T. Nagano, Cell-cycle dynamics of chromosomal organization at singlecell resolution, Nature, vol.547, pp.61-67, 2017.

A. J. Bannister and T. Kouzarides, Regulation of chromatin by histone modifications, Cell Res, vol.21, pp.381-395, 2011.

S. B. Rothbart and B. D. Strahl, Interpreting the language of histone and DNA modifications, Biochim. Biophys. Acta, vol.1839, pp.627-643, 2014.

C. L. Woodcock and R. P. Ghosh, Chromatin higher-order structure and dynamics, Cold Spring Harb. Perspect. Biol, vol.2, p.596, 2010.

M. J. Hendzel, Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation, Chromosoma, vol.106, pp.348-360, 1997.

D. Doenecke, Chromatin dynamics from S-phase to mitosis: contributions of histone modifications, Cell Tissue Res, vol.356, pp.467-475, 2014.

F. Wang and J. M. Higgins, Histone modifications and mitosis: countermarks, landmarks, and bookmarks, Trends Cell Biol, vol.23, pp.175-184, 2013.

D. S. Dimitrova, T. A. Prokhorova, J. J. Blow, I. T. Todorov, and D. M. Gilbert, Mammalian nuclei become licensed for DNA replication during late telophase, J. Cell Sci, vol.115, pp.51-59, 2002.

M. N. Prioleau and D. M. Macalpine, DNA replication origins-where do we begin? Genes Dev, vol.30, pp.1683-1697, 2016.

M. Mechali, K. Yoshida, P. Coulombe, and P. Pasero, Genetic and epigenetic determinants of DNA replication origins, position and activation, Curr. Opin. Genet. Dev, vol.23, pp.124-131, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00824364

S. Jorgensen, The histone methyltransferase SET8 is required for S-phase progression, J. Cell Biol, vol.179, pp.1337-1345, 2007.

M. Tardat, R. Murr, Z. Herceg, C. Sardet, and E. Julien, PR-Set7-dependent lysine methylation ensures genome replication and stability through S phase, J. Cell Biol, vol.179, pp.1413-1426, 2007.

H. Oda, Monomethylation of histone H4-lysine 20 is involved in chromosome structure and stability and is essential for mouse development, Mol. Cell. Biol, vol.29, pp.2278-2295, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00384522

S. Jorgensen, G. Schotta, and C. S. Sorensen, Histone H4 lysine 20 methylation: key player in epigenetic regulation of genomic integrity, Nucleic Acids Res, vol.41, pp.2797-2806, 2013.

J. D. Buenrostro, P. G. Giresi, L. C. Zaba, H. Y. Chang, and W. J. Greenleaf, Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position, Nat. Methods, vol.10, pp.1213-1218, 2013.

D. Lleres, J. James, S. Swift, D. G. Norman, and A. Lamond, Quantitative analysis of chromatin compaction in living cells using FLIM-FRET, J. Cell Biol, vol.187, pp.481-496, 2009.

X. Lu, The effect of H3K79 dimethylation and H4K20 trimethylation on nucleosome and chromatin structure, Nat. Struct. Mol. Biol, vol.15, pp.1122-1124, 2008.

A. A. Kalashnikova, M. E. Porter-goff, U. M. Muthurajan, K. Luger, and J. C. Hansen, The role of the nucleosome acidic patch in modulating higher order chromatin structure, J. R. Soc. Interface, vol.10, p.20121022, 2013.

S. I. Houston, Catalytic function of the PR-Set7 histone H4 lysine 20 monomethyltransferase is essential for mitotic entry and genomic stability, J. Biol. Chem, vol.283, pp.19478-19488, 2008.

K. F. Toth, Trichostatin A-induced histone acetylation causes decondensation of interphase chromatin, J. Cell Sci, vol.117, pp.4277-4287, 2004.

M. A. Ricci, C. Manzo, M. F. Garcia-parajo, M. Lakadamyali, and M. P. Cosma, Chromatin fibers are formed by heterogeneous groups of nucleosomes in vivo, Cell, vol.160, pp.1145-1158, 2015.

