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Abstract

Background

Major advances have been achieved in the characterization of early breast cancer (eBC)

genomic profiles. Metastatic breast cancer (mBC) is associated with poor outcomes, yet lim-

ited information is available on the genomic profile of this disease. This study aims to deci-

pher mutational profiles of mBC using next-generation sequencing.

Methods and Findings

Whole-exome sequencing was performed on 216 tumor–blood pairs from mBC patients

who underwent a biopsy in the context of the SAFIR01, SAFIR02, SHIVA, or Molecular

Screening for Cancer Treatment Optimization (MOSCATO) prospective trials. Mutational

PLOS Medicine | DOI:10.1371/journal.pmed.1002201 December 27, 2016 1 / 18

a11111

OPENACCESS

Citation: Lefebvre C, Bachelot T, Filleron T, Pedrero

M, Campone M, Soria J-C, et al. (2016) Mutational

Profile of Metastatic Breast Cancers: A

Retrospective Analysis. PLoS Med 13(12):

e1002201. doi:10.1371/journal.pmed.1002201

Academic Editor: Elaine Rene Mardis, Washington

University School of Medicine, UNITED STATES

Received: October 4, 2016

Accepted: November 11, 2016

Published: December 27, 2016

Copyright: © 2016 Lefebvre et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Sequence data have

been deposited at the European Genome-phenome

Archive (EGA), which is hosted by the EBI and the

CRG, under accession number (https://ega-archive.

org/; EGAS00001001695); the somatic mutations

and copy number alterations are available at

cBioPortal (http://www.cbioportal.org/) under the

descriptor “Mutational profiles of metastatic breast

cancer (France, 2016).”

Funding: This work was supported by the Breast

Cancer Research Foundation, Fondation ARC,

Fondation Lombard-Odier “Philanthropia,”

Odyssea, Operation Parrains Chercheurs, Dassault

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pmed.1002201&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://ega-archive.org/
https://ega-archive.org/
http://www.cbioportal.org/


profiles from 772 primary breast tumors from The Cancer Genome Atlas (TCGA) were used

as a reference for comparing primary and mBC mutational profiles. Twelve genes (TP53,

PIK3CA, GATA3, ESR1, MAP3K1, CDH1, AKT1, MAP2K4, RB1, PTEN, CBFB, and

CDKN2A) were identified as significantly mutated in mBC (false discovery rate [FDR] < 0.1).

Eight genes (ESR1, FSIP2, FRAS1, OSBPL3, EDC4, PALB2, IGFN1, and AGRN) were

more frequently mutated in mBC as compared to eBC (FDR < 0.01). ESR1 was identified

both as a driver and as a metastatic gene (n = 22, odds ratio = 29, 95% CI [9–155], p = 1.2e-

12) and also presented with focal amplification (n = 9) for a total of 31 mBCs with either

ESR1 mutation or amplification, including 27 hormone receptor positive (HR+) and HER2

negative (HER2−) mBCs (19%). HR+/HER2− mBC presented a high prevalence of muta-

tions on genes located on the mechanistic target of rapamycin (mTOR) pathway (TSC1 and

TSC2) as compared to HR+/HER2− eBC (respectively 6% and 0.7%, p = 0.0004). Other

actionable genes were more frequently mutated in HR+ mBC, including ERBB4 (n = 8),

NOTCH3 (n = 7), and ALK (n = 7). Analysis of mutational signatures revealed a significant

increase in APOBEC-mediated mutagenesis in HR+/HER2− metastatic tumors as com-

pared to primary TCGA samples (p < 2e-16). The main limitations of this study include the

absence of bone metastases and the size of the cohort, which might not have allowed the

identification of rare mutations and their effect on survival.

Conclusions

This work reports the results of the analysis of the first large-scale study on mutation profiles

of mBC. This study revealed genomic alterations and mutational signatures involved in the

resistance to therapies, including actionable mutations.

Author Summary

Why Was This Study Done?

• Breast cancer often results in poor outcomes after it has metastasized to distant organs,

but, while primary breast tumors have been extensively characterized at the molecular

level, metastatic lesions are poorly understood.

• This study aims to characterize the mutational landscape of metastatic breast cancer by

performing and analyzing whole-exome sequencing of a large collection of metastatic

breast tumors and corresponding blood samples.

• Understanding of the mutational landscape of metastatic tumors should open new ave-

nues for assessing resistance to therapy and developing better treatments.

