A. C. Krieger, Social and Economic Dimensions of Sleep Disorders, An Issue of Sleep Medicine Clinics, 2007.

, American Academy of Sleep Medicine. International Classification of Sleep Disorders, 2014.

C. Peyron, A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains, Nat. Med, vol.6, pp.991-997, 2000.

B. R. Kornum, Nat. Rev. Dis. Prim, vol.3, p.16100, 2017.

F. Han, HLA DQB1*06:02 negative narcolepsy with hypocretin/orexin deficiency, Sleep, vol.37, pp.1601-1608, 2014.

R. K. Malhotra and A. Y. Avidan, Sleep Stages and Scoring Technique, Atlas of Sleep Medicine, pp.77-99, 2014.

R. B. Berry, The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications, version 2, 2017.

S. Subramanian, S. Hesselbacher, A. Mattewal, and S. Surani, Gender and age influence the effects of slow-wave sleep on respiration in patients with obstructive sleep apnea, Sleep Breath, vol.17, pp.51-56, 2013.

M. R. Littner, Practice parameters for clinical use of the multiple sleep latency test and the maintenance of wakefulness test, Sleep, vol.28, pp.113-121, 2005.

O. Andlauer, Nocturnal rapid eye movement sleep latency for identifying patients with narcolepsy/hypocretin deficiency, JAMA Neurol, vol.70, pp.891-902, 2013.

E. Mignot, The role of cerebrospinal fluid hypocretin measurement in the diagnosis of narcolepsy and other hypersomnias, Arch. Neurol, vol.59, pp.1553-1562, 2002.

O. Andlauer, Predictors of hypocretin (orexin) deficiency in narcolepsy without cataplexy, Sleep, vol.35, pp.1247-1255, 2012.

G. Luca, Clinical, polysomnographic and genome-wide association analyses of narcolepsy with cataplexy: a European Narcolepsy Network study, J. Sleep Res, vol.22, pp.482-495, 2013.

Y. Dauvilliers, Effect of age on MSLT results in patients with narcolepsycataplexy, Neurology, vol.62, pp.46-50, 2004.

A. Moscovitch, M. Partinen, and C. Guilleminault, The positive diagnosis of narcolepsy and narcolepsy's borderland, Neurology, vol.43, pp.55-60, 1993.

R. S. Rosenberg and S. Van-hout, The American Academy of Sleep Medicine inter-scorer reliability program: sleep stage scoring, J. Clin. Sleep Med, vol.9, pp.81-87, 2013.

X. Zhang, Process and outcome for international reliability in sleep scoring, Sleep Breath, vol.19, pp.191-195, 2015.

H. Danker-hopfe, Interrater reliability for sleep scoring according to the Rechtschaffen & Kales and the new AASM standard, J. Sleep Res, vol.18, pp.74-84, 2009.

A. W. Maclean, F. Lue, and H. Moldofksy, The reliability of visual scoring of alpha EEG activity during sleep, Sleep, vol.18, pp.565-569, 1995.

Y. Kim, M. Kurachi, M. Horita, K. Matsuura, and Y. Kamikawa, Agreement of visual scoring of sleep stages among many laboratories in Japan: effect of a supplementary definition of slow wave on scoring of slow wave sleep, J. Psychiatry Clin. Neurosci, vol.47, pp.91-97, 1993.

G. Hinton, Deep neural networks for acoustic modeling in speech recognition, IEEE Signal Process. Mag, vol.83, pp.82-97, 2012.

K. He, X. Zhang, S. Ren, and J. Sun, Delving deep into rectifiers: surpassing human-level performance on ImageNet classification, 2015 IEEEInternational Conference on Computer Vision (ICCV), pp.1026-1034, 2015.

K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.770-778, 2016.

V. Gulshan, Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs, JAMA, vol.316, pp.2402-2410, 2016.

D. S. Ting, Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes, JAMA, vol.318, pp.2211-2223, 2017.

B. E. Bejnordi, Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer, JAMA, vol.318, pp.2199-2210, 2017.

A. Esteva, Dermatologist-level classification of skin cancer with deep neural networks, Nature, vol.542, pp.115-118, 2017.

