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Abstract  46 

The Mediterranean Sea is one of the main hotspots of marine biodiversity in the world. The 47 

combined pressures of fishing activity and climate change have also made it a hotspot of global 48 

change amidst increasing concern about the worsening status of exploited marine species. To 49 

anticipate the impacts of global changes in the Mediterranean Sea, more integrated modelling 50 

approaches are needed, which can then help policymakers prioritize management actions and 51 

formulate strategies to mitigate impacts and adapt to changes. The aim of this study was to 52 

develop a holistic model of marine biodiversity in the Mediterranean Sea with an explicit 53 

representation of the spatial, multispecies dynamics of exploited resources subject to the 54 

combined influence of climate variability and fishing pressure. To this end, we used the 55 

individual-based OSMOSE model (Object-oriented Simulator of Marine ecOSystEms), including 56 

100 marine species (fish, cephalopods and crustaceans) representing about 95% of the total 57 

declared catch, at a high spatial resolution (400 km²) and a large spatial scale (the entire 58 

Mediterranean basin) – the first time such a resolution and scale have been modelled. We then 59 

combined OSMOSE with the NEMOMED 12 physical model and the Eco3M-S biogeochemical 60 

low trophic level model to build the end-to-end model, OSMOSE-MED. We fitted OSMOSE-MED 61 

model with observed or estimated biomass and commercial catch data using a likelihood 62 

approach and an evolutionary optimization algorithm. The outputs of OSMOSE-MED were then 63 

verified against observed biomass and catch data, and compared with independent datasets 64 

(MEDITS data, diet composition and trophic levels). The model results – at different hierarchical 65 

levels, from individuals to the scale of the ecosystem – were consistent with current knowledge 66 

of the structure, functioning and dynamics of the ecosystems in the Mediterranean Sea. While 67 

the model could be further improved in future iterations, all the modelling steps – the 68 

comprehensive representation of key ecological processes and feedback, the selective 69 

parameterization of the model, and the comparison with observed data in the validation process 70 

– strengthened the predictive performance of OSMOSE-MED and thus its relevance as an 71 



impact model to explore the future of marine biodiversity under scenarios of global change. It is 72 

a promising tool to support ecosystem-based fishery management in the Mediterranean Sea. 73 
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1 Introduction 78 

The Mediterranean Sea is the largest semi-enclosed sea in Europe and is one of the main 79 

reservoirs of biodiversity in the world (Coll et al., 2010). It is home to 4–18% of identified marine 80 

species, which is considerable given it makes up only 0.82% of the global ocean surface (Coll et 81 

al., 2010). It is also a hotspot of global changes caused by human activity (Coll et al., 2012, 82 

2010; Giorgi, 2006; Giorgi and Lionello, 2008; Micheli et al., 2013a; Ramírez et al., 2018; Stock 83 

et al., 2018). Overfishing, pollution from land-based sources, degradation or loss of critical 84 

habitats, species introductions and climate change are all widespread in the Mediterranean Sea; 85 

impacts that may operate in synergy, leading to profound modifications in the structure, stability 86 

and functioning of marine ecosystems (Albouy et al., 2014; Coll et al., 2012; Lotze et al., 2006). 87 

Fishing is considered one of the highest threats to biodiversity in the region: the exploitation rate 88 

is steeply increasing due to poor fishing selectivity, and fish stocks are shrinking (Colloca et al., 89 

2017; Vasilakopoulos et al., 2014). As a consequence, more than 90% of the assessed stocks 90 

were categorized as overfished in 2017 (GFCM, 2017a; STECF, 2017). However, while fish 91 

stocks are declining on the continental shelf (especially long-lived species such as European 92 

hake Merluccius merluccius), a few short-lived species such as shrimp, cephalopods, and other 93 

fish species (e.g. red mullet Mullus barbatus), have shown trends of increasing biomass (GFCM, 94 

2017a; Maynou et al., 2011). Deep-water rose shrimp Parapenaeus longirostris is the most 95 

emblematic example: its biomass has increased all over the Mediterranean Sea in the last 96 

decade due to the increasing temperature and decreasing predatory pressure (e.g. by European 97 

hake) (Colloca et al., 2014; Ligas et al., 2011; Sbrana et al., 2019). 98 

In the absence of strong management plans, the deteriorating status of fisheries in the 99 

Mediterranean is likely to worsen, particularly in a context of climate change (Cheung et al., 100 

2018; FAO, 2018). The Mediterranean Sea has been identified as one of the most vulnerable 101 

regions in future climate change projections (Cramer et al., 2018; Giorgi, 2006; Hoegh-Guldberg 102 

et al., 2014). The effects of climate change on marine ecosystems are already clearly 103 

observable, with impacts reported on species from low trophic levels (e.g. macrophytes and 104 



phytoplankton) to high (e.g. predatory fish), and from individuals to the scale of entire 105 

ecosystems (Calvo et al., 2011; Durrieu de Madron et al., 2011; Lejeusne et al., 2010; Marbà et 106 

al., 2015; Tzanatos et al., 2014). These impacts are expected to affect biodiversity, commercial 107 

fisheries, food webs and ecosystem functioning (Albouy et al., 2014; AllEnvi, 2016; Bosello et 108 

al., 2015; Hattab et al., 2014; Jordà et al., 2012; Marbà et al., 2015; Pecl et al., 2017; Piroddi et 109 

al., 2017).  110 

Anthropogenic pressures on Mediterranean ecosystems are projected to increase in the future, 111 

especially those related to climate change, habitat degradation and resource exploitation 112 

(Butchart et al., 2010; Calvo et al., 2011; Coll et al., 2010). Considering the range of human and 113 

natural pressures and the likelihood that these act in synergy on marine ecosystems, there is an 114 

urgent need for more holistic and integrative approaches to quantify, anticipate, mitigate and 115 

manage human impacts on natural environments (Colloca et al., 2017; Hilborn, 2011; Link, 116 

2010). In response, Ecosystem-Based Management (EBM) and, more specifically, the 117 

Ecosystem Approach to Fisheries Management (EAFM) emerged in the early 1990s to consider 118 

all anthropogenic activities that might affect the sustainability of goods and services provided by 119 

ecosystems (Pikitch et al., 2004). In the European Union, these approaches are integrated in the 120 

Common Fisheries Policy (CFP, 2013) and the European Marine Strategy Framework Directive 121 

(MSFD; European Commission, 2008), which requires that all member states take the necessary 122 

measures to achieve or maintain ‘Good Environmental Status’ for marine ecosystems, with the 123 

explicit regulatory objective that ‘biodiversity be maintained’ by 2020 at the latest (European 124 

Commission, 2008). The requirements of the MSFD necessitate the development of suitable 125 

tools to evaluate the status of marine ecosystems and their response to human activity, as well 126 

as the sustainable management and harvesting of commercial species. This makes it essential 127 

to develop our ability to predict the future impacts of various policy interventions and strategic 128 

management plans for restoring marine ecosystems and biodiversity while ensuring the 129 

sustained provision of marine fishery products to human societies. 130 

In order to project plausible biodiversity scenarios at the scale of the whole Mediterranean Sea 131 

that can inform decision-making in the region, the aim of this study was to develop a model able 132 

to explicitly represent the spatial, multispecies dynamics of marine resources subject to the 133 

combined influences of climate change and fishing pressure. End-to-End models (E2E), which 134 

represent the entire food web, from plankton to top predators, as well as their abiotic 135 

environment, are promising tools for assessing the effects of climate change and fishing on 136 

ecosystem dynamics (Fulton, 2010; Grimm et al., 2017; Nicholson et al., 2019; Piroddi et al., 137 



2017, 2015b; Rose et al., 2010; Travers et al., 2007). But while there has been state-of-the-art 138 

modelling of food webs and multispecies communities within Mediterranean ecosystems, there 139 

remains a gap in modelling the biodiversity dynamics at the scale of the entire Mediterranean 140 

Sea: modelling that accounts for the complexity of species introductions, multispecies 141 

interactions and spatial dynamics in a context of global change. While trophic modelling of 142 

coastal marine ecosystems in specific areas of the Mediterranean has greatly improved, no 143 

model has yet shown species assemblages at the whole Mediterranean scale, with explicit 144 

modelling of the spatial, trait-based, lifecycle dynamics and interactions of multiple exploited 145 

species. 146 

To address this, we used the individual-based ecosystem model OSMOSE (Object-oriented 147 

Simulator of Marine ecOSystEms) for the first time at a large spatial scale (the entire 148 

Mediterranean basin), a high spatial resolution (400 km²), and for as many as 100 marine 149 

species (fish, cephalopods and crustaceans) representing about 95% of total declared catches 150 

in the Mediterranean Sea. Our end-to-end modelling approach combined the OSMOSE model 151 

(representing high trophic level species) with the physical model NEMOMED 12 and the 152 

biogeochemical model Eco3M-S (representing low trophic levels). The resulting end-to-end 153 

model, OSMOSE-MED, was calibrated to represent the Mediterranean Sea during the 2006–154 