What Did the Researchers Do and Find?

• The authors generated a large collection of whole-exome sequencing data from the DNA

of breast cancer metastases and from each patient’s corresponding unmutated DNA in

order to identify mutations and gene copy number alterations specific to the tumors.

Mutational Profile of Metastatic Breast Cancers
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• The bioinformatics analyses identified recurrently mutated genes in metastatic tumors

and revealed the genes specifically involved in metastatic disease by comparing their

mutational frequency to those of primary breast tumors.

• The study allowed identification of the affected genes and of mutational signatures that

were more prevalent in metastatic as compared with primary tumors and that may be

involved in the resistance to therapies.

What Do These Findings Mean?

• The identification of mutational and copy number alterations specifically involved in

breast cancer metastasis demonstrated that tumors evolve under the pressure of therapy.

• Characterization of mutations and copy number alterations in metastatic lesions in

addition to primary tumors should help to tailor treatment for patients, with the poten-

tial for improved clinical outcomes.

Introduction

Major efforts have been made to characterize early breast cancer at the genomic level [1,2].

These efforts have led to extensive description of genomic alterations involved in tumorigene-

sis or tumor progression of early breast cancer. These studies report that early breast cancer

includes a large number of rare segments characterized by actionable genomic alterations such

as PIK3CA mutations, ERBB2 amplification, FGFR1 amplification, CCND1 amplification,

AKT1 mutations, and GATA3 mutations [1,2]. Follow-up studies report that C>T mutations

at CpG sites are the major mutational pattern in early breast cancer [3]. Although sequencing

of primary breast cancer has provided insight into the biology of early malignancy, around

80% of the patients presenting with such a disease will never relapse after conventional ther-

apy. Therefore, understanding the biology of early breast cancer will not help in deciphering

the specificities of the lethal disease or translate into treatment advances. Recent data from dif-

ferent types of cancer have suggested that there is a strong heterogeneity between primary

tumors and metastases and that genomic profiles of metastases could dramatically differ from

primary tumors. Gerlinger and colleagues have shown that only 30% of the mutations are

shared between different tumor sites of kidney cancers [4]. Also, Haffner and colleagues have

shown that lethal prostate cancer can derive from a minority subclone of the primary tumor

[5]. There is therefore a need to extensively describe the genomic alterations observed in meta-

static breast cancers in order to identify pathways involved in drug resistance and metastatic

processes and to generate new strategies to treat these patients. To this end, we have performed

whole-exome sequencing of 216 pairs of metastatic breast cancers and blood and report on the

mutational landscape associated with lethal malignancy.

Materials and Methods

The following methodology was specifically developed for this analysis and did not follow an

established protocol or analysis plan.

Mutational Profile of Metastatic Breast Cancers
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Patients

Metastatic breast cancer patients who underwent a biopsy in the context of the SAFIR01 [6]

(NCT01414933), SAFIR02 (NCT02299999), SHIVA [7] (NCT01771458), and MOSCATO

(NCT01566019) prospective trials were potentially eligible for this study. These French mul-

ticenter trials used high-throughput genome analysis on fresh frozen tumor biopsies as a

therapeutic decision tool for metastatic cancer patients, with solid cancers (SHIVA and MOS-

CATO) or specifically with breast cancer (SAFIR01 and SAFIR02). SAFIR01 included patients

with metastatic breast cancers resistant to therapy, and SHIVA and MOSCATO included

patients with metastatic cancers eligible for phase I trial, while SAFIR02 included patients with

metastatic breast cancers who were starting first- or second-line chemotherapy. Details of each

trial are given in S1 Text. Exclusion criteria for the whole-exome sequencing analysis were

defined as follows: small or no quantity of tumoral DNA, <30% cancer cells on the biopsy

sample (from frozen tissue), and no blood sample available. With these criteria, we identified

86 tumor-normal pairs from patients included in the SAFIR01 trial, 80 pairs in the SAFIR02

trial, 35 pairs in the SHIVA trial, and 15 pairs in the MOSCATO trial (S1 Table). All patients

gave their informed consent for translational research and genetic analyses of their somatic

DNA. All the studies were approved by the relevant IRBs. Overall, whole-exome sequencing

for a total of 216 pairs of metastatic tumor and unmutated DNA derived from corresponding

blood samples was performed using Illumina technology. Estrogen (ER) and progesterone

(PR) receptors were considered positive if >1% of the cancer cells were stained or when the

case was reported positive in the case report form of the trial. HER2 status was determined

locally.

