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ARTICLE

Histone H4K20 methylation mediated chromatin
compaction threshold ensures genome integrity by
limiting DNA replication licensing
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Mads Lerdrup1, Jens Vilstrup Johansen1, Klaus Hansen1, Eric Julien 3,6, J. Julian Blow 2 &

Claus S. Sørensen 1

The decompaction and re-establishment of chromatin organization immediately after mitosis

is essential for genome regulation. Mechanisms underlying chromatin structure control in

daughter cells are not fully understood. Here we show that a chromatin compaction threshold

in cells exiting mitosis ensures genome integrity by limiting replication licensing in G1 phase.

Upon mitotic exit, chromatin relaxation is controlled by SET8-dependent methylation of

histone H4 on lysine 20. In the absence of either SET8 or H4K20 residue, substantial

genome-wide chromatin decompaction occurs allowing excessive loading of the origin

recognition complex (ORC) in the daughter cells. ORC overloading stimulates aberrant

recruitment of the MCM2-7 complex that promotes single-stranded DNA formation and

DNA damage. Restoring chromatin compaction restrains excess replication licensing and loss

of genome integrity. Our findings identify a cell cycle-specific mechanism whereby fine-tuned

chromatin relaxation suppresses excessive detrimental replication licensing and maintains

genome integrity at the cellular transition from mitosis to G1 phase.
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In eukaryotic cells, dynamic changes in chromatin structure
and compaction are essential for proper progression through
different stages of cell cycle and the maintenance of genome

integrity1. During mitosis and cell division, chromatin is pack-
aged into highly condensed mitotic chromosomes that promote
error-free segregation of genetic material. Upon mitotic exit,
chromosomes must rapidly switch from compact to more relaxed
interphase structures that facilitate all DNA-based processes, by
allowing access to enzymatic machineries involved in transcrip-
tion and DNA replication or repair. It is widely believed that
changes in histone posttranslational modifications (PTMs) largely
contribute to regulate cell cycle chromatin organization by
creating local and pan-nuclear (global) chromatin higher-order
structures, which in turn define nuclear functions2–4.

Histone phosphorylation and acetylation have been shown to
correlate with compact and open chromatin structures, respec-
tively, during cell cycle transitions. In particular, phosphorylation
on histone H3 serine 10 and 28 and threonine 3, 6, and 11
increase significantly during the passage from relaxed interphase
chromatin structures to condensed mitotic chromosomes5–7.
Histone acetylation, on the other hand, creates a less compact
chromatin structure by disrupting electrostatic interactions
between histones and DNA2. However, most of what is known
about the role of histone PTMs in chromatin structural transi-
tions over the cell cycle has come through research on the pro-
gression from interphase into mitosis. The precise role of histone
PTMs in regulating the transition from compact mitotic chro-
mosomes to decondensed interphase chromatin structures during
M/G1 transition is currently unresolved.

At the exit of mitosis, the transition from highly compact
chromatin to a less compact interphase chromatin overlaps with
the loading of replication origin licensing factors, in particular the
ORC complex, which are essential for executing proper DNA
replication8. ORC serves as a scaffold for the subsequent asso-
ciation of CDC6 and CDT1, which together coordinate the
loading of the MCM2-7 complex in order to form the pre-
replication complex (pre-RC) required for replication fork for-
mation and activity. In metazoans, the absence of sequence spe-
cificity for ORC binding to DNA indicates that the local
chromatin environment, defined by nucleosome positioning and
histone modifications, might influence ORC recruitment to pro-
mote proper licensing of replication origins9,10. Whether chro-
matin compaction changes that occur from M to G1 phase impact
ORC chromatin association and the establishment of replication
origins remains unknown.

SET8, the mono-methyltransferase for histone H4 lysine 20
methylation (H4K20me) has previously been shown to be
important for cell cycle progression and maintenance of genome
integrity11–14. SET8 and H4K20me peak during G2 and M phases
of the cell cycle, and this prompted us to investigate their
involvement in chromatin compaction upon mitotic exit. Intri-
guingly, we find that SET8 and H4K20me are crucial for main-
taining a chromatin compaction threshold during the cellular
transition from mitosis to G1 phase, which suppresses aberrant
DNA replication licensing. Furthermore, we show that loss of
genome stability follows aberrant replication licensing. Together,
our results uncover a key cell cycle-specific mechanism whereby
chromatin structure limits DNA replication licensing and pro-
mote genome integrity throughout the cellular transition from M
to G1 phase.