J. Cheng, Computer-aided diagnosis with deep learning architecture: applications to breast lesions in US images and pulmonary nodules in CT scans, Sci. Rep, vol.6, p.24454, 2016.

P. Lakhani and B. Sundaram, Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks, Radiology, vol.284, pp.574-582, 2017.

Y. Lecun, Y. Bengio, and G. Hinton, Deep learning, Nature, vol.521, pp.436-444, 2015.

S. T. Kuna, Agreement in computer-assisted manual scoring of polysomnograms across sleep centers, Sleep, vol.36, pp.583-589, 2013.

H. I. Moore, Design and validation of a periodic leg movement detector, PLoS One, vol.9, p.114565, 2014.

T. Young, Burden of sleep apnea: rationale, design, and major findings of the Wisconsin Sleep Cohort study, WMJ, vol.108, pp.246-249, 2009.

S. C. Hong, A study of the diagnostic utility of HLA typing, CSF hypocretin-1 measurements, and MSLT testing for the diagnosis of narcolepsy in 163 Korean patients with unexplained excessive daytime sleepiness, Sleep, vol.29, pp.1429-1438, 2006.

B. Frauscher, Delayed diagnosis, range of severity, and multiple sleep comorbidities: a clinical and polysomnographic analysis of 100 patients of the Innsbruck Narcolepsy Cohort, J. Clin. Sleep Med, vol.9, pp.805-812, 2013.

B. A. Mander, J. R. Winer, and M. P. Walker, Sleep and human aging, Neuron, vol.94, pp.19-36, 2017.

J. A. Christensen, Sleep-stage transitions during polysomnographic recordings as diagnostic features of type 1 narcolepsy, Sleep Med, vol.16, pp.1558-1566, 2015.

A. V. Olsen, Diagnostic value of sleep stage dissociation as visualized on a 2-dimensional sleep state space in human narcolepsy, J. Neurosci. Methods, vol.282, pp.9-19, 2017.

J. B. Jensen, Sleep-wake transition in narcolepsy and healthy controls using a support vector machine, J. Clin. Neurophysiol, vol.31, pp.397-401, 2014.

A. Vassalli, Electroencephalogram paroxysmal theta characterizes cataplexy in mice and children, Brain, vol.136, pp.1592-1608, 2013.

F. Pizza, Nocturnal sleep dynamics identify narcolepsy type 1, Sleep, vol.38, pp.1277-1284, 2015.

I. Guyon, J. Weston, and S. Barnhill, Gene selection for cancer classification using support vector machines, Mach. Learn, vol.46, pp.389-422, 2002.

, International Xyrem Study Group. A double-blind, placebo-controlled study demonstrates sodium oxybate is effective for the treatment of excessive daytime sleepiness in narcolepsy, J. Clin. Sleep Med, vol.1, pp.391-397, 2005.

P. Anderer, An E-health solution for automatic sleep classification according to Rechtschaffen and Kales: validation study of the Somnolyzer 24 x 7 utilizing the Siesta database, Neuropsychobiology, vol.51, pp.115-133, 2005.

A. N. Olesen, J. A. Christensen, H. B. Sorensen, and P. J. Jennum, A noise-assisted data analysis method for automatic EOG-based sleep stage classification using ensemble learning, 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp.3769-3772, 2016.

R. Boostani, F. Karimzadeh, and M. Nami, A comparative review on sleep stage classification methods in patients and healthy individuals, Comput. Methods Prog. Biomed, vol.140, pp.77-91, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01390384

T. Lajnef, Learning machines and sleeping brains: automatic sleep stage classification using decision-tree multi-class support vector machines, J. Neurosci. Methods, vol.250, pp.94-105, 2015.

T. L. Da-silveira, A. J. Kozakevicius, and C. R. Rodrigues, Single-channel EEG sleep stage classification based on a streamlined set of statistical features in wavelet domain, Med. Biol. Eng. Comput, vol.55, pp.343-352, 2017.

M. Ronzhina, Sleep scoring using artificial neural networks, Sleep Med. Rev, vol.16, pp.251-263, 2012.

J. Reiter, E. Katz, T. E. Scammell, and K. Maski, Usefulness of a nocturnal SOREMP for diagnosing narcolepsy with cataplexy in a pediatric population, Sleep, vol.38, pp.859-865, 2015.