Statistical Consideration

Data were summarized by frequency and percentage for categorical variables and by median

and range for continuous variables. Comparisons between groups were performed using the

Mann-Whitney rank sum test for continuous variables and Chi square or Fisher’s exact test for

categorical variables. Overall survival (OS) was estimated by using the Kaplan-Meier method,

and univariate analyses were performed using the log-rank test. OS was defined as the delay

between the inclusion in the trial and death. Patients who were alive were censored at last fol-

low-up news. The Cox proportional hazard regression model was used for multivariate analy-

sis. All variables associated with p< 0.05 on univariate analysis were included in the model.

All statistical tests were two sided, and differences were considered statistically significant

when p< 0.05. Stata 13.0 software (StatCorp, College Station, Texas) or R version 3.2.2 were

used for the statistical analyses. False discovery rate (FDR), used for correcting p-values for

multiple hypothesis testing, was computed using the Benjamini-Hochberg procedure.

Whole-Exome Sequencing

Genomic DNA was captured using Agilent in-solution enrichment methodology with their

biotinylated oligonucleotides probes library (SureSelect All Exon V5, Agilent, or SureSelect

Clinical Research Exome, Agilent), followed by 75-base paired-end massively parallel sequenc-

ing on Illumina HiSeq2500, HiSeq4000, or NextSeq500 (S2 Table). For detailed explanations

of the process, we refer the reader to the publication by A. Gnirke and colleagues [8]. Sequence

capture, enrichment, and elution were performed according to the manufacturer’s instruction

and protocols (SureSelect, Agilent) without modification. Briefly, 600 ng of each genomic

DNA was fragmented by sonication and purified to yield fragments of 150–200 bp. Paired-end

adaptor oligonucleotides from Illumina were ligated on repaired, A-tailed fragments and then

purified and enriched by 4–6 PCR cycles. Five hundred ng of these purified libraries was then

Mutational Profile of Metastatic Breast Cancers
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hybridized to the SureSelect oligo probe capture library for 24 h. After hybridization, washing,

and elution, the eluted fraction was PCR amplified for 10–12 cycles, purified, and quantified

by qPCR to obtain sufficient DNA template for downstream applications. Each eluted-

enriched DNA sample was then sequenced on an Illumina HiSeq2500/4000 or NextSeq500 as

paired-end 75 b reads. Image analysis and base calling were performed using Illumina Real

Time Analysis Pipeline version 1.12.4.2 with default parameters. Mean coverage was 83

+/− 18X for normal blood samples and 122 +/− 15X for tumor samples, with respectively 87%

(77%–93%) and 90% (85%–95%) of the targeted regions covered at 20X or more (S2 Table).

Somatic Mutation Calling

Fastq files were aligned to the reference genome hg19 with the BWA mem algorithm [9]. After

alignment, the BAM files were treated for PCR duplicate removal and then sorted and indexed

with Picard for further analyses. Base recalibration and local realignment around indels were

done with GATK [10]. For defining somatic mutations, we used the Mutect [11] (version

1.1.7) algorithm for identifying substitutions and the Scalpel [12] algorithm (version 0.5.2) for

identifying small insertions and deletions (indels). Indels occurring in regions with a high

number of point mutations detected by Scalpel were filtered out using the GATK VariantFil-

tration tool with parameters set to 3 mutations in a window of 35 bp. We kept indels of a size

lower than 35 bp. We then merged the output of Mutect and Scalpel and further filtered for

mutations organized in a cluster of 3 mutations or more in a window of 35 bp using the GATK

VariantFiltration tool. We defined the final list of somatic mutations with the following filters:

frequency of the reads with the altered base in the tumor > 10%; number of reads with the

altered base in the tumor sample� 5; frequency of the reads with the altered base in the nor-

mal sample < 2%; number of reads with the altered base in the normal sample� 3; and total

coverage in normal and tumor samples� 10. The resulting somatic mutations were annotated

with the snpEff and snpSift algorithms [13], and we selected somatic mutations occurring in

coding regions only. We removed variants that were also detected in at least one normal sam-

ple in our cohort or annotated as known polymorphisms (reported by 1000 Genomes or the