2013 period. We then evaluated its ability to represent key indicators of the Mediterranean: for 155 

example, biomass, catches and trophic levels from the scale of the individual to the community. 156 

The methodology, results and challenges are discussed below. 157 

2 Materials and methods 158 

The individual-based OSMOSE model considers a large proportion of the fishable food web and 159 

simulates trophic interactions between several target and non-target marine species – mainly 160 

fish species. In order to model the effects of environmental heterogeneity and variability, which 161 

could affect the entire food web through bottom-up control, OSMOSE was forced (i.e. through 162 

offline one-way coupling) by the NEMOMED 12 / Eco3M-S low trophic levels (LTL) model. The 163 

resulting end-to-end model, OSMOSE-MED, represented the whole food web, from primary and 164 

secondary producers to the main top predators.  165 

2.1 The low trophic level (LTL) model NEMOMED 12 / Eco3M-S 166 

Eco3M-S is a biogeochemical model that simulates the lower trophic levels of marine 167 

ecosystems (phyto- and zooplankton), and the biogeochemical cycles of carbon and other key 168 

elements such as phosphorus and nitrogen in the Mediterranean Sea (Auger et al., 2011; Ulses 169 



et al., 2016). Independently of our study, Eco3M-S has been coupled with NEMOMED12, a high-170 

resolution (≈1/12°) hydrodynamic model adapted to the Mediterranean region (see Beuvier et al., 171 

2012 for more details on the structure and parameterization of NEMOMED 12) (Kessouri, 2015; 172 

Kessouri et al., 2017). 173 

NEMOMED12 is a regional circulation model. It is an updated version of the OPAMED 8 and 174 

NEMOMED 8 models used by Ben Rais Lasram et al. (2010), Hattab et al. (2014), Albouy et al. 175 

(2014, 2013, 2012) and more recently by Halouani et al. (2016) as input for niche/habitat models 176 

at local or regional scales in the Mediterranean Sea. The area of NEMOMED 12 covers the 177 

whole Mediterranean Sea and part of the Atlantic Ocean (from 11 °W to 7.5 °W) to take into 178 

account inter-ocean exchanges (Beuvier et al., 2012a; Beuvier et al., 2012b). It does not cover 179 

the Black Sea. Based on NEMO’s standard ORCA tripolar grid at 1/12° (≈7 km), NEMOMED 12 180 

resolution varies in latitude and longitude, but allows the explicit resolution of most mesoscale 181 

features. It is an eddy-resolving model that covers the majority of the Mediterranean Sea 182 

(Beuvier et al., 2012a). It has a time step of 12 minutes and is daily forced by atmospheric 183 

ARPERA data, which is obtained by performing dynamical downscaling of European Centre for 184 

Medium-Range Weather Forecasts (ECMWF) products over the European-Mediterranean region 185 

(Beuvier et al., 2012a; Herrmann and Somot, 2008). 186 

The coupling of NEMOMED 12 and the biogeochemical Eco3M-S model was done offline (one-187 

way coupling). The Eco3M-S model represents several element cycles such as carbon (C), 188 

nitrogen (N), phosphorus (P) and silica (Si) in order to reproduce the different limitations and co-189 

limitations observed in the Mediterranean Sea and the dynamics of different plankton groups. 190 

Seven plankton functional types (representing the main types), and the range of the plankton 191 

size spectrum in the Mediterranean Sea were modelled. The resulting structure of the trophic 192 

web base included three size-classes of phytoplankton (pico-, nano- and micro-phytoplankton), 193 

three size-classes of zooplankton (nano-, micro- and meso-zooplankton), and heterotrophic 194 

bacteria as decomposers (Table 1). The representation of the phytoplankton dynamics was 195 

derived from the Eco3M model presented in Baklouti et al. (2006). Of the primary producers, 196 

nanophytoplankton dominated the biomass of phytoplankton communities for most of the year, 197 

while microphytoplankton occasionally contributed to a large part of primary production during 198 

the spring period in the northwestern Mediterranean (Auger et al., 2011; Ulses et al., 2016). The 199 

structure of Eco3M-S reflects major grazing links such as nanozooplankton preying on small 200 

phytoplankton and bacteria, microzooplankton consuming microphytoplankton, and 201 

mesozooplankton, mainly composed of copepods, grazing on the largest categories of plankton 202 



(i.e. microphyto- and microzooplankton). Bacteria (i.e. heterotrophic picoplankton) are 203 

responsible for the remineralization of dissolved organic matter. The representation of the 204 

heterotrophic processes was based on the models developed by Anderson and Pondaven 205 

(2003) and Raick et al. (2005). All features, formulations and parameterization of 206 

biogeochemical processes integrated in the mechanistic Eco3M-S model are described in detail 207 

in Auger et al. (2011), Kessouri (2015) and Ulses et al. (2016). 208 

Table 1 Parameters of the seven low trophic level compartments used to build the trophic links with OSMOSE. Other 209 
parameters used to run ECO3M-S are documented in Auger et al. (2011), Ulses et al., (2016) and Kessouri et al., 210 
(2017). 211 

Main Plankton  

Functional Types 

(PFTs) 

Main species / groups Min size (μm) 
Max size 

(μm) 

Trophic 

level 

Picophytoplankton Synechococcus spp. 0.7 2 1 

Nanophytoplankton Dinoflagellates 2 20 1 

Microphytoplankton Diatoms 20 200 1 

Nanozooplankton Bacterivorous flagellates and small ciliates 5 20 2 

Microzooplankton Ciliates and large flagellates 20 200 2 

Mesozooplankton Copepods and amphipods 200 - 2 

Benthosa 
Based on benthos groups included in the 

Ecopath model of Piroddi et al. (2017) 
2000 50000 2.4 

aBenthos is considered an LTL group, but is not an output of the Eco3M-S model. This group is included as a ‘black 212 
box’ in the HTL model OSMOSE. 213 

2.2 The high trophic level (HTL) model OSMOSE 214 

The OSMOSE model has been used to assess the impacts of both fishing and climate change 215 

scenarios on marine food web functioning and species resilience in different types of 216 

ecosystems such as upwelling (Southern Benguela and Humboldt), temperate (Canadian west 217 

coast and Jiaozhou Bay), Mediterranean (Gulf of Gabès and Gulf of Lion) and subtropical 218 

ecosystems (West Florida shelf) (Fu et al., 2013; Grüss et al., 2015; Halouani et al., 2016; 219 

Marzloff et al., 2009; Travers et al., 2009; Xing et al., 2017). OSMOSE is a size-based 220 

multispecies trophic model that focuses on high trophic levels, mainly fish species. It is spatially 221 

explicit and represents the whole lifecycle of several interacting marine species. It models the 222 

major processes of the lifecycle step by step, from eggs to adult fish: i.e. growth, predation, 223 

reproduction, natural and starvation mortality, as well as fishing mortality. As it is constrained by 224 

computing limitations (of time and memory), rather than being truly individual-based, OSMOSE 225 

is based on ‘super-individuals’ that serve as proxies for fish schools, defined as a group of 226 

individuals sharing the same age, length, diet and spatial position and interacting with other 227 

schools in a two-dimensional grid. Species interact through predation in a spatial and dynamic 228 



way (Shin and Cury, 2004). The model is forced by species-specific spatial distribution maps 229 

that can vary interannually, seasonally, or depending on ontogenetic stages. OSMOSE allows 230 

the emergence of complex trophic interactions from two basic assumptions of the predation 231 

process: for a given individual (a school), prey consumption depends on the spatio-temporal co-232 

occurrence of the predator and its prey (in the horizontal and vertical dimensions) and is 233 

conditioned by size compatibility between a predator and its prey. Thus, unlike other trophic 234 

models such as Ecopath with Ecosim (Christensen and Walters, 2004), species dynamics and 235 

trophic structures are not modelled from pre-established trophic interactions between species: 236 

each fish can potentially be a predator or prey, regardless of its taxonomy, but depending on 237 

size compatibility (Shin et al., 2004; Shin and Cury, 2001). A maximum and a minimum 238 

predator/prey size ratio are thus defined to govern predator–prey interactions (Travers et al., 239 

2009). To integrate a vertical dimension in the food web, accessibility coefficients are defined in 240 

the form of a prey–predator accessibility matrix that reflects possible mismatches or overlap 241 

between species’ vertical distributions and/or potential refugia, allowing a certain proportion of a 242 

fish school to remain inaccessible to predation. At each time step, a predation efficiency rate can 243 

be calculated for each fish school (i.e. the food biomass ingested within a time step over the 244 

maximum ingestion rate), from which growth, starvation and reproduction rates are determined. 245 

