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ABSTRACT 

This paper presents results on the detection and identification 

mango fruits from colour images of trees. We evaluate the 

behaviour and the performances of the Faster R-CNN network to 

determine whether it is robust enough to "detect and classify" 

fruits under particularly heterogeneous conditions in terms of 

plant cultivars, plantation scheme, and visual information 

acquisition contexts. The network is trained to distinguish the 

'Kent', 'Keitt', and 'Boucodiekhal' mango cultivars from 3,000 

representative labelled fruit annotations. The validation set 

composed of about 7,000 annotations was then tested with a 

confidence threshold of 0.7 and a Non-Maximal-Suppression 

threshold of 0.25. With a F1-score of 0.90, the Faster R-CNN is 

well suitable to the simple fruit detection in tiles of 500x500 

pixels. We then combine a multi-tiling approach with a Jaccard 

matrix to merge the different parts of objects detected several 

times, and thus report the detections made at the tile scale to the 

native 6,000x4,000 pixel size images. Nonetheless with a F1-

score of 0.56, the cultivar identification Faster R-CNN network 

presents some limitations for simultaneously detecting the mango 

fruits and identifying their respective cultivars. Despite the proven 

errors in fruit detection, the cultivar identification rates of the 

detected mango fruits are in the order of 80%. The ideal solution 

could combine a Mask R-CNN for the image pre-segmentation of 

trees and a double-stream Faster R-CNN for detecting the mango 

fruits and identifying their respective cultivar to provide 

predictions more relevant to users' expectations.   

Keywords 

Faster R-CNN, mango fruit detection, mango cultivar 

identification, neural network 

 

1. INTRODUCTION 
The estimation of pre-harvest agricultural production is essential 

to meet development challenges and reduce the vulnerability of 

populations to global changes. Indeed, one of the main issues 

hindering the development of perennial crops is the impossibility 

of early, easily, and accurately estimating crop yields in order to 

guide farm management effectively. To date, yield estimation in 

tropical orchards is still based on a visual inspection of a limited 

sample of trees, a tedious, time- and cost-consuming method that 

depends on the reliability and accuracy of the observer [1]. The 

cultivation of mango (Mangifera indica L.) in West Africa, and 

more particularly in Senegal, needs particular attention because of 

the physiological specificities of trees, especially the reproductive 

asynchronism and the inter-tree heterogeneity [2]. Moreover, 

West African farmers require tools adapted to the conditions of 

their family-sized and diversified cropping systems that can 

provide them with production information in a simple, 

inexpensive and convenient way. 

Over the last few years, several studies described efficient 

machine vision systems for fruit detection and fruit yield 

estimation [3]. These systems ranged from simple colour pixel 

segmentation to more advanced machine learning method using 

combination of colour, shape and texture features acquired by 

multiple sensors. Moreover, they were usually developed and 

evaluated in orchards under homogeneous conditions in terms of 

plant cultivars, plantation schemes (density, row, etc.), cultivation 

practices and visual information acquisition methods [4, 5, 6]. 

Under heterogeneous conditions, the performance of machine 

learning approaches drops significantly [7]. 

One of the major advances in the object localization and detection 

was the multi-scale sliding window algorithm [8, 9] for using 

Convolutional Neural Networks (CNNs). Regions with CNN 

features or R-CNN [10] improved by almost 50% the detection 

performance by combining the object extraction using a Selective 

Search [11] and the region classification by SVMs [12]. This key 

step was published under the name Fast R-CNN [13]. As the R-

CNN, it used Selective Search to extract possible objects, but 

instead of typing them using SVM classifiers, it applied the CNN 

on all the image and then used both Region of Interest (RoI) and 

Pooling on the feature map with a final feed forward network for 

classification and regression. The RoI Pooling layer and the fully 

connected layers allowed the model to be end-to-end 

differentiable and easier to train. Faster R-CNN [14, 15] added a 
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Region Proposal Network (RPN), in an attempt to do without the 

Selective Search algorithm and make the model completely 

trainable end-to-end.  

Different works used deep CNN for yield estimation [16] and/or 

fruit counting [17], and especially based on the Faster R-CNN 

[18, 19]. Despite the asynchronous production cycles of mango 

trees, this neural network obtained high performances for fruit 

detection and counting at plot scale in homogeneous field 

conditions [20, 21]. 

