A. R. Thierry, S. El-messaoudi, P. B. Gahan, P. Anker, and M. Stroun, Origins, structures and functions of circulating DNA in oncology, Cancer Metastasis Rev, vol.35, issue.3, pp.347-376, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02299112

M. Fleischhacker and B. Schmidt, Circulating nucleic acids (CNAs) and cancer -a survey, Biochim. Biophys. Acta, vol.1775, issue.1, pp.181-232, 2007.

Y. M. Lo, N. Corbetta, and P. F. Chamberlain, Presence of fetal DNA in maternal plasma and serum, Lancet Lond. Engl, vol.350, issue.9076, pp.485-487, 1997.

C. Bettegowda, M. Sausen, and R. J. Leary, Detection of circulating tumor DNA in early-and late-stage human malignancies, Sci. Transl. Med, vol.6, issue.224, pp.224-248, 2014.

B. Gold, M. Cankovic, L. V. Furtado, F. Meier, and C. D. Gocke, Do circulating tumor cells, exosomes and circulating tumor nucleic acids have clinical utility? A report of the association for molecular pathology, J. Mol. Diagn. JMD, vol.17, issue.3, pp.209-224, 2015.

M. Stroun, Modifications des caractèresà la suite de greffes intervariétales chez le Solanum melongena, CR Acad. Sci. Paris, vol.255, pp.361-363, 1962.

P. B. Gahan, J. Chayen, and A. A. Silcox, Cytoplasmic localization of deoxyribonucleic acid in Allium cepa, Nature, vol.195, pp.1115-1116, 1962.

P. B. Gahan and J. Chayen, Cytoplasmic deoxyribonucleic acid, Int. Rev. Cytol, vol.18, pp.223-247, 1965.

M. Stroun and P. Anker, Nucleic acids spontaneously released by living frog auricles, Biochem. J, vol.128, issue.3, pp.100-101, 1972.

M. Stroun and P. Anker, Prehistory of the notion of circulating nucleic acids in plasma/serum (CNAPS): birth of a hypothesis, Ann. NY Acad. Sci, vol.1075, pp.10-20, 2006.

P. B. Gahan and M. Stroun, The virtosome-a novel cytosolic informative entity and intercellular messenger, Cell Biochem. Funct, vol.28, issue.7, pp.529-538, 2010.

P. B. Gahan, I. J. Perry, M. Stroun, and P. Anker, Effect of exogenous DNA on acid deoxyribonuclease activity in intact roots of Vicia faba L, Ann. Bot, vol.38, issue.3, pp.701-704, 1974.

D. S. Pisetsky, The origin and properties of extracellular DNA: from PAMP to DAMP, Clin. Immunol. Orlando Fla, vol.144, issue.1, pp.32-40, 2012.

B. P. Chelobanov, P. P. Laktionov, and V. V. Vlasov, Proteins involved in binding and cellular uptake of nucleic acids, Biochemistry (Mosc.), vol.71, issue.6, pp.583-596, 2006.

V. V. Vlassov, P. P. Laktionov, and E. Y. Rykova, Extracellular nucleic acids, BioEssays, vol.29, issue.7, pp.654-667, 2007.

B. K. Thakur, H. Zhang, and A. Becker, Double-stranded DNA in exosomes: a novel biomarker in cancer detection, Cell Res, vol.24, issue.6, pp.766-769, 2014.

P. P. Laktionov, S. N. Tamkovich, and E. Y. Rykova, Cell-surface-bound nucleic acids: free and cell-surface-bound nucleic acids in blood of healthy donors and breast cancer patients, Ann. NY Acad. Sci, vol.1022, pp.221-227, 2004.

S. N. Tamkovich, O. E. Bryzgunova, E. Y. Rykova, V. I. Permyakova, V. V. Vlassov et al., Circulating nucleic acids in blood of healthy male and female donors, Clin. Chem, vol.51, issue.7, pp.1317-1319, 2005.

B. György, T. G. Szabó, and M. Pásztói, Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles, Cell. Mol. Life Sci. CMLS, vol.68, issue.16, pp.2667-2688, 2011.