In OSMOSE, the functions defining growth and mortality are deterministic. The main source of 246 

stochasticity comes from the species’ movement within their habitat and the order at which 247 

schools interact (through predation). Model details and equations are provided in Appendix A 248 

and on https://documentation.osmose-model.org/. 249 

2.3 Parameterization of OSMOSE-MED 250 

OSMOSE-MED covers the whole Mediterranean basin, from the Strait of Gibraltar to the Levant 251 

basin and from the Northern Adriatic Sea to the Southern Ionian Sea (Figure 1). This area 252 

extends from approximately 26.9°N to 46.3°N in latitude and from approximately 5.6°W to 253 

36.1°E in longitude. The Marmara Sea and the Black Sea were not included in the model. The 254 

OSMOSE-MED model was built on a regular grid divided into 20x20 km cells (for a total of 6229 255 

cells). Grid resolution was a compromise between the fine-scale ecology of the modelled 256 

species and computing time limitations. The time step was set according to the spatial 257 

resolution: we adopted a time resolution of 15 days within which species were assumed to have 258 

access to the first layer of surrounding cells when foraging for prey.  259 

A 15-day climatology was constructed from the 2006–2013 outputs of the biogeochemical model 260 

Eco3M-S and used to force the HTL model (offline coupling). The forcing model outputs thus 261 



reflected an average year in the period 2006–2013, characterized by seasonal and spatial 262 

variability of climate and plankton state variables. The coupling between NEMOMED 12/Eco3M-263 

S and OSMOSE was realized through the predation process. At each time step and location, the 264 

biomass of the 6 plankton groups was used as potential prey fields forcing the HTL model. As 265 

within OSMOSE, predation on plankton groups was modelled as an opportunistic size-based 266 

process (Travers-Trolet et al., 2014) controlled by a minimum and a maximum predation size 267 

ratio parameter. While benthic organisms (mainly invertebrates, crustaceans and polychaetes) 268 

are part of the diet of several HTL species included in OSMOSE-MED, they were not explicitly 269 

modelled in either ECO3M-S or in OSMOSE. We thus created an additional ‘benthos 270 

compartment’ for which no lifecycle or dynamics were modelled, but a few parameters were 271 

provided (size range and trophic level, see Table 1), as well as a biomass level (derived from 272 

Piroddi et al., 2017) that was considered uniform over the Mediterranean Sea.  273 

Regarding HTL species, 100 fish, cephalopod and crustacean species were explicitly modelled 274 

in OSMOSE-MED: 85 fish species, 5 cephalopods and 10 crustaceans (Appendix B). The 275 

selection of the 86 fish species was strongly dependent on data availability both for model 276 

parameterization (biological parameters and life history traits, for example) and for comparing 277 

the output to observations (species biomass data, for example). Data search and mining for the 278 

parameterization of the modelled species’ lifecycles represented a significant time investment. 279 

Of the 635 fish species included in the FishMed database (Albouy et al., 2015), we were able to 280 

find the life history parameters (i.e. growth, reproduction and mortality) required to parameterize 281 

the OSMOSE model for only 86 fish species in our search of the scientific literature. Cephalopod 282 

and crustacean species were selected for their high commercial value, high contribution to total 283 

biomass and data availability. Additionally, they play an important role in food web dynamics 284 

(Peristeraki et al., 2005; Roberts, 2003) and represent key components in several Ecopath 285 

models applied to ecosystems in the Mediterranean Sea (e.g. Bănaru et al., 2013; Corrales et 286 

al., 2017; Hattab et al., 2013; Piroddi et al., 2017). All these species represented on average 287 

around 95% of declared fishery catches in the Mediterranean in the 2006–2013 period (FAO, 288 

2006; 2017). The biological parameters linked to growth (Von Bertalanffy parameters, length–289 

weight relationship parameters), mortality (maximum age, natural mortality not explicitly 290 

represented in OSMOSE, age/size at recruitment), reproduction (size at maturity, relative 291 

fecundity) and predation (minimum and maximum predation size ratios), along with their 292 

sources, are detailed in Appendix B and C. As much as possible, the data was specific to 293 

Mediterranean ecosystems and was derived from or used as a resource for fishery stock 294 

assessment working groups in the Mediterranean Sea. 295 



Within each time step (15 days), the following events were modelled to occur successively in 296 

OSMOSE-MED (Figure 1). First, each school was uniformly distributed in space according to a 297 

unique distribution map specified for each species (see 2.4). In this application of OSMOSE, due 298 

to the lack of observation data, we did not account for any seasonal or ontogenetic variation in 299 

fish distribution. As the maps did not change from one time step to the next, schools could move 300 

to an adjacent cell or remain in the same cell following a random walk process (Shin et al., 2004; 301 

Travers-Trolet et al., 2014). Second, mortality (predation mortality, additional natural mortality 302 

and fishing mortality) were applied to schools. The order at which schools interact as well as the 303 

order of mortality events was randomly drawn within each time step. Third, food intake, 304 

subsequent to predation events, modulated the growth (weight and size) of species and their 305 

starvation level. Finally, reproduction occurred for fish with a length greater than that at sexual 306 

maturity, allowing the introduction of new schools of age 0 (eggs) in the system (Appendix A). 307 

 308 

 309 

Figure 1 Conceptual representation of the OSMOSE-MED end-to-end model applied to the whole Mediterranean Sea. 310 
The high trophic level OSMOSE model is forced (one-way coupling) by the biogeochemical Eco3M-S model through 311 
the predation by high trophic levels (i.e. fish, cephalopods and crustaceans) on low trophic levels (i.e. phyto- and 312 
zooplankton). Eco3M-S is forced by the NEMOMED 12 hydrodynamic model. Impacts of climate variability and fishing 313 
mortality can be explicitly taken into account.  314 



2.4 Modelling high trophic level species distribution 315 

We used a niche modelling approach based on environmental data to generate species 316 

distribution maps in the Mediterranean Sea; these maps were then used as input in OSMOSE. 317 

Species occurrence was compiled and merged from multiple sources: the Ocean Biogeographic 318 

Information System (OBIS: www.iobis.org), the Global Biodiversity Information Facility (GBIF: 319 

www.gbif.org), the Food and Agriculture Organization's Geonetwork portal 320 

(www.fao.org/geonetwork) and the atlas of Fishes of the Northern Atlantic and Mediterranean in 321 

the FishMed database (Albouy et al., 2015) (Appendix D). Values of environmental predictor 322 

variables for climate data were extracted from the World Ocean Atlas 2013 version 2 323 

(https://www.nodc.noaa.gov/OC5/woa13/woa13data.html). To take into account the vertical 324 

distribution of species in the water column, six environmental metrics were derived from monthly 325 

temperature and salinity climatologies: mean sea surface temperature and salinity (0–50 m 326 

depth), mean vertical temperature and salinity (0–200m depth) and mean sea bottom 327 

temperature and salinity (50 m – maximum bathymetry depth). These metrics were used to 328 

model bioclimatic envelopes for each species. The use of environmental variables assumed that 329 

current species ranges are mainly driven by the abiotic environment, which is a reasonable 330 

hypothesis for marine species as water temperature is commonly considered as the main driver 331 

of fish geographic ranges (Ben Rais Lasram et al., 2010; Ben Rais Lasram and Mouillot, 2009; 332 

Cheung et al., 2009; Sabatés et al., 2006). 333 

Current distribution was modelled using eight climate suitability models (generalized linear 334 

models, generalized additive models, classification tree analysis, boosted regression trees, 335 

random forests, multivariate adaptive regression splines, artificial neural networks and flexible 336 

discriminant analysis) embedded in the BIOMOD2 R package (Thuiller et al., 2009).  337 

As OBIS and GBIF databases provide occurrence data only at world scale (Hattab et al., 2014), 338 

to build reliable species distribution models, pseudo-absences (PAs) were generated in order to 339 

better characterize the environmental conditions experienced by species within their current 340 

ranges (Hattab et al., 2014, 2013b). These PAs were selected randomly, outside the suitable 341 

area of the surface range envelope model. The number of simulated PAs was double the 342 

occurrence data; they were equally weighted to the presence points during the fitting process.  343 

In order to assess the accuracy of our final distribution maps, the True Skill Statistic (TSS, 344 

Allouche et al., 2006) was used to measure the performance of each model. This represents a 345 

combined measure of model sensitivity (i.e. the proportion of correctly predicted presences) and 346 

specificity (i.e. the proportion of correctly predicted absences). 347 



For each species, the consensus distribution was obtained with an ensemble forecast approach. 348 

Results were weighted according to the TSS criterion (Allouche et al., 2006), i.e. weights were 349 

calculated on the basis of model accuracy in independent situations (Thuiller et al., 2009). To 350 

derive a consensus prediction, only the best model outputs (i.e. models with a TSS > 0.6) were 351 

kept (Appendix D). To transform the probabilistic consensus distribution into a 352 

presence/absence distribution, we preserved the occurrence probabilities for pixels above the 353 

sensitivity–specificity sum maximization threshold (i.e. the threshold that maximized the TSS 354 

criterion), and set to zero the occurrence probability for pixels under the threshold (Barbet-355 

