H. Kleykamp, The chemical state of the fission products in oxide fuels, J. Nucl. Mater, vol.131, issue.2, pp.221-246, 1985.

P. C. Burns, R. C. Ewing, and A. Navrotsky, Nuclear Fuel in a Reactor Accident, Science, vol.335, issue.6073, pp.1184-1188, 2012.

J. Bruno and R. C. Ewing, Elements, vol.2, issue.6, pp.343-349, 2006.

M. H. Piro, J. Banfield, K. T. Clarno, S. Simunovic, T. M. Besmann et al., Coupled thermochemical, isotopic evolution and heat transfer simulations in highly irradiated UO 2 nuclear fuel, J. Nucl. Mater, vol.441, issue.1, pp.240-251, 2013.

A. Vaudano, Monographie DEN, Le traitement-recyclage du combustible nucléaire usé, 2008.

T. Fukasawa and Y. Ozawa, Relationship between dissolution rate of uranium dioxide pellets in nitric acid solutions and their porosity, Journal of Radioanalytical and Nuclear Chemistry, vol.106, issue.6, pp.345-356, 1986.

T. Fukasawa, Y. Ozawa, and F. Kawamura, Generation and decomposition behavior of nitrous-acid during dissolution of UO 2 pellets by nitric acid, Nuclear Technology, vol.94, issue.1, pp.108-113, 1991.

Y. Ikeda, Y. Yasuike, Y. Takashima, Y. Park, Y. Asano et al., 17 O NMR study on dissolution reaction of UO 2 in nitric acid mechanism of lectron transfer, Journal of Nuclear Science and Technology, vol.30, issue.9, pp.962-964, 1993.

Y. Ikeda, Y. Yasuike, K. Nishimura, S. Hasegawa, and Y. Takashima, Kinetic-Study on Dissolution of UO 2 Powders in Nitric-Acid, J. Nucl. Mater, vol.224, issue.3, pp.266-272, 1995.

K. Nishimura, T. Chikazawa, S. Hasegawa, H. Tanaka, Y. Ikeda et al., Effect of Nitrous-Acid on Dissolution of UO 2 Powders in Nitric-Acid Optimal Conditions for Dissolving UO 2, Journal of Nuclear Science and Technology, vol.32, issue.2, pp.157-159, 1995.

M. Shabbir and R. G. Robins, Kinetics of the dissolution of uranium dioxide in nitric acid. I, Journal of Applied Chemistry, vol.18, issue.5, pp.129-134, 1968.

R. F. Taylor, E. W. Sharratt, L. E. De-chazal, and D. H. Logsdail, Dissolution rates of uranium dioxide sintered pellets in nitric acid systems, Journal of Applied Chemistry, vol.13, issue.1, pp.32-40, 1963.

M. R. Shabbir and R. G. , The effect of crystallographic orientation on the dissolution of uranium dioxide in nitric acid, J. Nucl. Mater, vol.25, issue.2, pp.236-237, 1968.

J. P. Glatz, H. Bokelund, and S. Zierfuß, Analysis of the Off-Gas from Dissolution of Nuclear Oxideand Carbide Fuels in Nitric Acid, Radiochimica Acta, p.17, 1990.

Y. Zhao and J. Chen, Studies on the dissolution kinetics of ceramic uranium dioxide particles in nitric acid by microwave heating, J. Nucl. Mater, vol.373, issue.1, pp.53-58, 2008.

K. G. Schmid and G. , Berichte der Bunsengesellschaft für physikalische Chemie, vol.68, issue.7, pp.677-688, 1964.

M. F. , Electro-volatilisation du ruthénium en milieu nitrique. -Influences de la nature des formes chimiques du ruthénium et de la composition des solutions modèles de dissolution, PhD, 2004.

Y. Ikeda, Y. Yasuike, Y. Takashima, K. Nishimura, and S. Hasegawa, Acceleration Effect of Noble Metals on Dissolution Rate of UO 2 Powders in Nitric Acid, Journal of Nuclear Science and Technology, vol.30, issue.5, pp.485-487, 1993.

P. T. Poinssot, J. Grouiller, J. Pavageau, J. Piron, M. Pelletier et al., , p.130, 2001.

T. Cordara, S. Szenknect, L. Claparede, R. Podor, A. Mesbah et al., Kinetics of dissolution of UO 2 in nitric acid solutions: A multiparametric study of the non-catalysed reaction, J. Nucl. Mater, vol.496, pp.251-264, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01998337

J. Martinez, N. Clavier, A. Mesbah, F. Audubert, X. F. Le-goff et al., An original precipitation route toward the preparation and the sintering of highly reactive uranium cerium dioxide powders, J. Nucl. Mater, vol.462, pp.173-181, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02009666

L. W. Finger, D. E. Cox, and A. P. Jephcoat, A correction for powder diffraction peak asymmetry due to axial divergence, Journal of Applied Crystallography, vol.27, issue.6, pp.892-900, 1994.