ESP databases) unless the variant was also reported in Catalogue of Somatic Mutations in Can-

cer (COSMIC) [14] or ClinVar (http://www.ncbi.nlm.nih.gov/clinvar/). In order to control for

possible biases due to the difference in bait territories from the two capture kits, we verified

the mutations that were unique to one bait territory and found that 50 mutations involving 39

genes were unique to one of the bait but none of these mutations affected significantly mutated

genes. We filtered six indels after manual inspection. We manually added 2 hotspot mutations

(1 His1047Arg PIK3CA [COSM94986] and 1 Glu349� TP53 [COSM140784]) that were origi-

nally identified in the tumor in the clinical trial screenings and that were filtered by the somatic

mutation filters because of the high frequency of the altered allele in the blood samples (respec-

tively four supporting reads for an allele frequency of 0.022 and seven supporting reads for an

allele frequency of 0.11), probably due to circulating tumor DNA. The list of mutations is

reported in S3 Table. We computed the cancer cell fraction (CCF) of each mutation using the

following steps: we first estimated the tumor purity with Sequenza [15] as well as the copy

number at the mutated locus and the number of mutated alleles, as estimated by the altered

reads allelic fraction [15]. We then computed the CCF of each mutation using the predicted

tumor cellularity by Sequenza, the reference and variant allele read counts at the correspond-

ing chromosomal position, and the estimated copy number at the locus following the frame-

work previously proposed by Carter and colleagues [16]. Mutations were classified as clonal if

the 95% confidence interval of the CCF overlapped 1 and as subclonal otherwise. To identify

significantly mutated genes, we used the Mutation Significance (MutSig) [17], Mutational

Mutational Profile of Metastatic Breast Cancers
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Significance in Cancer (MuSiC) [18], and Driver Genes and Pathways (drGAP) [19] algo-

rithms. We defined significantly mutated genes as those with an FDR< 0.1 according to the

MutSig algorithm that takes into account more parameters for identifying drivers than the

other two algorithms, including gene size, background mutation rate, and replication timing.

Copy Number Analysis

For deriving somatic copy number variations from whole-exome sequence data, we used the

following strategy: we first computed the normalized ratio of reads between each tumor and

corresponding normal sample using the package ExomeCNV in R and created the segmented

profiles with the DNAcopy package. For defining amplifications and deletions, we used the

Gistic2 algorithm [20] with the following thresholds for the log2 ratios: amp > 0.3 and del<

−0.3. Gistic2 was run including all the samples and specifically for the HR+/HER2− samples

and for the HR−/HER2− samples in order to control for disease subtypes. Focal peaks are

listed in S4 Table.

Mutational Processes

De novo mutational signature analysis was done using the Matlab Welcome Trust Sanger

Institute’s signature framework. We used the deconstructSigs R package [21] to determine the

contribution of the known signatures that explain each sample mutational profile with more

than 50 somatic mutations. We considered the 13 signatures (Signatures 1, 2, 3, 5, 6, 8, 10, 13,

17, 18, 20, 26, and 30) operative in breast cancer as defined in COSMIC (http://cancer.sanger.

ac.uk/signatures/matrix.png). A signature was defined as operative or predominant if its con-

tribution to the mutational pattern was respectively >25% (or >100 mutations) or>50%.

The Cancer Genome Atlas (TCGA) Data

Somatic mutations for breast cancer TCGA cohort were extracted from the genome.wustl.

edu_BRCA.IlluminaGA_DNASeq.Level_2.5.3.0.somatic.maf file available for download on the

TCGA data matrix website, with somatic mutations available for primary tumors of 772

patients. We extracted ER, PR, and HER2 status from the clinical file downloaded from the

TCGA data matrix, retrieving 419 HR+/HER2−, 100 HR−/HER2−, and 145 HER2+. In order

to fairly compare mutational loads between TCGA and the metastatic cohort, we downloaded

raw data for 33 randomly selected TCGA patients and processed the BAM files with the same

pipeline described in this manuscript. We found that the number of mutations identified by

our pipeline and by the TCGA pipeline was very similar (S1 Fig, linear regression R2 = 0.98,

p< 2e-16). We also verified the identity of mutations called by the two pipelines and found

that 80% of the mutations were common to the two pipelines (S2 Fig). Therefore, we used the

somatic mutations as defined in the TCGA maf file for comparing the mutation frequencies of

the genes.

