A. T. Natarajan and M. Meyers, Chromosomal radiosensitivity of ataxia telangiectasia cells at different cell cycle stages, Hum Genet, vol.52, pp.127-132, 1979.

M. Ozsahin, N. Crompton, S. Gourgou, A. Kramar, L. Li et al., CD4 and CD8 T-lymphocyte apoptosis can predict radiationinduced late toxicity: a prospective study in 399 patients, Clin Cancer Res, vol.11, pp.7426-7433, 2005.

P. Finnon, S. Kabacik, A. Mackay, C. Raffy, A. 'hern et al., Correlation of in vitro lymphocyte radiosensitivity and gene expression with late normal tissue reactions following curative radiotherapy for breast cancer, Radiother Oncol, vol.105, pp.329-336, 2012.

B. Greve, T. Bölling, S. S. Amler, U. Rössler, M. Gomolka et al., Evaluation of different biomarkers to predict individual radiosensitivity in an inter-laboratory comparison-lessons for future studies, PLoS ONE, vol.7, p.47185, 2011.

C. M. West and G. C. Barnett, Genetics and genomics of radiotherapy toxicity: towards prediction, Genome Med, vol.3, pp.52-66, 2011.

A. Schmitz, J. Bayer, N. Dechamps, L. Goldin, and G. Thomas, Heritability of susceptibility to ionizing radiation-induced apoptosis of human lymphocyte subpopulations, Int J Radiat Oncol Biol Phys, vol.68, pp.1169-1177, 2007.

M. Morley, C. Molony, T. Weber, J. Devlin, K. Ewens et al., Genetic analysis of genome-wide variation in human gene expression, Nature, vol.430, pp.743-747, 2004.

A. L. Price, A. Helgason, G. Thorleifsson, S. A. Mccarroll, A. Kong et al., Single-tissue and cross-tissue heritability of gene expression via identity-by-descent in related or unrelated individuals, PLoS Genet, vol.7, p.1001317, 2011.

D. L. Nicolae, E. Gamazon, W. Zhang, S. Duan, M. E. Dolan et al., Trait-associated SNPs are more likely to be eQTLs: annotation to enhance discovery from GWAS, PLoS Genet, vol.6, p.1000888, 2010.

J. P. Svensson, L. Stalpers, R. Esveldt-van-lange, N. Franken, J. Haveman et al., Analysis of gene expression using gene sets discriminates cancer patients with and without late radiation toxicity, PLoS Med, vol.3, p.422, 2006.

D. A. Smirnov, M. Morley, E. Shin, R. S. Spielman, and V. G. Cheung, Genetic analysis of radiation-induced changes in human gene expression, Nature, vol.459, pp.587-591, 2009.

T. Best, D. Li, A. D. Skol, T. Kirchhoff, S. A. Jackson et al., Variants at 6q21 implicate PRDM1 in the etiology of therapy-induced second malignancies after Hodgkin's lymphoma, Nat Med, vol.17, pp.941-943, 2011.

L. Fachal, A. Gómez-caamaño, G. C. Barnett, P. Peleteiro, A. M. Carballo et al., A three-stage genome-wide association study identifies a susceptibility locus for late radiotherapy toxicity at 2q24.1, Nat Genet, vol.46, pp.891-894, 2014.

P. Schneider, N. Holler, J. L. Bodmer, M. Hahne, K. Frei et al., Conversion of membrane-bound Fas(CD95) ligand to its soluble form is associated with downregulation of its proapoptotic activity and loss of liver toxicity, J Exp Med, vol.187, pp.1205-1213, 1998.

H. Wajant, D. Moosmayer, T. Wüest, T. Bartke, E. Gerlach et al., Differential activation of TRAIL-R1 and -2 by soluble and membrane TRAIL allows selective surface antigen-directed www.impactjournals.com/oncotarget activation of TRAIL-R2 by a soluble TRAIL derivative, Oncogene, vol.20, pp.4101-4106, 2001.

H. Walczak, M. A. Degli-esposti, R. S. Johnson, P. J. Smolak, J. Y. Waugh et al., TRAIL-R2: a novel apoptosis-mediating receptor for TRAIL, EMBO J, vol.16, pp.5386-5397, 1997.

L. Yan, S. Chaojun, W. Chunyan, J. Boquan, J. Wei et al., Metalloprotease inhibitors reducing the shedding of human TRAIL, CORD Conference Proceedings, pp.108-111, 2011.

D. Azria, Y. Belkacemi, G. Romieu, S. Gourgou, M. Gutowski et al., Concurrent or sequential adjuvant letrozole and radiotherapy after conservative surgery for early-stage breast cancer (CO-HO-RT): a phase 2 randomised trial, Lancet Oncol, vol.11, pp.258-265, 2010.