D. Horlait, L. Claparede, F. Tocino, N. Clavier, J. Ravaux et al., Environmental SEM monitoring of Ce 1-x Ln x O 2-x/2 mixed-oxide microstructural evolution during dissolution, Journal of Materials Chemistry A, vol.2, issue.15, pp.5193-5203, 2014.

F. Tocino, Contrôle microstructural des réactions rédox à l'interface solide/solution lors de la dissolution d'oxydes mixtes à base d'uranium (IV), 2015.

A. C. Lasaga, Chemical-Kinetics of Water-Rock Interactions, Journal of Geophysical Research, vol.89, pp.4009-4025, 1984.

D. Langmuir, Aqueous environmental geochemistry, 1997.

L. Desgranges, G. Baldinozzi, G. Rousseau, J. Nièpce, and G. Calvarin, Neutron Diffraction Study of the in Situ Oxidation of UO 2, Inorganic Chemistry, vol.48, issue.16, pp.7585-7592, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00439258

N. J. , Monographie DEN, Les combustibles nucléaires, CEA, 2009.

T. Dalger, S. Szenknect, F. Tocino, L. Claparede, A. Mesbah et al., Kinetics of dissolution of Th 0.25 U 0.75 O 2 sintered pellets in various acidic conditions, J. Nucl. Mater, vol.510, pp.109-122, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02045611

A. C. Lasaga and R. J. , Kinetics of geochemical processes, 1981.

P. Swain, C. Mallika, R. Srinivasan, U. K. Mudali, and R. Natarajan, Separation and recovery of ruthenium: a review, Journal of Radioanalytical and Nuclear Chemistry, vol.298, issue.2, pp.781-796, 2013.

S. Sharma and L. Hines, Oxidation of Ruthenium, IEEE Transactions on Components, Hybrids, and Manufacturing Technology, vol.6, issue.1, pp.89-92, 1983.

P. Marc, A. Magnaldo, A. Vaudano, T. Delahaye, and É. Schaer, Dissolution of uranium dioxide in nitric acid media: what do we know?, EPJ N -Nuclear Sciences & Technologies, vol.3, issue.13, pp.1-13, 2017.
URL : https://hal.archives-ouvertes.fr/cea-01516479

D. Sicsic, Modélisation thermodynamique et cinétique de la réduction de l'acide nitrique concentré, 2011.

J. Souza-garcia, E. A. Ticianelli, V. Climent, and J. M. Feliu, Mechanistic changes observed in heavy water for nitrate reduction reaction on palladium-modified Pt(hkl) electrodes, Chemical Science, vol.3, issue.10, pp.3063-3070, 2012.

F. Balbaud, G. Sanchez, G. Santarini, and G. Picard, Cathodic Reactions Involved in Corrosion Processes Occurring in Concentrated Nitric Acid at 100 °C, European Journal of Inorganic Chemistry, issue.4, pp.665-674, 2000.

K. J. Vetter, Uber die autokatalytische natur der kathodischen reduktion von salpetersaure zu salpetriger saure, Z. Elektrochem, vol.63, issue.9, pp.1189-1191, 1959.

G. Schmid and M. A. Lobeck, Das Verhalten von salpetriger Säure und Salpetersäure an der rotierenden Scheibenelektrode. I. HNO 2 in schwefelsauren Lösungen ohne HNO 3 -Zusatz, Berichte der Bunsengesellschaft für physikalische Chemie, vol.73, issue.2, pp.189-199, 1969.

V. P. Razygraev, M. V. Lebedeva, S. A. Kabakchi, E. Y. Ponomareva, R. S. Balovneva et al., Features of cathode reduction of boiling solutions of nitric-acid on a platinum-electrode, Journal of Applied Chemistry of the Ussr, vol.61, issue.1, pp.67-73, 1988.

E. Kim, D. Hwang, W. Choung, J. Park, J. Yoo et al., Dissolution of UO 2 by Photochemical Reaction, Radiochimica Acta, p.147, 1998.

T. Matsui, M. Ohkawa, R. Sasaki, and K. Naito, Dissolution of the simulated fissionproduced Mo,Ru,Rh,Pd alloys in boiling nitric acid solution, J. Nucl. Mater, vol.200, issue.1, pp.11-15, 1993.