Results

Patient Characteristics

The population analyzed in the current study included 216 pairs of tumor and normal blood

DNA from patients with metastatic breast cancer. Patients were classified in three subgroups

according to hormone receptors (HRs; estrogen and progesterone receptors) and HER2 status

(Table 1). One hundred and forty-three patients (66%) presented with HR+/HER2− breast

cancer, 51 (24%) with triple-negative breast cancer, and 14 (6%) with HER2-overexpressing

Mutational Profile of Metastatic Breast Cancers
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breast cancer. Ninety-four percent of the patients had received prior chemotherapy, and 120

(84%) of the patients with HR+/HER2− disease had received prior endocrine therapy.

Genes Mutated in Metastatic Breast Cancers

We identified 12 driver genes using the MutSig algorithm (FDR< 0.1) (Fig 1, S5 Table). Ten

of these genes (TP53, PIK3CA, GATA3, MAP3K1, CDH1, AKT1, MAP2K4, PTEN, CBFB, and

CDKN2A) have been previously shown to be frequently mutated in primary breast cancers

(>2%, TCGA). In particular, TP53 was mutated in 27% of HR+/HER2− metastatic breast can-

cer (mBC) as compared to 20% in HR+/HER2− early breast cancer (eBC) (Fisher Exact Test

p = 0.13) while PIK3CA was mutated in 37% of the HR+/HER2− mBC and in 40% in eBC.

Two of the driver genes observed in mBC (ESR1 and RB1) were infrequently mutated in pri-

mary tumors (<1% of HR+/HER2− eBC [TCGA]). Twenty-four mutations of ESR1 were iden-

tified (1 synonymous, 2 indels, and 21 missense mutations) for a total of 22 mBCs, and these

included 22 mutations in 20 out of 143 HR+/HER2- mBCs (14%). All ESR1 mutations occurred

in the hormone receptor domain (S3 Fig) and included mutations in previously reported hot-

spots [22–24], as well as 2 new mutations (S3 Table). All of these 22 patients had received prior

endocrine therapy. RB1 was mutated in 7 out of 143 HR+/HER2− mBCs (5%) and 3 out of 51

HR−/HER2− mBCs (6%). Most of the mutations were disruptive, leading to truncated proteins

(5 nonsense mutations, 3 splice sites, 1 indel, and 2 missense mutations, S4 Fig). When consid-

ering the estimation of the percentage of tumor cells harboring the mutation, i.e., CCF, we

found that ESR1 and RB1 mutations were mostly identified as subclonal (ESR1: 14/21 muta-

tions [67%]; RB1: 5/10 mutations [50%]). In comparison, PIK3CA and TP53 mutations were

identified as subclonal for respectively 32% and 37% of their nonsynonymous mutations.

Mutations Enriched in mBCs

Using a FDR < 0.1, 199 genes out of 1,569 genes tested were more frequently mutated in mBC

(n = 216) as compared to eBC (TCGA) (S6 Table). When a FDR< 0.01 was applied, 8 genes

(ESR1, FSIP2, AGRN, FRAS1, IGFN1, EDC4, OSBPL3, and PALB2) were found to be more fre-

quently mutated in mBC as compared to eBC (Fig 2). None of these genes, except ESR1, were

Table 1. Patient characteristics.

Overall (n = 216) HR+/HER2− (n = 143) HR−/HER2− (n = 51) HER2+ (n = 14) p-Value

Age at Inclusion p = 0.0275

Median 54 55 48 51

(Range) (26–82) (26–82) (29–76) (37–73)

Number of Metastatic Sites p = 0.5331

1–2 123 (57.2%) 80 (55.9%) 29 (58.0%) 10 (71.4%)

>2 92 (42.8%) 63 (44.1%) 21 (42.0%) 4 (28.6%)

Missing 1 0 1 0

Previous Endocrine Therapy p < 0.0001

No 73 (33.8%) 23 (16.1%) 43 (84.3%) 7 (50.0%)

Yes 143 (66.2%) 120 (83.9%) 8 (15.7%) 7 (50.0%)

Missing 0 0 0 0

Interval Metastatic Relapse/Inclusion (months) p < 0.0001

Median 8.3 15.5 1.2 0.8

(Range) (0.0–177.2) (0.0–177.2) (0.1–35.7) (0.1–53.0)

Missing 7 4 1 2

doi:10.1371/journal.pmed.1002201.t001

Mutational Profile of Metastatic Breast Cancers

PLOS Medicine | DOI:10.1371/journal.pmed.1002201 December 27, 2016 7 / 18



identified as a driver using MutSig. However, OSBPL3 and PALB2 were both identified as driv-

ers by MuSiC and drGAP at an FDR < 0.1 (S5 Table). PALB2 was mutated in eight (4%) sam-

ples, while only one (0.1%) eBC was mutated in TCGA (FDR for enrichment in mBC = 0.006).