To our knowledge, no work has been done to identify the stage of 

development of the fruits and their cultivar, which is assumed to 

be known. However, these two aspects are essential for estimating 

economic yields and forecasts of fruit farms, particularly on 

family farms that are increasingly using multiple grafts: several 

fruit cultivars are simultaneously grafted on the same tree. One of 

the major interests of this type of practice is to be able to diversify 

the production on a small area in order to make the farmer less 

dependent on the fluctuations of economic markets while 

preserving biodiversity and the health balance of the crops. 

Besides mango detection in heterogeneous mango orchards, this 

study presents the results of fruits classification among mango 

cultivars. Indeed, visual images of mango trees often 

encompassed fruits carried by other nearby trees (adjacent or in 

background), and fruits too heavily occluded so that their status is 

difficult to assess. In order to provide farmers with the most 

accurate results of the number of fruits that will actually be 

produced per tree, we investigated the capacities of a Faster R-

CNN network to classify the fruit condition.  

The evaluation of the fruit detection and identification is usually 

done using the standard Mean Average Precision [22]. Among 

these indicators, we used the F1-score well suited to the statistical 

comparison with a real "image truth". Different notions were 

introduced, for example the global Jaccard indicator for qualifying 

the geometric fitting between expert annotations and network 

predictions or the multi-tiling for aggregating multiple detections. 

The detection reporting from tiles to images is also described and 

discussed. 

 

2. MODEL AND METHODS 

2.1 The Faster R- CNN 
Faster R-CNN started with 500x500 pixel pre-cut images called 

tiles and provided a list of labelled bounding boxes with 

prediction probabilities. Its architecture is based on three 

components (see Figure 1).  

First, a Region Proposal Network (RPN) is used to find up to a 

predefined number of regions that may contain objects. Fixed 

sized reference bounding boxes are placed uniformly throughout 

the original image. They give a list of possible relevant objects 

and their locations in the original image. 

Second, a Region of Interest Pooling (RoIP) is applied using the 

features extracted by the CNN in the previously given bounding 

boxes to extract those features which would correspond to the 

relevant objects. This step significantly accelerates the 

identification of the interest areas.  

Third, the R-CNN module uses that information to classify the 

content in the bounding box (or discard it using the “background” 

label) and adjust the bounding box coordinates (so it better fits the 

object). 

 

 

 

 

 

 

 

 

This method involves using a CNN pre-trained for the task of 

classification and then re-trained for the recognition of mangoes. 

No real consensus exists on the best network architecture for the 

pre-training step, i.e. between different networks with a varying 

number of weights. Even if the ZF [23], MobileNet [24] and 

DenseNet [25] pre-training seem attractive, we used the VGG [26] 

pre-trained on ImageNet [27] because it was dedicated to the 

large-scale image recognition. The network has been fine-tuned 

from a learning set of annotated tiles, where the annotations are 

bounding boxes surrounding visible (part of) mango fruits and 

labelled according to the defined classes. 

2.2 Key network parameters 

The confidence score. The network gives each box the 

probability of containing an object. The confidence-threshold is 

set to detect only boxes with high certainty. 

2.2.1 The non-maximum suppression [28] 
The Non-Maximum Suppression (NMS) pre-vents multiple 

detection of the same object. The NMS-threshold is set to define 

the non-significant intersections of boxes. 

2.2.2 The iteration number 
The main mechanism of networks, called gradient descent, is 

based on an iterative minimum search algorithm: the algorithm 

needs to be repeated to converge to the best possible solution.  

The number of iterations (given as a train-ing parameter) 

indirectly defines the number of times the network observes the 

data. 

2.3 Matching Function 

Matching function consists in associating two by two the expert 

annotation and network prediction boxes. The optimum matching 

between the expert annotations Ai and the network predictions Pj 

was given by the Jaccard matrix [29]; the Ji,j Jaccard index was 

defined as the ratio of areas between both the intersection and the 

reunion of two boxes (1). Matches were made in descending order 

of Jaccard indices as long as greater than 0.25. Once fitted, the 

boxes were removed from the list of possible candidates and the 

process was repeated until all the boxes have been matched or no 

box could be matched.    

     
           

           
              (1)  

The algorithmic complexity of the matching was in O(IJ) where I 

and J respectively represented the maximum numbers of 

annotations and predictions per tile (which visibly does not 

exceed 20 objects). 