M. Banko and E. Brill, Scaling to very very large corpora for natural language disambiguation, ACL '01 Proceedings of the 39th Annual Meeting on Association for Computational Linguistics 26-33, 2001.

J. Shotton, Real-time human pose recognition in parts from single depth images, Stud. Comput. Intell, vol.411, pp.119-135, 2013.

J. A. Christensen, Novel method for evaluation of eye movements in patients with narcolepsy, Sleep Med, vol.33, pp.171-180, 2017.

A. Goldbart, Narcolepsy and predictors of positive MSLTs in the Wisconsin Sleep Cohort, Sleep, vol.37, pp.1043-1051, 2014.

M. H. Silber, The visual scoring of sleep in adults, J. Clin. Sleep Med, vol.3, pp.121-131, 2007.

B. Hjorth, EEG analysis based on time domain properties, Electroencephalogr. Clin. Neurophysiol, vol.29, pp.306-310, 1970.

P. C. Mahalanobis, On the generalised distance in statistics, Proc. Natl. Inst. Sci. India, vol.2, pp.49-55, 1936.

S. Hochreiter and J. Schmidhuber, Long short-term memory, Neural Comput, vol.9, pp.1735-1780, 1997.

I. Goodfellow, Y. Bengio, A. Courville, and . Learning, , 2016.

C. M. Bishop, Pattern Recognition and Machine Learning, 2006.

K. Hornik, M. Stinchcombe, and H. White, Multilayer feedforward networks are universal approximators, Neural Netw, vol.2, pp.359-366, 1989.

K. Lenc and A. Vedaldi, Understanding image representations by measuring their equivariance and equivalence, 2015IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.991-999, 2015.

K. Simonyan and A. Zisserman, Very deep convolutional networks for largescale image recognition, 2015 International Conference on Learning Representation (ICLR), pp.1-14, 2015.

B. T. Polyak, Some methods of speeding up the convergence of iteration methods, USSR Comput. Math. Math. Phys, vol.4, pp.1-17, 1964.

S. Ioffe and C. Szegedy, Batch normalization: accelerating deep network training by reducing internal covariate shift, Proc. 32nd Int. Conf, vol.37, pp.448-456, 2015.

A. Krogh and J. A. Hertz, A simple weight decay can improve generalization, Adv. Neural Inf. Process. Syst, vol.4, pp.950-957, 1992.

R. Caruana, S. Lawrence, and L. Giles, Overfitting in neural nets: backpropagation, conjugate gradient, and early stopping, Proc. Advances in Neural Information Processing Systems, vol.13, pp.402-408, 2001.

N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, Dropout: a simple way to prevent neural networks from overfitting, J. Mach. Learn. Res, vol.15, pp.1929-1958, 2014.

T. Roth, Disrupted nighttime sleep in narcolepsy, J. Clin. Sleep Med, vol.9, pp.955-965, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01806770

M. H. Hansen, B. R. Kornum, and P. Jennum, Sleep-wake stability in narcolepsy patients with normal, low and unmeasurable hypocretin levels, Sleep Med, vol.34, pp.1-6, 2017.

P. Drakatos, First rapid eye movement sleep periods and sleep-onset rapid eye movement periods in sleep-stage sequencing of hypersomnias, Sleep Med, vol.14, pp.897-901, 2013.

Y. Liu, Altered sleep stage transitions of REM sleep: a novel and stable biomarker of narcolepsy, J. Clin. Sleep Med, vol.11, pp.885-894, 2015.

C. E. Rasmussen and C. K. Williams, Gaussian Processes for Machine Learning, 2006.

J. Hensman, A. Matthews, and Z. Ghahramani, Scalable variational Gaussian process classification, 18th International Conference on Artificial Intelligence and Statistics (AISTATS) (PMLR, 2015.

A. G. Matthews, T. Nickson, A. Boukouvalas, and J. Hensman, GPflow: a Gaussian Process Library using TensorFlow, J. Mach. Learn. Res, vol.18, pp.1-6, 2017.