Nature Genetics, vol.49, issue.6, pp.925-934, 2017.

M. Germain, J. P. Mathai, and G. C. Shore, BH-3-only BIK functions at the endoplasmic reticulum to stimulate cytochrome c release from mitochondria, The Journal of Biological Chemistry, vol.277, issue.20, pp.18053-18060, 2002.

J. Ren, M. Shi, and R. Liu, The Birc6 (Bruce) gene regulates p53 and the mitochondrial pathway of apoptosis and is essential for mouse embryonic development, Proceedings of the National Acadamy of Sciences of the United States of America, vol.102, pp.565-570, 2005.

K. Kawamura, N. Sato, and J. Fukuda, Survivin acts as an antiapoptotic factor during the development of mouse preimplantation embryos, Developmental Biology, vol.256, issue.2, pp.331-341, 2003.

K. Kawamura, J. Fukuda, Y. Shimizu, H. Kodama, and T. Tanaka, Survivin contributes to the anti-apoptotic activities of transforming growth factor alpha in mouse blastocysts through phosphatidylinositol 3 -kinase pathway, Biology of Reproduction, vol.73, issue.6, pp.1094-1101, 2005.

E. Madissoon, V. Töhönen, and L. Vesterlund, Differences in gene expression between mouse and human for dynamically regulated genes in early embryo, PLoS ONE, vol.9, issue.8, 2014.

L. R. Pike, K. Phadwal, A. K. Simon, and A. L. Harris, ATF4 orchestrates a program of BH3-only protein expression in severe hypoxia, Molecular Biology Reports, vol.39, issue.12, pp.10811-10822, 2012.

L. Shaw, S. F. Sneddon, L. Zeef, S. J. Kimber, and D. R. Brison, Global Gene Expression Profiling of Individual Human Oocytes and Embryos Demonstrates Heterogeneity in Early Development, PLoS ONE, vol.8, issue.5, 2013.

J. K. Riley, J. M. Heeley, A. H. Wyman, E. L. Schlichting, and K. H. Moley, TRAIL and KILLER are expressed and induce apoptosis in the murine preimplantation embryo, Biology of Reproduction, vol.71, issue.3, pp.871-877, 2004.

V. Chandrakanthan, O. Chami, T. Stojanov, and C. O'neill, Variable expressivity of the tumour suppressor protein TRP53 in cryopreserved human blastocysts, Reproductive Biology and Endocrinology, vol.5, issue.39, 2007.

D. Wells, M. G. Bermúdez, N. Steuerwald, H. E. Malter, A. R. Thornhill et al., Association of abnormal morphology and altered gene expression in human preimplantation embryos, Fertility and Sterility, vol.84, issue.2, pp.343-355, 2005.

A. Li, V. Chandrakanthan, O. Chami, and C. O'neill, Culture of zygotes increases p53 expression in B6 mouse embryos, which reduces embryo viability, Biology of Reproduction, vol.76, issue.3, pp.362-367, 2007.

A. Golas, T. Lech, M. Janula, D. Bederska, M. Lenartowicz et al., Semen quality parameters and embryo lethality in mice deficient for Trp53 protein, Reproductive Biology, vol.11, issue.3, pp.250-263, 2011.

A. H. Stegh, C. Brennan, and J. A. Mahoney, Glioma oncoprotein Bcl2L12 inhibits the p53 tumor suppressor, Genes & Development, vol.24, issue.19, pp.2194-2204, 2010.

N. Kirchhof, J. W. Carnwath, E. Lemme, K. Anastassiadis, H. Schöler et al., Expression pattern of Oct-4 in preimplantation embryos of different species, Biology of Reproduction, vol.63, issue.6, pp.1698-1705, 2000.

K. K. Niakan and K. Eggan, Analysis of human embryos from zygote to blastocyst reveals distinct gene expression patterns relative to the mouse, Developmental Biology, vol.375, issue.1, pp.54-64, 2013.