2.4 Merging Function 

Figure 1. Complete Faster R-CNN architecture. 

. 
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Image tiling, i.e. partitioning the image into tiles which can be 

processed by the neuronal network, is necessary for the detection 

of "small" objects in "large" images. Without tiling, small objects 

"disappear" during the geometric transformations applied for data 

formatting. If the recomposition of the image is simply achieved 

by juxtaposing the tiles, the aggregation of detected objects is 

potentially more complex, especially for objects "cut" into several 

parts by the tiling. When sufficiently significant i.e. quite close to 

the examples given in the training data set, these different parts 

are respectively detected, and the object is counted several times 

(see Figure 2). When not significant enough, no part of the object 

is detected and the object is not recorded. The multiple detections 

of the same object appearing on several tiles must be merged to 

adjust as well as possible the count and the shape of the boxes 

characterizing this last one.    

We proposed an approach based on the following assumption: 

“The size of the objects to be detected is significantly smaller than 

those of the tiles used. Consequently, there should be at least one 

tile in which the object appears integrally”. We used so different 

tiling, i.e. ways to partition the native image. For a given tiling, 

the objects validated as detected (or detections) were those whose 

bounding box was not incident at any edges of the tile that 

contained it. Objects not checking this condition were not 

retained: they were detected in another tiling, more exactly in a 

more appropriate tile containing them integrally. The problem was 

thus to merge detections coming from different tiling while taking 

care not to count more than once a given object. 

The matching function previously described, based on the use of a 

Jaccard matrix, was used here to identify matches between objects 

detected in two different tiling. In case of matching, the smaller 

bounding box was removed. Objects that find no homologue 

correspond to the identification of "integral" objects in one of the 

tiling and "cut" objects in the other. 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.5 Merging Function 

2.5.1 The statistical indicator 
We used the F1-score (2) as test’s accuracy between ‘image truth’ 

and network predictions; it is defined as the best compromise 

between precision (3) and recall (4), two statistical indicators 

taking into account respectively the numbers of "True Positive", 

"False Positive" and "False Negative" classes where 

 

 “True Positives" (TP) are mangoes annotated by the 

expert and correctly detected by the network, 

 “False Negatives" (FN) are mangoes annotated by the 

expert and not detected by the network, 

 “False Positives" (FP) are mangoes detected by the 

network but not considered as such by the expert. 

 

        
                  

                
                        (2) 

 

          
                                    

                                
 

  

     
           (3) 

 
       

                                    

                                      
 

  

     
                 (4)  

 

 

2.5.2 The geometric fitting 

A global Jaccard index (5) was introduced to for quantifying the 

difference between the geometry of the Ai expert annotations and 

the Pi network predictions, i.e. the precision of the geometric 

fitting of the bounding boxes of mangoes. 

                  
             

                                     
                       (5) 

                           
 

An index of 1 will be the perfect superposition of annotations and 

prediction boxes. 
 

 

3. RESULTS AND DISCUSSION 
The main question is whether the network is sensitive enough to 

identifying the cultivar of the mango fruits it detects. 

We used 150 native colour images of 'Kent', 'Keitt', and 

'Boucodiekhal' (Bdh) mango cultivars taken at a distance of 5 

meters by a Sony Nex-7 RGB camera with a fixed focal length of 

18 mm. The 4000x6000 pixel native images were cut in 500x500 

pixel tiles which were manually annotated and labelled under 

ImageJ [30] to form a representative set of about 10,000 

annotations in terms of shape, colour, sunlight conditions or 

occlusions. The labelled annotations were rectangular boxes, from 

10 to 80 pixels side, including as closely as possible the visible 

fruits on the images: labels specified mango cultivar. These 

annotated data have been distributed as follows: 3,000 

heterogeneous annotations for network training, 7,000 for cross 

validation.  

3.1 Parameter setting 
Various experiments were conducted to determine the best 

settings, i.e. the ones that maximizes the performances of the 

network in detection mango fruit. The same set-tings were used 

for fruit cultivar identification. 

3.1.1 The confidence and NMS levels 
The fruit detection network was trained with an arbitrarily number 

of 50,000 iterations. The validation set was then tested by 

simultaneously varying the confidence and NMS thresholds from 

0.35 to 0.9 and 0.005 to 0.5 respectively in steps of 0.05 (see 

Figure 3). The F1-score (2) ranged from 0.66 for the threshold-

couple (0.35, 0.5) to 0.90 – in fact 0.899687 – for (0.7, 0.25). 