K. Richter, M. Nessling, and P. Lichter, Experimental evidence for the influence of molecular crowding on nuclear architecture, J. Cell Sci, vol.120, pp.1673-1680, 2007.

H. Albiez, Chromatin domains and the interchromatin compartment form structurally defined and functionally interacting nuclear networks, Chromosome Res, vol.14, pp.707-733, 2006.

R. Eskeland, Ring1B compacts chromatin structure and represses gene expression independent of histone ubiquitination, Mol. Cell, vol.38, pp.452-464, 2010.

P. J. Gillespie, A. Li, and J. J. Blow, Reconstitution of licensed replication origins on Xenopus sperm nuclei using purified proteins, BMC Biochem, vol.2, p.15, 2001.

D. Remus, Concerted loading of Mcm2-7 double hexamers around DNA during DNA replication origin licensing, Cell, vol.139, pp.719-730, 2009.

C. Evrin, A double-hexameric MCM2-7 complex is loaded onto origin DNA during licensing of eukaryotic DNA replication, Proc. Natl. Acad. Sci. USA, vol.106, pp.20240-20245, 2009.

D. B. Beck, H. Oda, S. S. Shen, and D. Reinberg, PR-Set7 and H4K20me1: at the crossroads of genome integrity, cell cycle, chromosome condensation, and transcription, Genes Dev, vol.26, pp.325-337, 2012.

M. Tardat, The histone H4 Lys 20 methyltransferase PR-Set7 regulates replication origins in mammalian cells, Nat. Cell Biol, vol.12, pp.1086-1093, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02193626

P. Tenca, Cdc7 is an active kinase in human cancer cells undergoing replication stress, J. Biol. Chem, vol.282, pp.208-215, 2007.

T. Tsuji, S. B. Ficarro, and W. Jiang, Essential role of phosphorylation of MCM2 by Cdc7/Dbf4 in the initiation of DNA replication in mammalian cells, Mol. Biol. Cell, vol.17, pp.4459-4472, 2006.

M. Weinreich, Molecular biology: DNA replication reconstructed, Nature, vol.519, pp.418-419, 2015.

S. F. Bunting, 53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks, Cell, vol.141, pp.243-254, 2010.

A. N. Kousholt, CtIP-dependent DNA resection is required for DNA damage checkpoint maintenance but not initiation, J. Cell Biol, vol.197, pp.869-876, 2012.

K. Siddiqui, K. F. On, and J. F. Diffley, Regulating DNA replication in eukarya, Cold Spring Harb. Perspect. Biol, vol.5, p.12930, 2013.

J. T. Yeeles, T. D. Deegan, A. Janska, A. Early, and J. F. Diffley, Regulated eukaryotic DNA replication origin firing with purified proteins, Nature, vol.519, pp.431-435, 2015.

D. S. Geraghty, M. Ding, N. H. Heintz, and D. S. Pederson, Premature structural changes at replication origins in a yeast minichromosome maintenance (MCM) mutant, J. Biol. Chem, vol.275, pp.18011-18021, 2000.

W. T. Poh, G. S. Chadha, P. J. Gillespie, P. Kaldis, and J. J. Blow, Xenopus Cdc7 executes its essential function early in S phase and is counteracted by checkpoint-regulated protein phosphatase 1, Open Biol, vol.4, p.130138, 2014.

S. Hughes, Crystal structure of human CDC7 kinase in complex with its activator DBF4, Nat. Struct. Mol. Biol, vol.19, pp.1101-1107, 2012.

R. C. Alver, G. S. Chadha, P. J. Gillespie, and J. J. Blow, Reversal of DDKmediated MCM phosphorylation by Rif1-PP1 regulates replication initiation and replisome stability independently of ATR/Chk1. Cell Rep, vol.18, pp.2508-2520, 2017.

J. C. Hansen, Conformational dynamics of the chromatin fiber in solution: determinants, mechanisms, and functions, Annu. Rev. Biophys. Biomol. Struct, vol.31, pp.361-392, 2002.