Out of the 8 PALB2 mutations, 5 were found in HR+/HER2− mBC. None of the cases with

PALB2 somatic mutations presented with a PALB2 deleterious germline polymorphism in the

other allele. We analyzed outcome data for comparing the OS of patients with metastatic

tumors carrying at least one of the mutations enriched in the metastatic setting (n = 76) to

the rest of the population (n = 140). Results of the univariate and multivariate analyses are

reported in S7 and S8 Tables. In a multivariate analysis, mBC with at least one mutation in the

8 genes enriched in the metastatic setting presented a 2-fold increase in the hazard of death

(hazard ratio = 1.97, 95% CI: 1.34–2.89, p = 0.001). Survival curves are reported in Fig 3.

As this analysis might be biased by the difference in distribution of HR and HER2 subtypes

between eBC and mBC, we also focused the analysis on the HR+/HER2− subtype (n = 143), in

which 278 genes were more frequently mutated in mBC as compared to eBC (FDR< 0.1, S6

Table). Several of these genes were considered actionable. TSC1 and TSC2 were mutated in

five (3.5%) and four (2.8%) samples, respectively (Fig 4). Overall, 6.3% of HR+/HER2− mBC

Fig 1. Driver gene mutations in metastatic breast cancers. The top panel shows the synonymous and nonsynonymous mutation rates (number of

mutations) per patient according to the molecular subtype of the metastasis. HR, hormone receptor; ND, not determined. The bottom panel shows the

significantly mutated genes according to MutSig analysis at FDR < 0.1. Amplifications and deletions correspond to the thresholded values from the Gistic2

output (respectively +2 and −2 values).

doi:10.1371/journal.pmed.1002201.g001
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presented an alteration in TSC1/2 as opposed to 0.7% of HR+/HER2− eBC (TCGA, p = 0.0004).

Other actionable genes were more frequently mutated in HR+ mBC with an FDR< 0.1. These

include ERBB4 (nine missense mutations, including the two mutations COSM4764538 and

COSM1015992, involving eight mBCs [five HR+/HER2−]), NOTCH3 (eight missense and one

splice site mutation(s) involving seven mBCs [four HR+/HER2−]), ALK (five missense and two

splice site mutations in seven mBCs [six HR+/HER2−]), EZH2 (two missense and one splice

site mutation(s), including COSM220530, involving three HR+/HER2− mBCs) and BRAF (four

missense mutations, including one COSM476, involving four mBCs [three HR+/HER2−]). The

consequence of these mutations on the activity of the encoded proteins was difficult to assess as,

even though ERBB4 and NOTCH3 mutations were all missense mutations (except for one

splice site mutation in NOTCH3), they were located in different protein domains with no

apparent hotspot (Fig 4).

Mutational Signatures in mBCs

First, in order to identify a potential metastatic-specific mutational signature, we performed de

novo mutational signature analysis that revealed five signatures operative in metastatic and

primary breast cancer [25], but none of these signatures were specific to the metastatic setting

(S1 Text, S9 Table and S5 and S6 Figs). We then assessed the contribution of 13 mutational sig-

natures [25] in 118 metastatic samples and 278 primary tumors from TCGA presenting >50

Fig 2. Genes more frequently mutated in mBC as compared to eBC (TCGA). The axes show the odds

ratio calculated as the ratio of gene frequencies (x-axis) and the −log10 of the FDR of a Fisher exact test (y-

axis) comparing the gene frequencies in metastatic versus primary tumors. The size of the points is

proportional to the mutation frequency of the gene in the metastatic cohort. Highlighted points correspond to

FDR < 0.01 or to significantly mutated genes.

doi:10.1371/journal.pmed.1002201.g002
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mutations (S10 Table). Among the 13 signatures previously identified as operative in primary

breast cancer, the most represented signatures in the metastatic samples were signature 1,

related to aging; signatures 2 and 13, related to APOBEC3B activity; signature 3, associated

with failure of DNA double-strand break-repair by homologous recombination; and signature

6, associated with defective DNA mismatch repair (Fig 5). While the identity of the signatures

remained the same between primary and metastatic samples, their contribution dramatically

changed, especially in the HR+/HER2− subtype (Fig 6 and S7 and S8 Figs). Of note, the signa-

tures related to the APOBEC3B enzyme (signatures 2 and 13) contributed to 58.8% of the

mutations of the HR+/HER2− metastatic tumors as compared to only 31.9% in the primary

TCGA samples (p< 2e-16), confirming previous work demonstrating a link between APO-

BEC-mediated mutagenesis and the acquisition of subclonal mutations [26].