Results
SET8 maintains chromatin compaction in cells exiting mitosis.
We hypothesized that SET8 could regulate chromatin structure
when cells transit from mitosis (M) to G1 phase. To test this, we

first compared the chromatin compaction status of cells arrested
in M with those in G1 in the presence or absence of SET8 using
micrococcal nuclease (MNase) digestion assay. To avoid the
deleterious impact of long-term SET8 depletion, we depleted the
enzyme for maximally 21 h before harvesting cells (Fig. 1a–c).
Cells were simultaneously labeled with methyl-14C containing
thymidine during the experiment. After MNase digestion,
methyl-14C released into the supernatant was used as a measure
of compaction status of the cells (Methods). The more decom-
pacted and accessible the chromatin is, the more methyl-14C is
released into the supernatant. Notably, the compaction state of
both control and siSET8 cells in mitosis were very similar (judged
by the amount of methyl-14C released into the supernatant)
(Fig. 1d). In contrast, SET8-depleted cells displayed a higher level
of methyl-14C compared to control cells upon progression into
G1 phase. This data suggests that SET8 likely contributes to
maintain ground-state chromatin compaction in cells exiting
mitosis.

To complement the results obtained from MNase assay, we
investigated the genome-wide landscape of chromatin accessi-
bility in G1 phase after SET8 depletion. We employed high-
throughput sequencing-based assay of transposase accessible
chromatin (ATAC-seq)15. To this end, we synchronized and
small interfering RNA (siRNA) transfected cells as described in
Fig. 1a (without nocodazole block) followed by harvesting cells in
the following G1 phase. Supplementary Fig. 1a show the average
distribution of ATAC-seq peaks in siSET8 vs siControl samples.
Importantly, when visualizing the global signal intensity (Sup-
plementary Fig. 1b) and signal normalized to the number of reads
at individual loci (Supplementary Fig. 1c), it was evident that
signal strength was higher in siSET8 cells. These data are
consistent with the overall loss of chromatin compaction in the
absence of SET8 as also observed in the MNase assay (Fig. 1d).