E. Y. Rykova, E. S. Morozkin, and A. A. Ponomaryova, Cell-free and cell-bound circulating nucleic acid complexes: mechanisms of generation, concentration and content, Expert Opin. Biol. Ther, vol.12, pp.141-153, 2012.

C. Gosse, L. Pecq, J. B. Defrance, P. Paoletti, and C. , Initial degradation of deoxyribonucleic acid after injection in mammals, Cancer Res, vol.25, issue.6, pp.877-883, 1965.

T. M. Chused, A. D. Steinberg, and N. Talal, The clearance and localization of nucleic acids by New Zealand and normal mice, Clin. Exp. Immunol, vol.12, issue.4, pp.465-476, 1972.

W. Emlen and M. Mannik, Kinetics and mechanisms for removal of circulating single-stranded DNA in mice, J. Exp. Med, vol.147, issue.3, pp.684-699, 1978.

Y. M. Lo, J. Zhang, T. N. Leung, T. K. Lau, A. M. Chang et al., Rapid clearance of fetal DNA from maternal plasma, Am. J. Hum. Genet, vol.64, issue.1, pp.218-224, 1999.

S. Yu, S. Lee, and P. Jiang, High-resolution profiling of fetal DNA clearance from maternal plasma by massively parallel sequencing, Clin. Chem, vol.59, issue.8, pp.1228-1237, 2013.

E. De-almeida, T. E. Abdalla, and T. P. Arrym, Plasma and urine DNA levels are related to microscopic hematuria in patients with bladder urothelial carcinoma, Clin. Biochem, vol.49, pp.1274-1277, 2016.

S. Salvi, F. Martignano, and C. Molinari, The potential use of urine cell free DNA as a marker for cancer, Expert Rev. Mol. Diagn, vol.16, issue.12, pp.1283-1290, 2016.

W. Yao, C. Mei, X. Nan, and L. Hui, Evaluation and comparison of in vitro degradation kinetics of DNA in serum, urine and saliva: a qualitative study, Gene, vol.590, issue.1, pp.142-148, 2016.

K. Fenton, S. Fismen, and A. Hedberg, Anti-dsDNA antibodies promote initiation, and acquired loss of renal Dnase1 promotes progression of lupus nephritis in autoimmune (NZBxNZW)F1 mice, PLoS ONE, vol.4, issue.12, p.8474, 2009.

N. Seredkina, S. N. Zykova, and O. P. Rekvig, Progression of murine lupus nephritis is linked to acquired renal Dnase1 deficiency and not to upregulated apoptosis, Am. J. Pathol, vol.175, issue.1, pp.97-106, 2009.

B. Dewez, M. Lans, V. Allaeys, A. Karaoglou, H. Taper et al., Serum alkaline deoxyribonuclease activity, a sensitive marker for the therapeutic monitoring of cancer patients: methodological aspects, Eur. J. Clin. Chem. Clin. Biochem, vol.31, issue.11, pp.793-797, 1993.

U. Kragh-hansen, V. Chuang, and M. Otagiri, Practical aspects of the ligand-binding and enzymatic properties of human serum albumin, Biol. Pharm. Bull, vol.25, issue.6, pp.695-704, 2002.

T. E. Skvortsova, O. E. Bryzgunova, A. O. Lebedeva, V. V. Mak, V. V. Vlassov et al., Methylated cell-free DNA in vitro and in vivo, Circulating Nucleic Acids in Plasma and Serum. Gahan PB, pp.185-194, 2010.

W. Zhang, J. Wu, B. Qiao, W. Xu, and S. Xiong, Amelioration of lupus nephritis by serum amyloid P component gene therapy with distinct mechanisms varied from different stage of the disease, PLoS ONE, vol.6, issue.7, p.22659, 2011.

P. Rumore, B. Muralidhar, M. Lin, C. Lai, and C. R. Steinman, Haemodialysis as a model for studying endogenous plasma DNA: oligonucleosome-like structure and clearance, Clin. Exp. Immunol, vol.90, issue.1, pp.56-62, 1992.