Massin et al., 2009). Spatial distribution maps are available in Appendix D. 356 

2.5 Calibration of the OSMOSE-MED end-to-end model  357 

An evolutionary algorithm (EA), inspired by the process of Darwinian evolution and developed to 358 

calibrate complex stochastic models, was used to calibrate OSMOSE-MED (Duboz et al., 2010; 359 

Oliveros-Ramos and Shin, 2016). By estimating certain unknown parameters (i.e. larval mortality 360 

rates of HTL species, availability coefficients of LTL species to all HTL species, and fishing 361 

mortality for exploited species), the calibration process aimed to constrain predicted biomass 362 

and catch of HTL species in OSMOSE-MED within realistic ranges. The model was compared to 363 

observed data using a maximum likelihood approach (Oliveros-Ramos et al., 2017). A log-364 

normal distribution was assumed for biomass and catch errors. 365 

The aim of the EA is to optimize an objective function over a given search parameter space: in 366 

our case, a penalized negative log-likelihood function (Oliveros-Ramos et al., 2017). A 367 

population of ‘individuals’, where each individual is a set of parameters (called the genotype) in 368 

the search space, was first created. Different unknown combinations of parameters were tested 369 

in order to minimize the objective function. Computation of the phenotype (i.e. outputs produced 370 

by a run of OSMOSE-MED with a given set of parameters) and of the fitness (i.e. goodness-of-fit 371 

from the minimization of the negative log-likelihood function) was done in a second step. At each 372 

generation (i.e. iteration of the optimization process), the algorithm calculated an ‘optimal 373 

parent’, which resulted from the recombination of the parameter sets that provided the best 374 

solution for each objective (partial likelihoods for species biomass and catch) (Oliveros-Ramos 375 

and Shin, 2016). The optimal parent was then used to produce a new set of parameter 376 

combinations (by recombination/mutation) which constituted the next generation. The EA was 377 

run until the convergence of the objective function or was stopped after a given number of 378 

generations (Duboz et al., 2010; Oliveros-Ramos et al., 2017; Oliveros-Ramos and Shin, 2016). 379 



A steady-state calibration of the OSMOSE-MED model was performed using the mean of 380 

reported and reconstructed catches averaged over the period 2006–2013 (called hereafter the 381 

‘reference state period’) as target data. For tuna and other large pelagic species (e.g. the 382 

swordfish Xiphias gladius), catch data was extracted from the International Commission of the 383 

Conservation of Atlantic Tuna (ICCAT) statistics database. For all other exploited species, 384 

reported fishery landings were provided by the UN Food and Agriculture Organization General 385 

Fisheries Commission for the Mediterranean (FAO-GFCM) database 386 

(http://www.fao.org/gfcm/data/capture-production-statistics) and reconstructed catches were 387 

obtained from the Sea Around Us (SAU) project (Zeller and Pauly, 2015). The latter were used 388 

in order to reduce data gaps and take into account discarded bycatch and illegal, unreported and 389 

unregulated fishing in the Mediterranean Sea, where actual catches are often underestimated 390 

(European Commission, 2003; Moutopoulos and Koutsikopoulos, 2014). 391 

Cumulated biomass from stock assessments in different geographical sub-areas (GSA) of the 392 

Mediterranean Sea were used when available and realistic (i.e. when cumulated available 393 

biomass by species was higher than the average of FAO/SAU catches: for example, for 394 

Merluccius merluccius, Sardina pilchardus or Engraulis encrasicolus), and averaged over the 395 

reference state period (Appendix C). Biomass estimates of Thunnus thynnus and Thunnus 396 

alalunga were based on expert knowledge (Fromentin J.M. and Winker H., pers. comm.). For all 397 

other species for which biomass estimates were not available, we applied strong penalties to the 398 

objective function when output biomass from OSMOSE-MED did not lie within plausible ranges. 399 

Specifically, we considered FAO reported catches as a minimum threshold for species biomass 400 

and the maximum biomass threshold was derived from mean FAO/SAU catches and a fishery 401 

exploitation rate of 15%, which is assumed to be a very low exploitation rate in the context of 402 

Mediterranean fisheries (Vasilakopoulos et al., 2014). 403 

The model was run for 100 years for each set of parameters to make sure that OSMOSE-MED 404 

reached a steady state, and only the last 30 years were analyzed by the EA. The calibration 405 

process allowed a set of parameters to be estimated for each species represented in OSMOSE-406 

MED: the coefficients of plankton accessibility of the 7 LTL groups considered in the model (7 407 

parameters), larval mortality rates of the 100 HTL species (100 parameters), and fishing 408 

mortality rates for species for which catch data was available (87 parameters). Following the 409 

methodology described in Oliveros-Ramos et al. (2017), a sequential multi-phase calibration was 410 

applied to estimate the 194 unknown parameters (Oliveros Ramos, 2014), with three  411 

successive calibration phases (detailed in Table 2).  412 



The optimization process used the ‘calibrar’ and OSMOSE R packages (Oliveros-Ramos et al., 413 

2017; Oliveros-Ramos and Shin, 2016) available from the CRAN website (https://cran.r-414 

project.org/web/packages/calibrar). The calculation was performed using DATARMOR, the 415 

French Research Institute of Marine Exploitation (IFREMER) high-performance computing 416 

facility at the ‘Pôle de Calcul et de Données Marines’ (https://wwz.ifremer.fr/pcdm/Equipement), 417 

in which 36 compute nodes representing 1008 cores (2.4Ghz) and around 4 TB of RAM were 418 

mobilized to perform the calibration, which involved several iterative trials over more than one 419 

year. 420 

Table 2 Order in which the parameters were estimated in the multi-phase calibration of the OSMOSE-MED model, 421 
using the evolutionary optimization algorithm included in the ‘calibrar’ R package. 422 

Phase Parameters Number of estimated parameters Number of generations 

1 Coefficients of plankton accessibility 7 100 

2 Previous parameters + larval mortalities 107 (including previous 7) 200 

3 Previous parameters + fishing mortalities 194 (including previous 107) 600 

 423 

Due to the inherent stochasticity of OSMOSE, 10 replicated simulations (i.e. with an identical set 424 

of parameters) were averaged to analyze the outputs of the last 10 years. 425 

2.6 Evaluation of OSMOSE-MED outputs with independent data 426 

In order to evaluate the ability of OSMOSE-MED to predict the spatial distribution of the entire 427 

biomass in a realistic way, we compared the model output to observed data that was not used 428 

either for the calibration of OSMOSE-MED, or its parameterization, or for the climate niche 429 

modelling used to generate the species distribution maps. The ranking of geographical sub-430 

areas (GSAs), based on cumulated biomass estimates by species (in kg.km-2) from the MEDITS 431 

survey (International bottom trawl survey in the Mediterranean, Bertrand et al., 2002) in 2006–432 

2013 was compared to the ranking predicted in OSMOSE-MED (see Appendix F for the 433 

correspondence between GSA numbers, names and sizes). To evaluate the consistency of the 434 

OSMOSE-MED model at the community level, the mean trophic level (mTL) of each species was 435 

calculated and compared with three different sources: the FishMed database, which contains 436 

ecological and biological traits for 635 Mediterranean fish species (Albouy et al., 2015), the 437 

Ecopath model built at the scale of the Mediterranean basin by Piroddi et al. (2017, 2015a), and 438 

a review of feeding habits and trophic levels of 148 Mediterranean fish species (Karachle and 439 

Stergiou, 2017; Stergiou and Karpouzi, 2002). 440 

An important step in the validation of the model lay in comparing simulated species diets to 441 

observations and to current knowledge of the trophic functioning of the Mediterranean 442 



ecosystem. In OSMOSE, the diet composition of a species is not determined a priori in model 443 

input, but emerges from the assumption of an opportunistic predation process, based on 444 

predator–prey size constraints and spatio-temporal co-occurrence. To check whether this size-445 

based predation rule led to realistic and consistent dietary features, we focused on the diet 446 

composition of four of the most important species in terms of catch volume or value in the 447 

Mediterranean, namely the European anchovy, the European pilchard, the red mullet and the 448 

European hake. We compared the adult diets modelled by OSMOSE-MED to the diets derived 449 

from the mass-balanced Ecopath model of the Mediterranean Sea (Piroddi et al., 2015a), as the 450 

functional groups in the latter were mostly parameterized to represent adults. The diet matrix 451 

used for parameterizing Ecopath was compiled from the available literature and mainly based on 452 

empirical data (Piroddi et al., 2017, 2015a), it is thus a convenient way to access observed diets 453 

and current knowledge on major trophic interactions, at least for well-studied species. 454 

3 Results and discussion 455 

3.1 Calibration  456 
 457 

Our OSMOSE-MED model reached a steady state after around 50 years of simulation. The 458 

evolutionary algorithm converged and stabilized after 500 generations. Both negative log-459 

likelihoods and global AIC improved during each phase, but regarding the global evolution of the 460 

likelihoods, larval mortality parameters seemed to play the most important role in the calibration 461 

process.  462 

Accessibility coefficients of LTL groups to HTL organisms ranged between around 10-9 and 10-1 463 