B. Dorigo, T. Schalch, K. Bystricky, and T. J. Richmond, Chromatin fiber folding: requirement for the histone H4 N-terminal tail, J. Mol. Biol, vol.327, pp.85-96, 2003.

K. Luger, A. W. Mader, R. K. Richmond, D. F. Sargent, and T. J. Richmond, Crystal structure of the nucleosome core particle at 2.8 A resolution, Nature, vol.389, pp.251-260, 1997.

B. Dorigo, Nucleosome arrays reveal the two-start organization of the chromatin fiber, Science, vol.306, pp.1571-1573, 2004.

P. Y. Kan, T. L. Caterino, and J. J. Hayes, The H4 tail domain participates in intra-and internucleosome interactions with protein and DNA during folding and oligomerization of nucleosome arrays, Mol. Cell. Biol, vol.29, pp.538-546, 2009.

M. J. Blacketer, S. J. Feely, and M. A. Shogren-knaak, Nucleosome interactions and stability in an ordered nucleosome array model system, J. Biol. Chem, vol.285, pp.34597-34607, 2010.

C. Barrington, D. Pezic, and S. Hadjur, Chromosome structure dynamics during the cell cycle: a structure to fit every phase, EMBO J, vol.36, pp.2661-2663, 2017.

F. Uhlmann, SMC complexes: from DNA to chromosomes, Nat. Rev. Mol. Cell Biol, vol.17, pp.399-412, 2016.

S. A. Schalbetter, SMC complexes differentially compact mitotic chromosomes according to genomic context, Nat. Cell Biol, vol.19, pp.1071-1080, 2017.

T. Hirano, Condensin-based chromosome organization from bacteria to vertebrates, Cell, vol.164, pp.847-857, 2016.

C. F. Kurat, J. T. Yeeles, H. Patel, A. Early, and J. F. Diffley, Chromatin controls DNA replication origin selection, lagging-strand synthesis, and replication fork rates, Mol. Cell, vol.65, pp.117-130, 2017.

S. Devbhandari, J. Jiang, C. Kumar, I. Whitehouse, and D. Remus, Chromatin constrains the initiation and elongation of DNA replication, Mol. Cell, vol.65, pp.131-141, 2017.

M. L. Eaton, K. Galani, S. Kang, S. P. Bell, and D. M. Macalpine, Conserved nucleosome positioning defines replication origins, Genes Dev, vol.24, pp.748-753, 2010.

A. J. Kuo, The BAH domain of ORC1 links H4K20me2 to DNA replication licensing and Meier-Gorlin syndrome, Nature, vol.484, pp.115-119, 2012.

N. Nair, M. Shoaib, and C. S. Sorensen, Chromatin dynamics in genome stability: roles in suppressing endogenous DNA damage and facilitating DNA repair, Int. J. Mol. Sci, vol.18, p.1486, 2017.

J. Brustel, Histone H4K20 tri-methylation at late-firing origins ensures timely heterochromatin replication, EMBO J, vol.36, pp.2726-2741, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02154100

J. Mendez and B. Stillman, Chromatin association of human origin recognition complex, cdc6, and minichromosome maintenance proteins during the cell cycle: assembly of prereplication complexes in late mitosis, Mol. Cell. Biol, vol.20, pp.8602-8612, 2000.

M. Shoaib, PUB-NChIP--"in vivo biotinylation" approach to study chromatin in proximity to a protein of interest, Genome Res, vol.23, pp.331-340, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02159970

B. Fahrenkrog, Domain-specific antibodies reveal multiple-site topology of Nup153 within the nuclear pore complex, J. Struct. Biol, vol.140, pp.254-267, 2002.

Y. Zhang, Model-based analysis of ChIP-Seq (MACS)

, Genome Biol, vol.9, p.137, 2008.

A. R. Quinlan and I. M. Hall, BEDTools: a flexible suite of utilities for comparing genomic features, Bioinformatics, vol.26, pp.841-842, 2010.

M. Lerdrup, J. V. Johansen, S. Singh, and K. Hansen, An interactive environment for agile analysis and visualization of ChIP-sequencing data, Nat. Struct. Mol. Biol, vol.23, pp.349-357, 2016.