Copy Number Alterations in mBCs

Gistic2 analysis using sequence-based levels reported regions previously described to drive

oncogenesis of primary tumors including amplified genes CCND1, ERBB2, and MYC and lost

gene PTEN (S4 Table). In addition to these previously reported gene amplifications and dele-

tions, the current study identifies a focal amplification of the ESR1 locus confirming the muta-

tional pattern of the gene. ESR1 was amplified in 7 HR+/HER2− mBCs for a total of 27 HR

+/HER2− mBCs (19%) with either ESR1 mutation or amplification (Fig 1). Additionally, RB1
was lost in 2 HR+/HER2− mBCs for a total of 9 samples (6%) with either RB1 mutation or

homozygous deletion.

Fig 3. OS according to the presence of a mutation in one of the eight genes enriched in mBC as compared to

eBC at FDR < 0.01. No mutation = mBC patients with tumors with no somatic mutation in the eight genes;

mutation = mBC patients with tumors carrying at least one somatic mutation in the eight genes.

doi:10.1371/journal.pmed.1002201.g003
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Finally, we computed two indices to describe the chromosomal instability of the metastatic

samples based on the copy number analysis as previously described [27]: a global genomics

index (GGI) and the number of breakpoints per sample (S1 Table). We found that the number

Fig 4. Somatic mutations of genes TSC1, TSC2, ERBB4, and NOTCH3 in mBC (from cBioPortal). Green dots represent missense mutations, while

black dots represent truncating mutations.

doi:10.1371/journal.pmed.1002201.g004
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Fig 5. COSMIC mutational signature contribution in mBC. DNA DSBR, DNA double-strand break-repair

by homologous recombination; DNA MMR, DNA mismatch repair.

doi:10.1371/journal.pmed.1002201.g005

Fig 6. Distribution of the number of mutations according to mutational signatures in HR+/HER2

− metastatic and primary (TCGA) breast tumors.

doi:10.1371/journal.pmed.1002201.g006
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of mutations per tumor did not correlate with either the GGI or the number of break points

(S9 Fig). We also verified that the mutational load and the chromosomal instability were not

affected by the tumor cell content of the samples. While we found that there was no correlation

between cellularity and estimated chromosomal instability, we found a positive correlation

between the percentage of tumor cells and the number of mutations (Pearson’s cor = 0.16,

p = 0.02). However, among the five samples with no nonsynonymous mutations, only two

samples had <50% tumor cells, while the other three had >70% tumor cells.

Discussion

In the present manuscript, we have described the mutational landscape of 216 mBCs. This

study reported genes significantly mutated in mBC and genes significantly more mutated in

mBC as compared to eBC. HR+/HER2− mBC presented the most differences with HR+/HER2

− eBC, including an increased mutational signature linked to APOBEC3B activity and a higher

prevalence of actionable genes that may represent new strategies for mBC treatment.

Using a stringent definition (MutSig, FDR< 0.1), the current study identified ESR1 and

RB1 as driver genes that are specific to mBCs. Previous studies [23,24,28] have already

reported that ESR1 mutations could be acquired during the disease evolution and could medi-

ate resistance to endocrine therapy. In the present study, we confirm that mutation of ESR1 is

the most frequent “metastasis-specific” mutation observed in mBC. As expected, all the 22

patients who presented ESR1 mutations were ER+ and resistant to endocrine therapy. ESR1-

mutated mBC could be a genomic segment defining an unmet medical need, for which fast-

track approval of new agents is required. Rb1 is a tumor suppressor protein involved in cell

cycle and phosphorylated by CDK4. The protein is required for the bioactivity of palbociclib

(CDK4 inhibitor), a drug recently approved to treat HR+/HER2− mBC [29]. The present

study identifies RB1 mutations, most of them pointing to a loss of function of the protein, as

driver alterations in mBCs; while this gene is almost never mutated in HR+/HER2− eBC

(<1%), it was found mutated in 5% of the HR+/HER2− mBC (p = 0.008, FDR = 0.09). This

finding suggests that a subset of HR+/HER2− mBC is deficient for RB1 and could present a

primary resistance to CDK4 inhibitors. If validated, this finding suggests that RB1 mutations

should be assessed on metastatic samples before starting CDK4 inhibitors.