Figure 2. Image tiling and object detection. A- The green 
tiling splits the object into 4 parts which are each 

detected by the network; in the blue tiling, the object is 
detected only once in its entirety. B- The blue tiling 

breaks 3 objects into 4 parts leading to 5 detections; in 
the green tiling, the 3 objects are correctly detected. 
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Figure 4. Variation in the network performances 
according to the number of iterations. 
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Different settings led to relatively close performances. We chose 

the setting resulting in the highest performances, acknowledging 

that this result certainly depended on both  the training and the 

validation sets used. Experimentation could have been further 

developed by studying the performance of the cultivar 

identification network to find the optimum threshold pair values, 

but we considered that the optimum parameter setting of the fruit 

detection network could be transposed to the cultivar 

identification network. 

 

 

 

 

 

 

 

 

 

 

3.1.2 The number of iteration 
The network was trained with numbers of iterations ranging from 

500 to 30,000 in steps of 500. The validation set was then tested 

with a confidence threshold of 0.7 and a NMS threshold of 0.25 

(see Figure 4). 

 

 

 

 

 

 

 

 

 

 

Error and accuracy were indicative: they represented respectively 

the percentage of ‘correct’ and ‘incorrect’ predictions by the 

network. The functions characterizing the network behaviour were 

strongly correlated and were stabilized from 15,000 iterations. 

 

3.1.3 The size of the training data set 
The network was trained with an iteration number of 15,000 and a 

size of the training data set ranging from 200 to 5,000 by steps of 

200. The validation set was then tested with a confidence 

threshold of 0.7 and a NMS threshold of 0.25 (see Figure 5). 

The network performance reached its maximum after 2,650 

training annotations: the accuracy of the geometric fitting did not 

exceed 77%, even when significantly increasing the size of the 

training data set. A training set of 3,000 annotations reinforced the 

stability of the detection process. 

 

 

 

 

 

 

 

 

 

3.2 Localization and identification of fruits 
In the orchards of Western Africa, fruit plots often mix different 

cultivars of fruit for a better use of soils and to spread the fruit 

production along the year. Estimating mango yield at the orchard 

scale requires assessing the production of each cultivar grown, i.e. 

the number of fruits produced (or to be produced) per cultivar and 

tree. 

For all the experiments below, the network was fine-tuned with 

3,000 annotations and 15,000 iterations. The validation set was 

then tested with a confidence threshold of 0.7 and a NMS 

threshold of 0.25. 

 

3.2.1 The mango detection at the tile scale 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A B 

C D 

Figure 6. Detection of mangoes in tree tiles. Red boxes 
were expert annotated fruits, and blue boxes network 
detected fruits. The network detected visible mangoes 

well, regardless of light exposure or fruit growing stage. 
The pictures shown tiles of mango trees seen at 5 meters 

distance for ‘Keitt’ (A, B) and ‘Kent’ (C, D) cultivars. 

  

. 

  

  

  

Figure 3. Variation in the network performance 
according to the confidence and NMS thresholds.  
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Figure 5. Variation in the network performances 
according to the size of the training data set. 
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This experiment aimed to ensure that the network can 

satisfactorily locate mangoes of various cultivars and stages of 

development in images of full trees.  

The F1-score on the validation set was 0.90 for a J0 fitting 

precision of 0.77 (see Figure 4): the geometric offset between 

annotations and predictions could appear high, but it was a very 

satisfactory result considering the heterogeneity of the data set.  

In Figure 6, the expert annotations (in red) were almost 

superimposed on the network predictions (in blue). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The in-depth study of False Negatives pointed out the network's 

difficulties in detecting partially occulted fruits, essentially in fruit 

clusters (see Figure 7.A) and " fruits inside canopy (see Figure 

7.B). In the first case, the NMS threshold prevented ‘correct’ 

detection of background fruits partially masked by foreground 

fruits. In the second case, fruits were rather hidden by leaves and 

wood, causing a significant change in the signature of the mango. 