G. Wu and H. R. Schöler, Role of Oct4 in the early embryo development, Cell Regeneration, vol.3, issue.1, 2014.

K. Simmet, V. Zakhartchenko, J. Philippou-massier, H. Blum, N. Klymiuk et al., OCT4/POU5F1 is required for NANOG expression in bovine blastocysts, Proceedings of the National Acadamy of Sciences of the United States of America, vol.115, pp.2770-2775, 2018.

T. Nakamura, I. Okamoto, and K. Sasaki, A developmental coordinate of pluripotency among mice, monkeys and humans, Nature, vol.537, issue.7618, pp.57-62, 2016.

R. L. Krisher, Utility of animal models for human embryo culture development: domestic species, Methods in Molecular Biology, vol.912, pp.27-37, 2012.

V. A. Absalón-medina, W. R. Butler, and R. O. Gilbert, Preimplantation embryo metabolism and culture systems: Experience from domestic animals and clinical implications

, Assisted Reproduction and Genetics, vol.31, issue.4, pp.393-409, 2014.

Y. J. Ménézo and F. Hérubel, Mouse and bovine models for human IVF, Reproductive BioMedicine Online, vol.4, issue.2, pp.170-175, 2002.

S. J. Dieleman, P. J. Hendriksen, and D. Viuff, Effects of in vivo prematuration and in vivo final maturation on developmental capacity and quality of pre-implantation embryos, Theriogenology, vol.57, issue.1, pp.5-20, 2002.

D. Kim, D. Ko, and H. Lee, Comparison of maturation, fertilization, development, and gene expression of mouse oocytes grown in vitro and in vivo, Journal of Assisted Reproduction and Genetics, vol.21, issue.7, pp.233-240, 2004.

S. R. Huffman, Y. Pak, and R. M. Rivera, Superovulation induces alterations in the epigenome of zygotes, and results in differences in gene expression at the blastocyst stage in mice, Molecular Reproduction and Development, vol.82, issue.3, pp.207-217, 2015.

G. Giritharan, L. D. Piane, and A. Donjacour, In vitro culture of mouse embryos reduces differential gene expression between inner cell mass and trophectoderm, Reproductive Sciences, vol.19, issue.3, pp.243-252, 2012.

H. M. Knijn, C. Wrenzycki, and P. J. Hendriksen, In vitro and in vivo culture effects on mRNA expression of genes involved in metabolism and apoptosis in bovine embryos, Reproduction, Fertility and Development, vol.17, issue.8, pp.775-784, 2005.

P. Lonergan, D. Rizos, and A. Gutiérrez-adán, Temporal divergence in the pattern of messenger RNA expression in bovine embryos cultured from the zygote to blastocyst stage in vitro or in vivo, Biology of Reproduction, vol.69, issue.4, pp.1424-1431, 2003.

H. Niemann and C. Wrenzycki, Alterations of expression of developmentally important genes in preimplantation bovine embryos by in vitro culture conditions: Implications for subsequent development, Theriogenology, vol.53, issue.1, pp.21-34, 2000.

F. Fesahat, M. H. Sheikhha, and S. M. Kalantar, Developmental competence and apoptotic gene expression patterns of mature and immature human oocytes retrieved from controlled ovarian stimulation cycles, Reproductive Biology, vol.18, issue.1, pp.27-32, 2018.

M. Amanai, M. Brahmajosyula, and A. C. Perry, A restricted role for sperm-borne microRNAs in mammalian fertilization, Biology of Reproduction, vol.75, issue.6, pp.877-884, 2006.

M. Wang, Y. Gao, and P. Qu, Sperm-borne miR-449b influences cleavage, epigenetic reprogramming and apoptosis of SCNT embryos in bovine, Scientific Reports, vol.7, issue.1, 2017.

Y. Liang, L. Chen, and H. Yu, Which type of congenital malformations is significantly increased in singleton pregnancies following after in vitro fertilization/intracytoplasmic sperm injection: A systematic review and meta-analysis, Oncotarget, vol.9, issue.3, pp.4267-4278, 2018.