T. Lau, T. N. Leung, and L. Chan, Fetal DNA clearance from maternal plasma is impaired in pre-eclampsia, Clin. Chem, vol.48, issue.12, pp.2141-2146, 2002.

T. Beiter, A. Fragasso, J. Hudemann, A. M. Nieß, and P. Simon, Short-term treadmill running as a model for studying cell-free DNA kinetics in vivo, Clin. Chem, vol.57, issue.4, pp.633-636, 2011.

S. Breitbach, B. Sterzing, C. Magallanes, S. Tug, and P. Simon, Direct measurement of cell-free DNA from serially collected capillary plasma during incremental exercise, J. Appl. Physiol, vol.117, issue.2, pp.119-130, 2014.

F. Diehl, K. Schmidt, and M. A. Choti, Circulating mutant DNA to assess tumor dynamics, Nat. Med, vol.14, issue.9, pp.985-990, 2008.

J. Atamaniuk, C. Vidotto, M. Kinzlbauer, N. Bachl, B. Tiran et al., Cell-free plasma DNA and purine nucleotide degradation markers following weightlifting exercise, Eur. J. Appl. Physiol, vol.110, issue.4, pp.695-701, 2010.

I. G. Fatouros, A. Z. Jamurtas, and M. G. Nikolaidis, Time of sampling is crucial for measurement of cell-free plasma DNA following acute aseptic inflammation induced by exercise, Clin. Biochem, vol.43, pp.1368-1370, 2010.

I. G. Fatouros, A. Destouni, and K. Margonis, Cell-free plasma DNA as a novel marker of aseptic inflammation severity related to exercise overtraining, Clin. Chem, vol.52, issue.9, pp.1820-1824, 2006.

B. Pertl and D. W. Bianchi, Fetal DNA in maternal plasma: emerging clinical applications, Obstet. Gynecol, vol.98, issue.3, pp.483-490, 2001.

E. I. Ette and P. J. Williams, Population pharmacokinetics I: background, concepts and models, Ann. Pharmacother, vol.38, issue.10, pp.1702-1706, 2004.

D. R. Mould and R. N. Upton, Basic concepts in population modeling, simulation and model-based drug development-part 2: introduction to pharmacokinetic modeling methods, CPT Pharmacomet. Syst. Pharmacol, vol.2, p.38, 2013.

D. R. Mould and R. N. Upton, Basic concepts in population modeling, simulation and model-based drug development, CPT Pharmacomet. Syst. Pharmacol, vol.1, p.6, 2012.

R. Almufti, M. Wilbaux, and A. Oza, A critical review of the analytical approaches for circulating tumor biomarker kinetics during treatment, Ann. Oncol, vol.25, issue.1, pp.41-56, 2014.

T. Gliddon, S. Salman, J. O. Robinson, and L. Manning, Modeling C-reactive protein kinetic profiles for use as a clinical prediction tool in patients with Staphylococcus aureus bacteremia, Biomark. Med, vol.9, issue.10, pp.947-955, 2015.

J. Sunil, S. , B. Philip, J. Basic, and . Pharmacokinetics, , 2012.

M. Gibaldi and H. Weintraub, Some considerations as to the determination and significance of biologic half-life, J. Pharm. Sci, vol.60, issue.4, pp.624-626, 1971.

S. Senn, N. Holford, and H. Hockey, The ghosts of departed quantities: approaches to dealing with observations below the limit of quantitation, Stat. Med, vol.31, issue.30, pp.4280-4295, 2012.

P. L. Toutain and A. Bousquet-mélou, Plasma terminal half-life, J. Vet. Pharmacol. Ther, vol.27, issue.6, pp.427-439, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00517570

S. Holdenrieder and P. Stieber, Therapy control in oncology by circulating nucleosomes, Ann. NY Acad. Sci, vol.1022, pp.211-216, 2004.

S. Holdenrieder and P. Stieber, Circulating nucleosomes predict the response to chemotherapy in patients with advanced non-small-cell lung cancer, Clin. Cancer Res, vol.10, pp.5981-5987, 2004.