To further explore this notion in single and live cells, we
performed quantitative analysis of chromatin compaction at the
scale of nucleosome arrays using a FLIM-FRET (fluorescence
lifetime imaging microscopy-Förster resonance energy transfer)
approach in synchronized cells co-expressing histones H2B-
EGFP and mCherry-H2B (named U2OSH2B-2FPs). FRET was
measured between fluorescent protein-tagged histones on
separate nucleosomes, where an increase in signal signifies
chromatin compaction16. siRNA-treated confluent cells were
diluted in the presence of thymidine to synchronize them at the
G1/S transition, and FRET signals were detected and spatially
analyzed before and after release from the thymidine block.
siControl and siSET8 cells showed similar compaction profiles
as judged by the FRET efficiency map at the time of release
from thymidine (T0) (Fig. 1e, f and Supplementary Fig. 2a–c).
In contrast, we observed a significant reduction in FRET levels
in siSET8 G1 phase cells, indicating a major reduction in the
levels of chromatin compaction of these cells compared to
control cells (Fig. 1e, f). To further confirm that SET8 regulates
chromatin compaction status in cells exiting mitosis, we
performed a similar FRET-based analysis and compared the
chromatin compaction in cells arrested in G2/M vs G1 cells
(Supplementary Fig. 3a, b). In agreement with our MNase
digestion analysis (Fig. 1b), we detected a significantly lower
mean FRET efficiency in siSET8 cells in G1 phase, but not at
G2/M phases, compared to siControl cells (Supplementary
Fig. 3c, d). Consistent with these results, transmission electron
microscopy (TEM) analysis of siControl and siSET8 cells also
revealed a reduction in chromatin density throughout the
nucleus in SET8-depleted cells in G1 phase (Fig. 1g, h).
Altogether these results indicate a major role for SET8 in
securing appropriate chromatin compaction during the cellular
transition from mitosis to G1 phase of the cell cycle.
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Fig. 1 SET8 and H4K20 methylation regulate ground-state chromatin compaction in cells exiting mitosis. a U2OS cells were synchronized with double
thymidine block. Control and SET8 siRNAs transfected 6 h before G1/S release. Cells were then blocked in mitosis with nocodazole for 4 h (T0) and
released into G1 phase for 5 h (T5). MNase digestion was performed on mitotic arrested and G1 phase cells. Thymidine containing methyl-14C was added
throughout the experiment. b Cells from a were fixed and stained with phospho-Histone H3S10 antibody and propidium iodide (PI) followed by flow
cytometric analysis. c Immunoblots of total cell lysates prepared from the samples in a probed with the indicated antibodies. Asterisk (*) represents a non-
specific band. d Graph showing MNase digestion profile. Levels of methyl-14C in the supernatant indicates the degree of chromatin decompaction over time
when incubated with MNase. e U2OS cells stably expressing H2B-GFP alone (U2OSH2B-GFP) or with mCherry-tagged histone H2B (U2OSH2B-2FPs) were
synchronized with single thymidine block. Cells were treated with either control or SET8 siRNA during the block. FRET measurements were taken before
(T0) and 24 h after release (Bar, 10 µm). f Quantification of the FLIM-FRET chromatin compaction assay. Inside box plots, the thick line represents median,
the boxes correspond to the mean FRET values upper or lower of the median, with whiskers extending to the highest and lowest value. n > 30 nuclei, ***p <
0.001, **p < 0.01 (ANOVA), ns not significant. g U2OS cells were synchronized and siRNA transfected as in a. Cells were fixed at 15 h post release for
transmission electron microscope (TEM) visualization. h Quantification of the average pixel intensity ± SD (n > 15) of nuclei in g. **p < 0.01 (unpaired t
test). i U2OS cells stably expressing H2B-GFP alone (U2OSH2B-GFP) or with mCherry-H2B (U2OSH2B-2FPs) were transduced with FLAG-tagged Histone
H4WT or H4K20A mutant. Mock transduced cells were taken as control. FRET measurements were taken for all the samples (Bar, 10 µm). j Quantification
of the mean FRET levels in Mock, H4K20WT-, and H4K20A-expressing cells. Box plots represents mean FRET values as defined earlier (f). n > 30 nuclei.
ns not significant, ***p < 0.001 (ANOVA)
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SET8 compacts chromatin through histone H4 lysine 20
methylation. SET8 is responsible for the methylation of histone
H4 at lysine 20, which has previously been implicated in chro-
matin compaction in in vitro assays17. Furthermore, H4 tail
interaction with an acidic patch on H2A/H2B histones on
neighboring nucleosomes has also been suggested to be important
for maintaining ground state chromatin structure18. We therefore
set out to investigate whether SET8 regulates chromatin com-
paction state through H4K20 methylation in cells. To achieve this,
we again used the FLIM-FRET approach described earlier and
transduced U2OSH2B-2FPs cells with a high titer of retroviral vec-
tors encoding a FLAG-tagged histone H4 mutant carrying a lysine
20 to alanine substitution (H4K20A). Cells transduced with a virus
encoding a FLAG-tagged wild-type histone H4 (H4K20WT) and
mock-transduced cells were used as controls. After 3 days of viral
transduction, FRET efficiency was detected and spatially analyzed.
Immunoblot analysis revealed that FLAG-tagged H4K20WT and
H4K20A proteins were expressed at similar levels and were effi-
ciently incorporated into chromatin leading to a marked decrease
in the global levels of the mono-methylated H4K20 (Supple-
mentary Fig. 3e). FRET maps revealed a significant decrease in the
FRET levels in cells expressing the H4K20A mutant version of
histone H4 as compared to mock and H4K20WT-expressing cells
(Fig. 1i, j). A similar decrease in mean FRET percentage was
observed in the case of histone H4 lysine 20 to arginine (H4K20R)
mutant-expressing cells (Supplementary Fig. 3f and g). Altogether,
these data strongly suggest that SET8 maintains ground-state
chromatin compaction via histone H4K20 methylation.