On the False Positive side, most of the residual confusion 

concerned leaf arrangements with curvatures similar to those of 

mangoes (see Figure 7.C). Interestingly, the network detected 

fruits not annotated by the expert (see Figure 6.B and 7.D): in 

absolute terms, they were false False-Positives which penalized 

the network performance. 

 

3.2.2 The mango detection at the full image scale 
Four tiling were used to cover a maxi-mum of cutting 

configurations, without however being able to guarantee that they 

are all well considered: the 1st is a partition in tiles of 500x500 

pixels starting from the image point coordinates (0,0), the second 

from the point (0,250), the third from the point (250,0) and the 

fourth from the point (250,250). 

 

The F1-score was 0.71 for a J0 fitting precision of 0.67. This drop 

in performance is explained by the significant increase in False 

Positives (see Figure 8) compared to the previous experiment: the 

expert limited his count to the foreground tree while the network 

processed all the trees in the image. Previously, only tiles in 

which the expert had observed a fruit were used, which partially 

excluded fruits from adjacent trees; here, all tiles in the images 

were used. 

 

The algorithmic complexity of the detection merging is in O(n2) 

where n represents the number of fruits visible in the image: it is 

fixed by the calculation of the Jaccard matrix. It can look high 

even if it only takes 30'' to process a native image on a Dell Studio 

XPS 8 x i7 3 GHz with a Nvidia Quadro M2000 graphics card. 

Further study to determine the optimal tiles to use for the fusion of 

detected fruits would be of definite theoretical interest, even if the 

best way to reduce computation times would be to use adaptive 

tiles, i.e. tiles centred on "clipped" objects: but such an approach 

would require two instantiations of the neural network. The major 

problem is to reduce the exploration area of the network to the 

foreground tree. The YOLO network [31] is currently under study 

to pre-zone the image and exclude background trees: to refine the 

results, it will probably be necessary to use (in addition or not) 

segmentation networks such as SegNet [32] or similar [33]. For 

example, Mask-RCNN [34] customizes the Faster-RCNN with an 

additional parallel branch that makes it powerful for both the 

bounding-box object detection and the object segmentation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2.3 Identification of mango cultivars 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Detection errors. False Negatives are red 
boxes, False Positives blue boxes. A- a background 

mango was not detected due to the application of the 
NMS threshold; B- mango partially hidden by foliage 

was not detected because this situation is not 
sufficiently represented in the training data set. C- a 
leaf was confused with a mango by the network. D- a 
mango inside the tree was detected by the network 
even though it had not been annotated by expert. 

  

. 

  

  

  

A B C D 

Figure 8. Detection of mangoes in ‘Keitt’ tree 
image. Red boxes were expert annotated fruits, 
blue boxes network detected fruits. Unlike the 

network, the expert did not consider fruits of the 
background trees. 

  

  

  

Figure 9. Mango cultivars at the pre-harvest stage. A- 
‘Bdh’ mango fruit is ovoid-flat with a skin col-our 

ranging from red to green and an average weight of 
450 grams. B- ‘Keitt’ mango fruit is ovoid-oblong; 
skin color is pink with less than 30% red and the 

average weight is 500 to 600 grams. C- ‘Kent’ mango 
fruit is rather ovoid-wide with yellow skin and red 

spot; the average weight does not exceed 550 grams.  
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For this experiment, the network was trained to identify the 'Kent', 

'Keitt' and 'Bdh' cultivars composing the data set (see Figure 9). 

For the learning step, each cultivar class was described by about 

1,000 labelled annotations. 

In identifying cultivars, the F1-score was to 0.56 for a J0 fitting 

precision of 0.71. This significant drop in performances is 

explained by the high increase in False Negatives, i.e. mangoes 

not detected: barely 4,000 mangoes were detected by the network 

during the cross-validation while the data set contains nearly 

7,000 expert annotations.  

When the tested fruit looks alike fruits of at least two variety 

classes, the network assigns predictive probabilities (by class) to it 

that are quite close and finally lower than the confidence threshold 

used by the network for the detection phase. Consequently, the 

object was not considered as a fruit and is therefore not detected. 

(see Figure 10, blue rectangles). Lowering the confidence 

threshold may in some cases be an option, but it might 

significantly increase the number of False Positives. The best 

option would probably be to use a two-stream faster R-CNN [35] 

to firstly detected all the fruits of the image and then qualify them 

in classes. 