(Appendix E). The smallest values were obtained for small-size plankton groups (except for 464 

picophytoplankton), which could be expected in view of their high biomass and low predation 465 

rates by HTL organisms (Jackson and Lenz, 2016; Morote et al., 2010; Pepin and Penney, 466 

2000). In contrast, higher coefficients were found for mesozooplankton and benthos groups, for 467 

which around 1% and 0.5% were respectively available to predation by HTL. These coefficients 468 

were in the same order of magnitude as in other modelled ecosystems (e.g. Grüss et al., 2015; 469 

Marzloff et al., 2009; Travers-Trolet et al., 2014).  470 

Estimated larval mortality rates (M0) ranged between 0.14 year-1 for the caramote prawn 471 

(Penaeus kerathurus) and 10.60 year-1 for the small-spotted catshark (Scyliorhinus canicula) 472 

(Appendix E). The larval mortality rate found for P. kerathurus was probably an underestimate, 473 

since compared to the value (M0 =1.58 year-1) estimated by Halouani et al. (2016b) with the 474 



OSMOSE-GoG model, the biomass estimated by our model lies outside a valid interval. The 475 

majority of larval mortality lay between 1.49 and 5.29 year-1 (mean = 3.69 ± 2.70 year-1; 476 

Appendix E). A low larval mortality rate estimated by the evolutionary algorithm for a particular 477 

species does not necessarily mean that the total natural mortality is small, but may reflect that 478 

most of the sources of mortality (predation by the other modelled species, for example) are 479 

simulated explicitly in the model (Travers-Trolet et al., 2014). 480 

As fishing mortality rates (F) estimated by stock assessments were not available for all exploited 481 

species, we chose to estimate these parameters by comparing the model output to observed 482 

and reconstructed catches during the third phase of the calibration process. Most of the fishing 483 

mortality rates were within the range of 0.23 to 0.8 year-1, and the global fishing mortality rate 484 

was on average 0.60 ± 0.48 year-1 (Appendix E).  485 

3.2 Comparing OSMOSE-MED predictions to observations and current knowledge 486 

3.2.1 Species biomass 487 

In our model, the estimated biomass, averaged over the last ten years of simulation and over ten 488 

replicates, generally fell in acceptable intervals (i.e. above FAO reported catch and below a 489 

theoretical maximum biomass considering an exploitation rate of 15% for the averaged FAO-490 

SAU catches) (Figure 2). For species for which stock assessments were available – for instance, 491 

the European pilchard (Sardina pilchardus), the European anchovy (Engraulis encrasicolus) and 492 

the European hake (Merluccius merluccius) – the total biomass predicted by OSMOSE-MED 493 

was slightly higher or very close to previously estimated biomass (Figure 2). Given that most 494 

available stock assessments were for European waters, the higher estimated biomass for 495 

species such as Sardina pilchardus, Parapenaeus longirostris and Mullus barbatus barbatus 496 

may actually reflect a biomass volume present in the southern Mediterranean or in unassessed 497 

areas of the Mediterranean Sea. Overall, the European anchovy and the European pilchard 498 

(around 1.8 million tons of biomass) represented around 50% of the total cumulative biomass of 499 

the system (excluding plankton). The prevalence, in terms of biomass, of pelagic fish was also 500 

found in an Ecopath model of the Mediterranean Sea (Piroddi et al., 2015a). For species such as 501 

Crangon crangon, Atherina boyeri and Etrumeus teres, due to their highly variable population 502 

dynamics (high fecundity, short lifespan, high biomass turnover rate), biomass was particularly 503 

difficult to calibrate and was overestimated by OSMOSE-MED. Additionally, for non-native 504 

species (e.g. Etrumeus teres), more research is needed on their biology and ecology in their 505 

new expansion areas in order to obtain robust life history trait estimates and improve model 506 

predictions (Dimarchopoulou et al., 2017; Katsanevakis et al., 2014, 2012). The lack of stock 507 



assessments or difficulty in accessing these assessments constitute real barriers to the 508 

development, parameterization and calibration of ecosystem models in the region (Coll et al., 509 

2013; Katsanevakis et al., 2015; Piroddi et al., 2015a). Around 25% of landed biomass and less 510 

than 10% of exploited stocks are currently assessed, and this on an irregular basis (Tsikliras et 511 

al., 2015). Moreover, the monitoring of fish stocks is hindered by the lack of biological or 512 

ecological observational data for far too many species, with approximately 80% of landings 513 

coming from stocks that are data deficient (Dimarchopoulou et al., 2017; Le Quesne et al., 514 

2013).  515 

 516 

Figure 2 Average biomass of exploited species (87 species out of the 100 modelled) predicted by OSMOSE-MED (in 517 
orange) in log scale and associated standard deviation. Cumulative biomass from stock assessments (in blue) (only 518 
cumulative biomass higher than the FAO reported catch is shown). The grey bars show the minimum biomass (the 519 
FAO reported catch) and the theoretical maximum biomass, considering an exploitation rate of 15% and the average 520 
between the FAO and Sea Around Us catch.  521 

The model accurately predicted the spatial distribution of the overall biomass, at least for the 522 

northern part of the Mediterranean where the MEDITS surveys were conducted, as suggested 523 

by the significant Spearman’s rank correlation coefficient value of 0.71 between MEDITS and 524 

OSMOSE-MED biomass ranking. Differences that exist between the rankings of certain GSAs 525 

can be explained in two ways. For instance, around the island of Corsica, OSMOSE-MED 526 

predicted less relative biomass (ranked 15 out of a total of 16 GSAs) than was estimated by 527 

MEDITS (ranked 8). This is partly due to the very narrow continental shelf around Corsica and to 528 



the resolution of our model (20×20 km²), which may be too coarse to represent the dynamics in 529 

this area, with the result that the climate niche models and distribution maps input in OSMOSE-530 

MED did not resolve precisely enough the spatial distribution of species closely associated to the 531 

Corsican continental shelf. Developing OSMOSE-MED at a finer resolution was attempted in the 532 

early stages of model configuration, but the computing cost for the calibration process was 533 

judged too high (at least two to three times the computing time required for a 10×10 km² 534 

resolution). In contrast, for GSAs that ranked higher in OSMOSE-MED than in MEDITS (i.e. 535 

below the 1:1 line in Figure 3), these differences could be explained by the fact that MEDITS is a 536 

demersal trawl survey with low catchability of small pelagic fish. While data from the trawl survey 537 

is useful in assessing the spatial and temporal trends of pelagic species in the Mediterranean 538 

(Brind’Amour et al., 2016), some biases may exist, such as the survey’s potential significant 539 

underestimation of the biomass of some small pelagic fish. 540 

 541 

 542 

Figure 3 Comparison of predicted and observed ranking of total biomass by geographical sub-areas (GSAs). 543 
Observed total biomass data is from the MEDITS survey (2006–2013). Circle size is proportional to the total predicted 544 
biomass in the GSA. Solid line is the 1:1 relationship. 545 

3.2.2 Species catches 546 

Catches predicted by OSMOSE-MED were globally consistent with reported/reconstructed catch 547 

data in the Mediterranean Sea (Figure 4 and Figure 5). Our model predicted a total catch of 548 

around 802,470 t at the scale of the whole basin, which compares well to the 681,243 t recorded 549 



by the FAO and the 952,930 t reconstructed by the Sea Around Us (817,087 t on average). The 550 

European pilchard and the European anchovy represented almost 30% of the total catch in 551 

OSMOSE-MED and around 40% in reported or reconstructed catches over the 2006–2013 552 

period (FAO, 2016; Pauly and Zeller, 2016). According to Stergiou et al. (2015), small pelagic 553 

species, mainly European anchovy and European pilchard, dominate the landings across the 554 

entire Mediterranean, making up 34% of cumulative landings in the western Mediterranean, 41% 555 

in the central area, and 25% in the east. The Spearman’s correlation coefficient between the 556 

rank of the average FAO-SAU catch by species and that estimated by OSMOSE-MED was 0.79 557 

(Figure 5). The main difference between predicted and average reported/reconstructed catches 558 

came from the model’s under- or overestimation of species biomass. For instance, the common 559 

prawn (Palaemon serratus) seemed to be underestimated in terms of predicted biomass and 560 

catch. For species for which stock assessment biomass estimates were available, the 561 

OSMOSE-MED model predicted the catches relatively well. For instance, the OSMOSE-MED 562 

estimated catch for the European anchovy was around 118,480 t, while the FAO reported catch 563 

was 103,650 t and the SAU reconstructed catch was 169,870 t over the 2006–2013 period. 564 

In the current version of OSMOSE (Version 3 update 2), fishing effort is homogeneous in space. 565 

Catch outputs could be improved with spatialization of the fishing effort – this is being 566 

implemented in the latest version in development. However, data on fishing effort and 567 

distribution is either unavailable or difficult to access in some Mediterranean regions 568 