Ground-state chromatin compaction in G1 phase promotes
genome stability. SET8 has previously been shown to be critical
for safeguarding genome stability as evident from the appearance
of DNA damage, cell cycle defects, and early embryonic lethality
in SET8 knockout mice11–13,19. Since we observed a notable
decrease in chromatin compaction in cells exiting mitosis in the
absence of SET8, we investigated whether loss of genome stability
parallels compaction status at this stage of cell cycle. To this end,
cells were synchronized with a double thymidine block, treated
with SET8 or control siRNA, for 6 h during the second block, and
then released from the G1/S transition before analysis for cell cycle
progression and the presence of DNA damage (Fig. 2a). Our data
revealed that cells lacking SET8 and H4K20me1 go through the
first S phase without DNA damage and only display DNA damage
upon mitotic exit. This DNA damage accumulated as siSET8 cells
approach S-phase entry, as evidenced by flow cytometric profiles
of γH2A.X-positive cells (Fig. 2b–d and supplementary Fig. 4a, b).
In addition, we observed an elevated γH2A.X nuclear staining
(Fig. 2e) and the presence of DNA double-strand breaks on pulsed
field gel electrophoresis and neutral COMET assay in siSET8 cells
harvested at 15 h from G1/S release (Fig. 2f, g and Supplementary
Fig. 4c). To further investigate the relationship between chromatin
compaction and genome stability, we analyzed, in a similar
experimental set-up as for SET8, the genome integrity in the
presence of a histone deacetylase inhibitor (HDACi), which
represents a well-known tool to induce genome-wide chromatin
relaxation20,21 (Fig. 2a). Short treatment of G1-phase synchro-
nized cells with HDACi, i.e. Trichostatin A (TSA), induced DNA
damage (Supplementary Fig. 4d–g) that is reminiscent of DNA
damage observed in the absence of SET8 (Fig. 2b–e). Taken
together, these results indicate that maintenance of chromatin
compaction status during the cellular transition from M to G1
phase is critical for safeguarding genome integrity.

To verify that DNA damage upon loss of SET8 is not a
consequence of improper mitotic progression, we analyzed
synchronized U2OS cells arrested in metaphase (using

nocodazole) or released into G1 phase (Supplementary Fig. 5a).
Our results showed that both siControl and siSET8 cells exit
mitosis and enter G1 phase without notable delay and without any
initial measurable DNA damage. siSET8 cells, however, progres-
sively accumulated γH2A.X in the daughter cells (Supplementary
Fig. 5b). The appearance of DNA damage in the daughter cells
correlates well with the role of SET8 and H4K20me in maintaining
ground-state chromatin compaction in cells exiting mitosis.

Next, we sought to understand whether SET8 maintains
genome integrity through H4K20 methylation. To test this, we
developed doxycycline (DOX)-inducible cell lines expressing
either FLAG-HA-tagged wild-type histone H4 (H4K20WT) or
FLAG-HA-tagged histone H4 mutant carrying a lysine to alanine
or arginine substitution at position 20 (H4K20A/R) (supplemen-
tary Fig. 5c) We double thymidine blocked these cells and
released them into the cell cycle using our standard protocol.
Cells were fixed and stained for γH2A.X that revealed increased
DNA damage signaling in both H4K20A- and H4K20R-
expressing cells as compared to H4K20WT-expressing cells
(Fig. 2h, i).

Forced chromatin compaction rescues genome integrity after
SET8 depletion. To further understand the relationship between
DNA damage accumulation and chromatin structure, we asked
whether the siSET8 phenotype could be rescued by inducing
global chromatin compaction. To achieve this, we used sucrose,
which has been shown to induce molecular crowding and pro-
mote highly reversible chromatin compaction22,23. Consistently,
in a similar experimental set-up previously described (Fig. 2a), the
addition of sucrose in late mitosis induced a more compact
chromatin state as cells reached G1 phase (Supplementary Fig. 6a,
b). Second, we ectopically expressed RNF2, a component of the
PRC1 complex, which can compact chromatin independent of its
ubiquitin ligase activity24. As expected, TEM micrographs
showed that RNF2 expression induced more compact chromatin
in siControl and siSET8 cells (Supplementary Fig. 6a, b). To study
the effects of chromatin re-compaction on genome stability, we
used a similar experimental set-up as described earlier (Fig. 2a).
In agreement with our hypothesis, addition of sucrose effectively
suppressed DNA damage in cells lacking SET8 (Fig. 2j and
Supplementary Fig. 6c). Similar to sucrose treatment, ectopic
expression of RNF2 suppressed the challenge to genome integrity
in siSET8 cells (Fig. 2k and Supplementary Fig. 6d, e). Taken
together, these results suggest that maintenance of genome
integrity in cells exiting mitosis and progressing through G1
phase depends on the degree of chromatin compaction set by the
SET8-H4K20me pathway.