M. Coureuil, N. Ugolin, M. Tavernier, S. Chevillard, V. Barroca et al., Puma and Trail/Dr5 pathways control radiation-induced apoptosis in distinct populations of testicular progenitors, PLoS ONE, vol.5, p.12134, 2010.

A. Luce, A. Courtin, C. Levalois, S. Altmeyer-morel, P. Roméo et al., Death receptor pathways mediate targeted and non-targeted effects of ionizing radiations in breast cancer cells, Carcinogenesis, vol.30, pp.432-439, 2009.

N. Finnberg, J. J. Gruber, P. Fei, D. Rudolph, A. Bric et al., DR5 knockout mice are compromised in radiation-induced apoptosis, Mol Cell Biol, vol.25, pp.2000-2013, 2005.

S. R. Wiley, K. Schooley, P. J. Smolak, W. S. Din, J. K. Nicholl et al., Identification and characterization of a new member of the TNF family that induces apoptosis, Immunity, vol.3, pp.673-682, 1995.

G. C. Barnett, S. L. Kerns, D. J. Noble, A. M. Dunning, C. West et al., Incorporating Genetic Biomarkers into Predictive Models of Normal Tissue Toxicity, Clin Oncol (R Coll Radiol), vol.27, pp.579-587, 2015.

B. Charbonneau, M. S. Block, W. R. Bamlet, R. A. Vierkant, K. R. Kalli et al., Risk of Ovarian Cancer and the NF-B Pathway: Genetic Association with IL1A and TNFSF10, Cancer Res, vol.74, pp.852-861, 2014.

L. M. Fitzgerald, E. M. Kwon, M. P. Conomos, S. Kolb, S. K. Holt et al.,

, Genome-wide association study identifies a genetic variant associated with risk for more aggressive prostate cancer, Cancer Epidemiol Biomarkers Prev, vol.20, pp.1196-1203, 2011.

J. H. Jung, Y. S. Chae, J. H. Moon, B. W. Kang, J. G. Kim et al., TNF superfamily gene polymorphism as prognostic factor in early breast cancer, J Cancer Res Clin Oncol, vol.136, pp.685-694, 2010.

D. Azria, O. Riou, F. Castan, T. D. Nguyen, K. Peignaux et al., Radiationinduced CD8 T-lymphocyte Apoptosis as a Predictor of Breast Fibrosis After Radiotherapy: Results of the Prospective Multicenter French Trial, EBioMedicine, vol.2, pp.1965-1973, 2015.

S. Balter, J. W. Hopewell, D. L. Miller, L. K. Wagner, and M. J. Zelefsky, Fluoroscopically Guided Interventional Procedures: A Review of Radiation Effects on Patients' Skin and Hair 1, Radiology, vol.254, pp.326-341, 2010.

S. L. Kerns, D. De-ruysscher, C. N. Andreassen, D. Azria, G. C. Barnett et al., STROGAR -STrengthening the Reporting Of Genetic Association studies in Radiogenomics, Radiother Oncol, vol.110, pp.182-188, 2014.

S. L. Kerns, R. G. Stock, N. N. Stone, S. R. Blacksburg, L. Rath et al., Genome-wide association study identifies a region on chromosome 11q14.3 associated with late rectal bleeding following radiation therapy for prostate cancer, Radiother Oncol, vol.107, pp.372-376, 2013.

A. Schmitz, J. Bayer, N. Dechamps, and G. Thomas, Intrinsic susceptibility to radiation-induced apoptosis of human lymphocyte subpopulations, Int J Radiat Oncol Biol Phys, vol.57, pp.769-778, 2003.

N. M. Laird, S. Horvath, and X. Xu, Implementing a unified approach to family-based tests of association, Genet Epidemiol, vol.19, issue.1, pp.36-42, 2000.

D. Rabinowitz and N. Laird, A unified approach to adjusting association tests for population admixture with arbitrary pedigree structure and arbitrary missing marker information, Hum Hered, vol.50, pp.211-223, 2000.

R. A. Fisher, Statistical Methods for Research Workers, 1925.

C. S. Rakovski, X. Xu, L. R. Blacker, D. Laird, and N. M. , A new multimarker test for family-based association studies, Genet Epidemiol, vol.31, pp.9-17, 2007.

H. Chen, J. B. Meigs, and J. Dupuis, Sequence kernel association test for quantitative traits in family samples, Genet Epidemiol, vol.37, pp.196-204, 2013.

B. N. Howie, P. Donnelly, and J. Marchini, A flexible and accurate genotype imputation method for the next generation of genome-wide association studies, PLoS Genet, vol.5, p.1000529, 2009.

J. Marchini, B. Howie, S. Myers, G. Mcvean, and P. Donnelly, A new multipoint method for genome-wide association studies by imputation of genotypes, Nat Genet, vol.39, pp.906-913, 2007.