(Katsanevakis et al., 2015). One solution might be to use data from the new Global Fishing 569 

Watch database, which collects data from an automatic identification system (AIS) of fishing 570 

fleets around the world (Kroodsma et al., 2018). An index of the fishing effort in the 571 

Mediterranean Sea could then be calculated by evaluating the fishing time by vessel 572 

characteristics (Kroodsma et al., 2018). However, as most of the fishing boats in the 573 

Mediterranean fleet are less than 10 m and AIS is only compulsory for large European vessels, 574 

effort would remain underestimated (Ferrà et al., 2018). Fitting an ecosystem model based on 575 

catch data is a difficult task in the Mediterranean due to the poor quality of fishery statistics 576 

(Pauly et al., 2014; Piroddi et al., 2017). A significant quantity of catches is still not recorded and 577 

some stocks are data deficient. The large difference (almost twice) between reported and 578 

reconstructed catches highlighted by Pauly and Zeller (2016) illustrates this issue. As suggested 579 

by Piroddi et al. (2017), better and improved availability of catch data for modelling studies could 580 

help to estimate more realistic fishing trends and mortalities in space and time. The new 581 

MedFish4Ever initiative, launched by the European Commission in 2017 to rebuild a sustainable 582 



fisheries sector, could play a key role in the improvement of such data, at least in the northern 583 

Mediterranean (https://ec.europa.eu/fisheries/inseparable/en/medfish4ever).  584 

 585 

 586 

Figure 4 For the 2006–2013 period, average catches predicted by OSMOSE-MED of all exploited species (in orange) 587 
in log scale and associated standard deviation. Average FAO–SAU catch data, which served as target data during the 588 
calibration process, in blue. Grey bars show the minimum (FAO reported) catch and the maximum (SAU 589 
reconstructed) catch.  590 



 591 

Figure 5 Comparison of predicted and observed ranking of catches by species. Reported/reconstructed catches are 592 
the averages of FAO-SAU catches (2006–2013). Circle size is proportional to the predicted catches. Predictions and 593 
data for the 2006-2013 period. Solid line is the 1:1 relationship.  594 

3.2.3 Species trophic levels 595 

In general, the trophic levels predicted by OSMOSE-MED were consistent with the results 596 

obtained by other studies in the Mediterranean (Figure 6). A significant majority (69%) of the 597 

OSMOSE-MED mTLs were close to previously estimated mTLs (by less than 0.3). Of the 81 598 

species that had several mTL data sources, OSMOSE-MED mTLs stood within the range of 599 

previously estimated mTLs for 58 species (72% of the species). Trophic levels from OSMOSE-600 

MED were generally higher than those of the Ecopath model and generally lower than those of 601 

FishMed, which were mainly from the Fishbase database (Albouy et al., 2015). The significant 602 

Spearman’s correlation coefficients between the OSMOSE-MED trophic levels and the FishMed, 603 

Ecopath and Karachle and Stergiou (2017) trophic levels were 0.67, 0.51 and 0.68, respectively. 604 

In OSMOSE-MED, the swordfish Xiphias gladius had the highest trophic level 605 

(mTL = 4.64 ± 0.002) and the European pilchard had the lowest (mTL = 3.11 ± 0.0003). Large 606 

pelagic fish species such as the swordfish, dolphinfish (Coryphaena hippurus), bluefin and 607 

albacore tuna (Thunnus thynnus and Thunnus alalunga), and Atlantic bonito (Sarda sarda), 608 

shark species such as the common guitarfish (Rhinobatos rhinobatos), common smooth-hound 609 

(Mustelus mustelus) and small-spotted catshark (Scyliorhinus canicula), and demersal species 610 

such as the European hake (Merluccius merluccius) were all identified as top predators by the 611 



OSMOSE-MED model (i.e. mTL > 4.15). These results are consistent with other trophic models 612 

for the Mediterranean, which have identified large pelagic fish and shark species (except for 613 

common guitarfish) at the top of the food web (Albouy et al., 2010; Coll et al., 2007; Corrales et 614 

al., 2015; Halouani et al., 2016; Hattab et al., 2013a). 615 

 616 

 617 

Figure 6 Mean species trophic levels predicted by OSMOSE-MED (in orange), the FishMed database (Albouy et al., 618 
2015) (in blue), the Mediterranean Ecopath model (Piroddi et al.,2017, 2015a) (in green) and Karachle and Stergiou 619 
(2017) (in purple).  620 

3.2.4 Species diets 621 
 622 

In regard to the prey composition of the diet of the four species under scrutiny, OSMOSE-MED 623 

and the Mediterranean Ecopath model were more or less in agreement (Figure 7). For the 624 

European anchovy and the European pilchard, the simulated diets were similar and largely 625 

dominated by zooplankton, a pattern in line with other observations (Karachle and Stergiou, 626 

2017; Stergiou and Karpouzi, 2002). In OSMOSE-MED, the European pilchard consumed less 627 

phytoplankton (4.5%, mainly diatoms) than in the Ecopath model (10%), but the result remains 628 

qualitatively realistic (i.e. the main prey is zooplankton followed by phytoplankton). The 629 

dominance of zooplankton in the diet of pilchards could be explained in two ways. First, the 630 

availability coefficients of phytoplankton to HTL organisms were estimated to be very low by the 631 

model calibration (ranging between 10-1 and 10-7), which does not allow the European pilchard to 632 

feed more on these groups. Secondly, it has been shown that European pilchard populations 633 

living in lower productivity regions, as is the case for the Mediterranean, would preferentially 634 

capture larger individual prey via particulate feeding and would consume more zooplankton than 635 

populations in the Northwest Atlantic (Costalago et al., 2015). Regarding red mullet (Mullus 636 

barbatus barbatus), the main difference between the two models lies in the higher proportion of 637 



zooplankton prey predicted by OSMOSE-MED. This discrepancy is due to the fact that some of 638 

the crustaceans eaten in the Ecopath model were either included in the benthos group in the 639 

simulated diet of the red mullet in OSMOSE-MED or explicitly modelled at the species level, as 640 

is the case for P. longirostris and P. kerathurus. For the European hake, most of its prey 641 

simulated by OSMOSE-MED was grouped in more aggregated trophic boxes in Ecopath. For 642 

instance, Ecopath classified shrimps in the functional group ‘crustaceans’, octopus in ‘benthic 643 

cephalopods’, and some species such as Mullus surmuletus or Boops boops in ‘small 644 

demersals’. However, the proportional contribution of some prey such as the European pilchard 645 

and European anchovy differed more significantly between the two models. For example, the 646 

European pilchard represented 5.7% of the diet of the European hake in OSMOSE-MED and 647 

12.5% in Ecopath. This may be explained by the fact that the hake diet varies greatly depending 648 

on prey availability and abundance, both in the Mediterranean and in the Atlantic Ocean 649 

(Carrozzi et al., 2019; Cartes et al., 2009; Velasco and Olaso, 1998). Carrozzi et al. (2018) 650 

found, for instance, that in the central Mediterranean, the European pilchard represented 3.78% 651 

and the European anchovy 1.32% of the hake diet. 652 

 653 

Figure 7 Diets simulated by OSMOSE-MED and the Mediterranean Ecopath model for four species (two small pelagic 654 
fish species (European anchovy and European pilchard) and two dermersal fish species (red mullet and European 655 
hake). Functional groups used in the Ecopath model in which OSMOSE-MED species are grouped are indicated in 656 
parentheses. In both cases, diets are expressed as a percentage of overall prey by mass. 657 



3.2.5 Emerging spatial patterns 658 

The total biomass (all HTL species combined) was mainly distributed on the continental shelf 659 

and in areas where primary and secondary production were higher (Figure 8), in line with 660 

findings from previous studies (Durrieu de Madron et al., 2011; Bosc et al. 2004). The higher 661 

biomass found in highly productive areas (the Gulf of Lion, the Catalan Sea or the South 662 

Levantine Sea, fed respectively by the Rhône, Ebro and Nile rivers, which enhance primary 663 

productivity through nutrient discharge and hence play a major role in local food webs) 664 

suggested that primary production, through bottom-up control, was one of the main drivers of the 665 

biomass distribution of HTL organisms in the Mediterranean Sea. Numerous Ecopath models 666 

built at more local scales in the region confirm this hypothesis (Coll et al., 2007, 2006; Coll and 667 

Libralato, 2012; Halouani et al., 2016; Hattab et al., 2013a). The control of marine productivity, 668 

from plankton to fish, principally mediated through bottom-up processes that can be traced back 669 

to the characteristics of riverine discharges, has also been demonstrated by Macias et al. 670 

(2014). This renders the Mediterranean Sea vulnerable to sources of potential impacts on 671 

primary production such as climate change and marine pollution (Cheung et al., 2011; Jochum 672 

et al., 2012; Macias et al., 2015; Moullec et al., 2016) and highlights the need for integrating 673 

physicochemical oceanographic drivers with the dynamics of HTL organisms in a single 674 

modelling framework in order to take into account possible bottom-up control and improve our 675 

ability to predict future ecosystem changes (Piroddi et al., 2017; Rose et al., 2010; Travers-676 