Figure 10 shown the behaviour of the identification network: 

mangoes correctly detected and identified by the cultivar 

identification network were represented by green rectangles, 

mangoes correctly detected but incorrectly identified by red 

rectangles, and mangoes not detected by the identification 

network although counted by a simple detection network by blue 

rectangles. 

Errors in identification probably have several causes. Among 

them, the physiological features are not negligible. Since the 

expression of the really discriminating features of fruits only 

appears after the juvenile stages, there would therefore be a link 

between the cultivar identification certainty and the fruit 

development stages.  It is therefore necessary to know / be able to 

identify the stage of development of the fruits to certify the 

detected fruit cultivars. This is all the more important in the case 

of grafted trees that carry several fruit cultivars. Moreover, angles 

of view or partial occlusions of fruits probably have a greater 

impact on the responses of an identification network than on those 

of a detection network. 

Beyond this observation, the question was how many correctly 

detected mangoes were well identified (classified). Table 1 gave 

the identification percentages, class by class, of correct detected 

fruits (900 'Bdh' mangoes detected on 2,000 annotated, 1,200 

'Keitt' on 2,500 and 1,600 'Kent’ on 2,500). The identification 

rates without error; i.e. the detected fruits attributed to the right 

cultivar class, ranged from 80 to 90% (see bold values of the 

Table 1). The identification errors were caused by visual 

similarities in mangoes, especially when partially masked, viewed 

from irrelevant angles or at too early stages of development. 

 

A
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B
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- 

Figure 10. Identification errors of Bdh (A), 
Keitt (B) and Kent (C) cultivars. 
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Table 1. Multi-class identification rate. Each column indicates 

how the neural network identifies the fruits of a given cultivar.  

 

 

Some questions remain open: for example, why is there 3 times 

more confusion between the Keitt and Kent fruits than between 

Kent and Keitt fruits: a simple conjuncture or a deeper network 

learning problem? It is obvious that, unlike adult or mature fruits, 

young fruits have very similar aspects, perhaps too similar, so the 

network can unambiguously identified their respective cultivar. 

But if that were possible, the solution would surely based on a 

Ensemble Neuronal Network [36, 37] i.e. on the simultaneous use 

of several different networks fine-tuned on a same dataset or on 

several identical networks trained on different data for 

significantly increasing the relevance of fruit cultivar 

identification unless this qualification is limited to sufficiently 

mature fruit. 

 

4. CONCLUSION 
We evaluated the behaviour of the Faster R-CNN network to 

determine whether it was robust enough to "detect and identify" 

fruits under particularly heterogeneous conditions in terms of tree 

cultivars, plantation scheme, and visual information acquisition 

contexts. 

The network was trained using 3,000 representative labelled 

annotations of 'Kent', 'Keitt', and 'Boucodiekhal' mango cultivars. 

The validation set composed of about 7,000 labelled annotations 

was tested with a confidence threshold of 0.7 and a Non-

Maximal-Suppression threshold of 0.25.  

The network accuracy (F1-score) was 90% for fruit detection, but 

fell to 56% for fruit cultivar identification. When the tested fruit 

looks alike fruits of at least two variety classes, the network 

assigns predictive probabilities (by class) to it that are quite close 

and finally lower than the confidence threshold used by the 

network for the detection phase. Consequently, the object was not 

considered as a fruit and is therefore not detected.  

The cultivar identification rates of the detected mango fruits were 

in the order of 80%. Errors were caused by visual similarities in 

mangoes, especially when partially masked, viewed from 

irrelevant angles or at too early stages of development. 

Image tiling, i.e. partitioning the image into tiles which can be 

processed by the neuronal network, is necessary for the detection 

of "small" objects in "large" images. Tiling may lead to 

"artificially" clipped objects, which will result in multiple 

detection of these objects. We combined a multi-tiling approach 

with a Jaccard matrix to identify and merge multiple detections 

and thus report the detections made at the tile scale to the native 

image. 

The cross validations showed the need to undertake additional 

reflexion to make the predictions of the R-CNN Faster network 

more relevant to users' expectations. Future works could focused 

on (i) the image pre-processing to separate neighbouring trees 

from each other (using convolutional segmentation networks such 

as SegNet or Mask R-CNN) and, (ii) the two-stream Faster R-

CNN developing to identify the cultivar of all detected fruits on 

each segmented tree. 
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