Several genes were more frequently mutated in mBC as opposed to eBC but did not meet

the criteria for drivers using the MutSig algorithm. PALB2 is a partner of BRCA1/2 and is

involved in Fanconi anemia. Heterozygous loss-of-function mutations in PALB2 have been

shown to be a risk factor for breast cancer, while PALB2 germline mutations have recently

been associated with a poor outcome [30]. Several studies have suggested that PALB2-deficient

cancers could be sensitive to PARP inhibitors. In the present study, PALB2 somatic mutations

were found in 4% of metastatic samples (n = 8), while the gene is mutated in only 0.1% of eBC

(FDR = 0.006). The present results suggest that there is a population of PALB2-deficient mBC

in which PARP inhibitors could be evaluated. Genes located on the mTOR pathway (TSC1
and TSC2) were more frequently mutated in HR+/HER2− mBC (6%) as opposed to HR

+/HER2− eBC (0.7%). All these mutations were observed in patients previously treated with

endocrine therapy, suggesting that it could be a mechanism of resistance. mTOR inhibitors

(everolimus) have been approved in HR+/HER2− mBC [31]. While this drug prolongs pro-

gression-free survival (PFS) for a majority of patients, only a few percent of them are outlier

responders to this drug, and there is currently no molecular alteration that explains such cases.

Further studies should evaluate whether the subset of patients with genomic alterations on

mTOR pathways (TSC1 and TSC2) could be outlier responders to everolimus. Other actionable

genes were more frequently mutated in HR+ mBC, including ERBB4, NOTCH3, and ALK.
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Analysis of mutational processes did not identify any signature specific to the metastatic

setting but revealed a high increase in APOBEC-mediated mutations in HR+/HER2− mBC as

compared to eBC. As for metastatic-specific mutations identified, this might also present a

mechanism of resistance to therapy that needs further careful investigation.

The study included 216 sample pairs classified in three different classes based on hormonal

receptor expression in the tumors, the largest group being HR+/HER2− (n = 143). Although

this is the largest effort for profiling the mutational landscape of mBC to this day, the size of

the cohort presents a limitation to the identification of rare events, especially in the triple-neg-

ative and HER2+ groups. Our ability to provide an exhaustive picture of mutational profiles of

mBC may be limited by two main biases. The first bias comes from the absence of bone metas-

tases in the study, due to the difficulty of extracting DNA from these lesions. A second poten-

tial bias may come from our inability to identify those mutations leading to a disease so

aggressive that the patients will not be eligible for trial recruitment, preventing an exhaustive

picture of the mutational profiles of mBC. However, recent studies on first-line therapies for

advanced breast cancer have shown that early death is limited [32,33], and it is therefore

unlikely that it has dramatically impacted the analysis. Additionally, there is a chance that

mutations enriched in metastasis might be subclonal driver events and therefore might not be

such good drug targets. The comparison of gene mutational prevalence between mBC and

eBC suffers from two limitations. First, it would have been ideal to directly compare the mBCs

with their corresponding primary tumor profiles, but this was not possible because of the obvi-

ous reason of sample availability. Second, we used mutational profiles of TCGA tumors that

were identified by the TCGA team, whereas it would have been ideal to run the pipeline used

for mBC on the TCGA data. Although we controlled for major biases, the use of different bio-

informatics pipelines may have some unexpected consequences. It should also be noted that

the copy number analysis is limited by the nature of the sequencing data, which does not allow

for a uniform coverage of the genome. Finally, the survival analysis based on the mutational

status of the eight metastasis-specific genes was independent from any other parameters such

as mutational load or mutational signature contribution, making it difficult to establish a

causal link between mutated genes and prognosis.

The dataset and the accompanying analysis described in this study provide a better under-

standing of the genetic basis of mBC and how much it differs from that of primary breast

tumors. This study demonstrated that profiling metastatic cancer can be a major step in defin-

ing optimal treatments for patients, as new mutation events and processes may arise during

cancer treatment. Follow-up studies will be essential for validating resistance mechanisms

identified in this study.
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