Trolet et al., 2014). It should also be noted that since fishing effort was spatially uniform in our 677 

model, we could not precisely assess the direct role of fishing in the spatial distribution of the 678 

HTL biomass, but only its impacts on species biomass, composition and interactions, which 679 

were indirectly reflected by the biomass distribution across the Mediterranean Sea. 680 

A low gradient of biomass was observed from northwestern to southeastern regions, in line with 681 

previously observed gradients of production and biodiversity (Coll et al., 2010; Mouillot et al., 682 

2011). The OSMOSE-MED model showed the western Mediterranean Sea accounting for 35% 683 

of total biomass, the Adriatic Sea 9%, the Ionian and central Mediterranean Seas 31%, and the 684 

Aegean and Levantine Seas 25%. The total biomass in the Adriatic Sea may be an 685 

underestimation in view of the results of a Mediterranean Ecopath model (Piroddi et al., 2015a), 686 

which found that the Adriatic Sea had the highest total biomass, followed by the western 687 

Mediterranean Sea and the Ionian and Eastern Seas. This is partly due to the Eco3M-S 688 

biogeochemical model’s underestimation of the concentration of phytoplankton in this area 689 

(Kessouri, 2015). In OSMOSE-MED, the Eastern basin appeared highly oligotrophic, with low 690 



biomass values, with the exception of the Gulf of Gabès and the waters surrounding the Nile 691 

plume, two regions that have been characterized by high productivity (Hattab et al., 2013a). 692 

 693 

Figure 8 Spatial distribution of the simulated total biomass (left) and catches (right) (all HTL species combined) 694 
expressed in t.km-2. Graphs on the top and right respectively represent the meridionally and zonally averaged 695 
distribution of biomass and catches.  696 

The spatial distribution of catches, resulting from uniformly distributed fishing effort, generally 697 

followed the spatial distribution of biomass, with relatively fewer catches in the high seas (Figure 698 

8). As with biomass, the model predicted a low gradient of catch from the north to the south and 699 

from the west to the east, in line with the pattern of productivity in the Mediterranean (Bosc et al., 700 

2004; Ignatiades et al., 2009). The Iberian shelf waters, the Balearic Sea, the Gulf of Lion, the 701 

North Tyrrhenian Sea, the Adriatic Sea, the waters south of Sicily, the Gulf of Gabès and the 702 

north Aegean Sea were all identified as exploitation hotspots concentrating most of the catches 703 

at the scale of the Mediterranean. Most of these have been identified as highly impacted areas 704 

(Micheli et al., 2013a), in particular by demersal fishing activity and climate-induced change, and 705 

coincide with the areas of conservation concern identified by Coll et al. (2012). 706 

The distribution of the mean body size of the fish community revealed a clear gradient from the 707 

northwestern to the southeastern regions (Figure 9). Despite the fact that small pelagic fish 708 

species were mainly concentrated in the northwestern region, the mean body size weighted by 709 

abundance values was higher in the northern part of the basin. Some authors have argued that 710 

high salinity, high temperature, low productivity or a combination of all these factors are 711 

responsible for ‘Levantine nanism’ (dwarfism), a phenomenon that results in small body sizes for 712 

all species in general (Por, 1989; Sharir et al., 2011; Sonin et al., 2007). In OSMOSE, growth in 713 

size is linked to predation success. If predation success is lower than a critical predation 714 

efficiency threshold corresponding to maintenance requirements, fish can starve, and the growth 715 

rate is reduced (Shin and Cury, 2001). Thus, the oligotrophic conditions in the eastern 716 

Mediterranean could lead to reduced growth rates and smaller size for some species, as 717 



indicated in the OSMOSE-MED model. The spatial distribution of mean size also showed large 718 

individuals in the Western high seas, where catches were lower (Figure 9). The large mean body 719 

size in this area is likely explained by the greater local abundance of large fish species (e.g. 720 

Thunnus thynnus and Xiphias gladius) in the Western high seas. On the other hand, the small 721 

body size found in certain areas (e.g. around the Balearic Islands, the Northern Adriatic Sea and 722 

Cyprus) could be the result of heavy fishing, which preferentially harvests larger-bodied 723 

individuals (either of a given species, or of species with larger mean size) and also induces the 724 

natural selection of slow-growing individuals (Jørgensen et al., 2007; Law, 2000; Shin et al., 725 

2005).  726 

 727 

Figure 9 Spatial distribution of mean body size (mean size weighted by species abundance) expressed in cm. Graphs 728 
at the top and right represent the meridionally and zonally averaged weighted size. 729 

4 Conclusion and perspectives 730 

4.1 A unique large-scale end-to-end model 731 

While numerous trophic modelling studies have been carried out on the Mediterranean Sea, 732 

most are at a local scale (Bănaru et al., 2013; Coll et al., 2007; Corrales et al., 2017b, 2017a; 733 

Halouani et al., 2016; Hattab et al., 2013a), with a few rare examples at the basin scale (Albouy 734 

et al., 2014; Piroddi et al., 2017, 2015a). This study was the first attempt to use an end-to-end 735 

trophic approach at the scale of the entire Mediterranean Sea, with explicit spatial, life-trait-736 

based modelling of the whole lifecycle of the dynamics of 100 interacting species. The 737 

OSMOSE-MED integrated end-to-end model coupled a physical model (NEMOMED 12), a low 738 

trophic level model (Eco3M-S) and a high trophic level model (OSMOSE) to represent the 739 

ecosystem dynamics and the trophic structure of the entire Mediterranean. The OSMOSE 740 

model, originally developed by Shin and Cury (2004, 2001), has never been applied to such a 741 



large number of species in interaction and at such a broad spatial scale. As noted by Fu et al. 742 

(2017), no more than 10 to 15 key species are typically included in an OSMOSE model. This 743 

restricted number of species may be explained by: (i) the extensive data required concerning 744 

species’ life histories to properly parameterize a model, (ii) the computing capacity required to fit 745 

the model to observations, and (iii) a desire to focus on major species and interactions to 746 

simplify the complexity of the system. We decided to take the modelling approach to the next 747 

step to allow much more comprehensive, explicit modelling of a large number of marine species. 748 

Our ultimate goal was to build a tool representing the diversity of species and their interactions in 749 

a realistic way at a basin-wide scale, in order to better address the future repercussions of 750 

climate change (e.g. species distribution shifts and plankton production changes) combined with 751 

other anthropogenic drivers on biodiversity (e.g. fishing). By modelling the spatial dynamics of 752 

the community across the whole Mediterranean as well as in geographical sub-areas, we can 753 

predict the potential cascading effects of these changes on food webs and ecosystem services.  754 

To our knowledge, OSMOSE-MED is the most complete model built at the scale of the entire 755 

Mediterranean in terms of species and process representativeness. We used existing biological 756 

and ecological data from various databases and also took advantage of the high-performance 757 

computing (HPC) platform DATARMOR, which allowed the calibration of such a complex model. 758 

As for most end-to-end models, one challenge lies in searching through and integrating a large 759 

amount of data from various sources – databases, scientific and ‘grey’ literature, output from 760 

other models (de Mora et al., 2016; Fulton, 2010). While OSMOSE-MED integrated the best 761 

ecological knowledge available for the Mediterranean, certain gaps should be noted, mainly 762 

concerning fish species in the southern part of the basin (Dimarchopoulou et al., 2017). 763 

According to some estimates, there is no biological information for as many as 43% of 764 

Mediterranean fish species (Dimarchopoulou et al., 2017). This lack of biological and ecological 765 

data, as well as the variable quality of commercial fisheries data, especially in the southern and 766 

eastern Mediterranean Sea, hinder reliable stock assessments. A crucial challenge is to 767 

increase the number of assessed stocks: first, to ensure their sustainable exploitation, and 768 

second, to allow the development of integrated ecosystem models that would help to design 769 

more effective ecosystem-based fisheries management in the Mediterranean basin (Coll et al., 770 

2013; Piroddi et al., 2017, 2015a; Cardinale and Scarcella, 2017; Colloca et al., 2013). Another 771 

challenge is that the region generally suffers from problems with data ownership, reliability and 772 

accessibility (Katsanevakis et al., 2015).  773 



The model also represents a significant advance in complex ecosystem modelling. The most 774 

critical and time-consuming step, given the stochasticity and the complexity of the model, was to 775 

maintain the coexistence of all HTL species to provide a realistic representation of biodiversity. 776 

In an OSMOSE model, the number of trophic links, the connectance, and the importance of 777 

feedback controls can be very large and can make the calibration procedure complicated and 778 

time-consuming (Halouani et al., 2016; Marzloff et al., 2009; Travers-Trolet et al., 2014). We 779 

exploited the capacities of the evolutionary optimization algorithm in order to find a set of 780 

estimated parameters within a 195-dimensional search space that reproduced state variables 781 

and indicators close to observations (Oliveros-Ramos et al., 2017; Oliveros-Ramos and Shin, 782 

