P. Blache, M. Van-de-wetering, I. Duluc, C. Domon, P. Berta et al., SOX9 is an intestine crypt transcription factor, is regulated by the Wnt pathway, and represses the CDX2 and MUC2 genes, J Cell Biol, vol.166, pp.37-47, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00266987

P. Bastide, C. Darido, J. Pannequin, R. Kist, S. Robine et al., Sox9 regulates cell proliferation and is required for Paneth cell differentiation in the intestinal epithelium, J Cell Biol, vol.178, pp.635-648, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00267010

Y. Mori-akiyama, M. Van-den-born, J. H. Van-es, S. R. Hamilton, H. P. Adams et al., SOX9 is required for the differentiation of paneth cells in the intestinal epithelium, Gastroenterology, vol.133, pp.539-546, 2007.

E. J. Formeister, A. L. Sionas, D. K. Lorance, C. L. Barkley, G. H. Lee et al., Distinct SOX9 levels differentially mark stem/progenitor populations and enteroendocrine cells of the small intestine epithelium, Am J Physiol Gastrointest Liver Physiol, vol.296, pp.1108-1118, 2009.

P. Jay, P. Berta, and P. Blache, Expression of the carcinoembryonic antigen gene is inhibited by SOX9 in human colon carcinoma cells, Cancer Res, vol.65, pp.2193-2198, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00017040

B. Lu, Y. Fang, J. Xu, L. Wang, F. Xu et al., Analysis of SOX9 expression in colorectal cancer, Am J Clin Pathol, vol.130, pp.897-904, 2008.

C. Darido, M. Buchert, J. Pannequin, P. Bastide, H. Zalzali et al., Defective claudin-7 regulation by Tcf-4 and Sox-9 disrupts the polarity and increases the tumorigenicity of colorectal cancer cells, Cancer Res, vol.68, pp.4258-4268, 2008.

, Comprehensive molecular characterization of human colon and rectal cancer, Nature, vol.487, pp.330-337, 2012.

A. Zalzali, H. Rammah, C. , G. J. Naudin, C. Dupasquier et al., MiniSOX9, a dominant-negative variant in colon cancer cells, Oncogene, vol.30, pp.2493-2503, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00615517

H. Shibata, K. Toyama, H. Shioya, M. Ito, M. Hirota et al., Rapid colorectal adenoma formation initiated by conditional targeting of the Apc gene, Science, vol.278, pp.120-123, 1997.

N. Leung, C. Turbide, B. Balachandra, V. Marcus, and N. Beauchemin, Intestinal tumor progression is promoted by decreased apoptosis and dysregulated Wnt signaling in Ceacam1?/? mice, Oncogene, vol.27, pp.4943-4953, 2008.

H. Zalzali, C. Naudin, P. Bastide, C. Quittau-prevostel, C. Yaghi et al., CEACAM1, a SOX9 direct transcriptional target identified in the colon epithelium, Oncogene, vol.27, pp.7131-7138, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00357151

L. Topol, W. Chen, H. Song, T. F. Day, and Y. Yang, Sox9 inhibits Wnt signaling by promoting beta-catenin phosphorylation in the nucleus, J Biol Chem, vol.284, pp.3323-3333, 2009.

H. Sellak, S. Wu, and T. M. Lincoln, KLF4 and SOX9 transcription factors antagonize beta-catenin and inhibit TCF-activity in cancer cells, Biochimica et biophysica acta, vol.1823, pp.1666-1675, 2012.

D. Mouradov, C. Sloggett, R. N. Jorissen, C. G. Love, S. Li et al., Colorectal cancer cell lines are representative models of the main molecular subtypes of primary cancer, Cancer research, vol.74, pp.3238-3247, 2014.

C. T. Jordan, M. L. Guzman, and M. Noble, Cancer stem cells. The New England journal of medicine, vol.355, pp.1253-1261, 2006.

A. N. Sukach and E. N. Ivanov,

, Tsitologiia, vol.49, pp.916-922, 2007.

J. C. Castle, M. Loewer, S. Boegel, J. De-graaf, C. Bender et al., Immunomic, genomic and transcriptomic characterization of CT26 colorectal carcinoma, BMC Genomics, vol.15, p.190, 2014.

S. Brabletz, O. Schmalhofer, and T. Brabletz, Gastrointestinal stem cells in development and cancer, The Journal of pathology, vol.217, pp.307-317, 2009.