2016). This is the first time the ‘calibrar’ R package has been used to configure such a complex 783 

model (a large number of parameters in a stochastic model with many nonlinearities), and it 784 

proved its ability to solve complicated minimization problems (Oliveros-Ramos and Shin, 2016). 785 

Due to computing time and the need for continuous iterative trials and feedback between model 786 

parameterization and observations, the calibration of OSMOSE-MED took more than a year and 787 

required high-performance computing facilities. The development of OSMOSE-MED is an 788 

important step forward for both OSMOSE and calibrar user communities, and more broadly for 789 

the field of ecosystem modelling, as proof of concept that the complex representation of species 790 

dynamics and interactions can be achieved and can produce realistic spatial and lifecycle 791 

dynamics of multiple species subject to climate and anthropogenic impacts. 792 

4.2 Limitations of the model 793 

Ecosystem models, despite their increasing complexity, granularity and representativeness 794 

remain idealized or simplified conceptual representations of very complex systems 795 

(Gunawardena, 2014). These simplifications result in certain limitations in our model: 796 

- Benthos compartment: strong benthic–pelagic coupling exists in the Mediterranean Sea, as 797 

highlighted in several Ecopath models of the region (Bănaru et al., 2013; Coll et al., 2007; 798 

Corrales et al., 2015; Hattab et al., 2013a). Moreover, many species included in OSMOSE-MED 799 

have omnivorous and carnivorous diets partly based on benthic organisms such as polychaetes, 800 

amphipods or crustaceans. To account for this, we added to the model a benthos ‘black box’ 801 

with a constant biomass and uniform spatial distribution. Given its importance in the 802 

Mediterranean, this trophic compartment would merit improved representation: for example, by 803 

considering multiple functional groups with common biological and ecological characteristics 804 

(e.g. meiofauna, bivalves, echinoderms) (Grüss et al., 2016). As the data to do this is lacking for 805 

both the parameterization and calibration of the model, an intermediate complexity approach 806 



could be adopted to model these more refined benthic compartments as ‘background taxa’ for 807 

which only predation, mean growth rate and spatial distribution are modelled. This new category 808 

of ‘intermediate complexity’ species would deal with limited datasets and allow more species of 809 

interest to be included while keeping the model reasonably complex: this has recently been 810 

coded in OSMOSE (Fu et al., 2017). 811 

- Ontogenetic habitat shifts: Numerous species included in OSMOSE-MED exhibit clear 812 

ontogenetic habitat shifts in the Mediterranean (Cartes et al., 2009; Druon et al., 2016, 2015; 813 

Giannoulaki et al., 2013b, 2013a; Macpherson, 1998). These range shifts can play a critical role 814 

in population dynamics and ecosystem functioning (MacCall, 1990; Macpherson and Duarte, 815 

1991; Methratta and Link, 2007). For instance, Caddy (1990) hypothesized that the sustainability 816 

of the majority of Mediterranean fisheries depends on spawners refuging on continental slopes. 817 

For most major commercial species (including hake, monkfish and shrimp), the continental slope 818 

and canyons, less accessible to fishing fleets, are used as spawning areas, while the continental 819 

shelf and the coastal strip, which are more intensively fished, are preferred zones for nurseries 820 

(Würtz, 2012). Thus, including different spatial distribution maps (i.e. spawning and nursery 821 

grounds) for certain key species such as small pelagic fish (e.g. European anchovy, European 822 

pilchard and European mackerel) and demersal fish (e.g. European hake and red mullet) could 823 

potentially improve the spatial representation of food webs and population dynamics, as well as 824 

their vulnerability to fishing. Habitat suitability models by stage or size class that relate 825 

abundance information from surveys to environmental variables could be used for this purpose 826 

(Druon et al., 2015; Giannoulaki et al., 2013a). 827 

- Biological and ecological processes: OSMOSE does not model many processes relating to the 828 

lifecycle of species which depend on highly sophisticated regulatory mechanisms that modulate 829 

physiological organism responses (e.g. diel and seasonal rhythms, sexual maturation and 830 

mating, resting phases, behavioral and ontogenetic plasticity, migratory patterns or variable prey 831 

selectivity according to net energy gained). In order to improve the ability to represent complex 832 

marine systems, the metabolic requirements of species should be considered in future modelling 833 

studies (Carozza et al., 2019; Jørgensen et al., 2016). In our approach, the representation of 834 

growth and fecundity could be replaced by a bioenergetics model that mechanistically 835 

represents the energetic trade-off between growth and reproduction and describes plasticity in 836 

bioenergetic rates in response to food abundance, oxygen and temperature. 837 

- Spatialized fishing effort/mortality: While OSMOSE-MED assumed a uniform spatial distribution 838 

of fishing effort, this is not realistic since fishing effort is mainly distributed along coasts and the 839 



continental shelf (Kroodsma et al., 2018; Leleu et al., 2014; Maynou et al., 2011; Ramírez et al., 840 

2018), although the lower biomass in the open sea counterbalances this potential source of bias 841 

(Figure 8). In addition, fisheries targeting large pelagic fish such as tuna or swordfish often 842 

operate in the open sea, due to the distribution pattern of the target species (Druon et al., 2016).  843 

Fishing effort metadata, reported at the scale of species and geographical sub-area, available in 844 

the Data Collection Reference Framework (GFCM, 2018) could be used to improve the 845 

differential pressures exerted by fishing across the Mediterranean. Another option to spatialize 846 

fishing effort/mortality would be to model as many exploited populations of a species as the 847 

number of evaluated stocks. This would require knowing the true number of stocks in the 848 

Mediterranean and the possible connectivity between them (Fiorentino et al., 2014; Ragonese et 849 

al., 2016). 850 

- Uncertainty: Marine ecosystems are structurally complex, spatially and temporally variable, and 851 

difficult and costly to observe, all of which can potentially lead to considerable uncertainty in 852 

model predictions (Cheung et al., 2016; Hill et al., 2007; Payne et al., 2016). There are many 853 

sources of uncertainty in ecosystem models, from structural (model) uncertainty, and 854 

initialization and internal variability uncertainty to parametric uncertainty (Payne et al., 2016). 855 

Assessing these different types of uncertainty would allow building confidence intervals around 856 

the OSMOSE-MED predictions and increase its relevance for making projections and supporting 857 

policymaking in the Mediterranean Sea (Gal et al., 2014; Hill et al., 2007; Hyder et al., 2015; 858 

Payne et al., 2016). Uncertainty due to the sources of input data (i.e. parametric uncertainty) 859 

could be tested as a first step. While most of the data used for parameterizing the model came 860 

from the study area, some parameters for data-poor species (e.g. relative fecundity and growth 861 

parameters) were obtained from ecosystems outside the Mediterranean region, and these can 862 

differ considerably according to the ecosystem (Halouani et al., 2016). A sensitivity analysis on 863 

such parameters could be carried out following the methodology employed in Lehuta et al. 864 

(2010) or Ortega-Cisneros et al. (2017). 865 

4.3 Potential uses of OSMOSE-MED 866 

This integrated ecosystem model of Mediterranean marine biodiversity can provide valuable 867 

scientific support to fishery management strategy in light of the combined effects of fishing and 868 

climate change (Moullec et al., 2019).  869 

For example, the model can provide insights on climate change impacts on operational fisheries 870 

reference levels, such as Maximum Sustainable Yield (MSY) and multi-species MSY at the 871 

Mediterranean scale (Lehuta et al., 2016). It could also guide spatial conservation planning 872 



priorities, such as the implementation of marine protected area networks (Lehuta et al., 2016; 873 

Liquete et al., 2016; Micheli et al., 2013b) as required by the Marine Strategy Framework 874 

Directive (MSFD) (European Commission, 2008). Many MSFD indicators regarding biodiversity 875 

and food webs can be directly derived from OSMOSE-MED, making it a relevant tool to aid the 876 

policy objective of achieving ‘Good Environmental Status’ for all European seas by 2020 877 

(Cardoso et al., 2010; Piroddi et al., 2015b). Evidence provided by the model can also inform 878 

decision-making in the framework of the EU’s Blue Growth strategy to support sustainable 879 

growth in the marine and maritime sectors (European Commission, 2017), as well as the mid-880 

term strategy (2017–2020) of the General Fisheries Commission for the Mediterranean (GFCM), 881 

developed to support the achievement of UN Sustainable Development Goal 14 (GFCM, 2017b). 882 

Lastly, the model can be used as a tool to communicate with stakeholders, including managers 883 

and non-scientist end users of Mediterranean ecosystems, to help incorporate scientific 884 

evidence into environmental decision-making (Cartwright et al., 2016; Jönsson et al., 2015; Rose 885 

et al., 2010).  886 
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