S. S. Kanwar, Y. Yu, J. Nautiyal, B. B. Patel, and A. P. Majumdar, The Wnt/beta-catenin pathway regulates growth and maintenance of colonospheres, Molecular cancer, vol.9, p.212, 2010.

T. C. He, A. B. Sparks, C. Rago, H. Hermeking, L. Zawel et al., Identification of c-MYC as a target of the APC pathway, Science, vol.281, pp.1509-1512, 1998.

O. J. Sansom, V. S. Meniel, V. Muncan, T. J. Phesse, J. A. Wilkins et al., Myc deletion rescues Apc deficiency in the small intestine, Nature, vol.446, pp.676-679, 2007.

S. Malki, F. Bibeau, C. Notarnicola, S. Roques, P. Berta et al., Expression and biological role of the prostaglandin D synthase/SOX9 pathway in human ovarian cancer cells, Cancer Lett, vol.255, pp.182-193, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00168631

R. Drivdahl, K. H. Haugk, C. C. Sprenger, P. S. Nelson, M. K. Tennant et al., Suppression of growth and tumorigenicity in the prostate tumor cell line M12 by overexpression of the transcription factor SOX9, Oncogene, vol.23, pp.4584-4593, 2004.

H. Wang, N. C. Mcknight, T. Zhang, M. L. Lu, S. P. Balk et al., SOX9 is expressed in normal prostate basal cells and regulates androgen receptor expression in prostate cancer cells, Cancer Res, vol.67, pp.528-536, 2007.

H. Wang, I. Leav, S. Ibaragi, M. Wegner, G. F. Hu et al., SOX9 is expressed in human fetal prostate epithelium and enhances prostate cancer invasion, Cancer Res, vol.68, pp.1625-1630, 2008.

A. Aleman, L. Adrien, L. Lopez-serra, C. Cordon-cardo, M. Esteller et al., Identification of DNA hypermethylation of SOX9 in association with bladder cancer progression using CpG microarrays, Br J Cancer, vol.98, pp.466-473, 2008.

Z. Shi, C. I. Chiang, T. A. Mistretta, A. Major, and Y. Mori-akiyama, SOX9 directly regulates IGFBP-4 in the intestinal epithelium, Am J Physiol Gastrointest Liver Physiol, vol.305, pp.74-83, 2013.

J. Bruun, M. Kolberg, J. M. Nesland, A. Svindland, A. Nesbakken et al., Prognostic Significance of betaCatenin, E-Cadherin, and SOX9 in Colorectal Cancer: Results from a Large Population-Representative Series, Front Oncol, vol.4, p.118, 2014.

M. L. Espersen, D. Linnemann, I. J. Christensen, M. Alamili, J. T. Troelsen et al., SOX9 Expression Predicts Relapse of Stage II Colon Cancer Patients, Human pathology, vol.52, pp.38-46, 2016.

D. P. Griswold and T. H. Corbett, A colon tumor model for anticancer agent evaluation, Cancer, vol.36, pp.2441-2444, 1975.

A. Matheu, M. Collado, C. Wise, L. Manterola, L. Cekaite et al., Oncogenicity of the developmental transcription factor Sox9, Cancer research, vol.72, pp.1301-1315, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00768487

S. Wissmuller, T. Kosian, M. Wolf, M. Finzsch, and M. Wegner, The high-mobility-group domain of Sox proteins interacts with DNA-binding domains of many transcription factors, Nucleic Acids Res, vol.34, pp.1735-1744, 2006.

S. Dupasquier, R. Abdel-samad, R. I. Glazer, P. Bastide, P. Jay et al., A new mechanism of SOX9 action to regulate PKCalpha expression in the intestine epithelium, J Cell Sci, vol.122, pp.2191-2196, 2009.

Z. Shi, C. I. Chiang, P. Labhart, Y. Zhao, J. Yang et al., Contextspecific role of SOX9 in NF-Y mediated gene regulation in colorectal cancer cells, Nucleic acids research, vol.43, pp.6257-6269, 2015.

B. Mohelnikova-duchonova, M. Oliverius, E. Honsova, and P. Soucek, Evaluation of reference genes and normalization strategy for quantitative real-time PCR in human pancreatic carcinoma, Disease markers, vol.32, pp.203-210, 2012.