Chromatin compaction threshold restricts excessive loading of
licensing proteins. During late mitosis and early G1 phase of the
cell cycle, the six-subunit origin recognition complex (ORC),
together with CDC6 and CDT1, loads the replicative helicase
complex MCM2-7 onto DNA, a process also termed replication
licensing or pre-RC formation25–27. As SET8 and H4K20me have
also emerged as regulators of replication origin licensing28,29, we
wondered whether the ability of SET8 to ensure chromatin
compaction in cells exiting mitosis could impact licensing. To
address this question, we first examined the levels of ORC1 and
MCM2 proteins selected as licensing markers. Cells were pre-
extracted to remove soluble proteins prior to fixation and anti-
body staining procedure. This approach revealed increased
nuclear abundance of pre-RC proteins in siSET8 cells (Fig. 3a–c).
Similarly, an increase in the chromatin loading of replication
proteins was observed in siSET8 cells in G1 phase by immunoblot
analysis (Fig. 3d, e and Supplementary Fig. 7a).
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To test whether this increase in chromatin loading of pre-RC
proteins is related to H4K20me, we employed DOX-inducible
H4K20WT- or H4K20A-expressing cell lines. Cells were
synchronized with double thymidine block as previously
described (Fig. 2a). To induce the expression of histone
H4K20WT/A variants, DOX was added at the start of the
experiment. Cells were harvested at 15 h post G1/S release and
analyzed for levels of the ORC1 and MCM2 licensing markers.
Our results revealed significantly higher levels of chromatin-
bound ORC1 and MCM2 in cells expressing H4K20A as
compared to H4K20WT-expressing cells (Fig. 3f–i). These
results strongly support the notion that SET8-mediated H4K20
methylation creates a chromatin environment that limits the
amount of ORC and MCM recruited on chromatin in G1 phase.
Accordingly, we also noticed an increase in ORC1 and
MCM2 staining in cells treated with an HDACi (TSA) in a
similar experimental set-up (Supplementary Fig. 7b–e), sug-
gesting that overloading of these pre-RC components is caused
by alterations in the levels of chromatin compaction. Further-
more, MCM loading was significantly restricted when cells were
treated with sucrose-based hypertonic medium to induce a
more compact chromatin environment (Fig. 3e and Supple-
mentary Fig. 7f, g). Altogether, these results support our notion
that chromatin compaction regulates the replication origin
licensing process, likely by limiting the accessibility of DNA
that may serve as pre-RC-binding sites.

Chromatin structure limits accumulation of ssDNA. Next, we
investigated how aberrant replication licensing can impact gen-
ome integrity. In this regard, we first investigated the phos-
phorylation of MCM2 on serine 53 (MCM2-S53p) by Cdc7/
Dbf4-dependent kinase (DDK), which is thought to be an
essential step in the activation of the replicative helicase, starting
at G1/S border30,31. Interestingly, we found that the MCM2-
S53p is markedly increased in siSET8 cells (Supplementary
Fig. 8a, b). A consequence of MCM activation is DNA
unwinding leading to the formation of single-stranded DNA
(ssDNA), which is a key step in the replication process. Such
unwinding is normally strictly regulated spatially and tempo-
rally, occurring only at a fraction of replication origins starting at
the G1/S boundary and continuing throughout S phase32. We
asked whether alteration in chromatin compaction status could
lead to accumulation of ssDNA after brief depletion of SET8. For
this purpose, we analyzed native bromodeoxyuridine (BrdU)
staining as ssDNA readout in synchronized cells progressing
toward the G1/S transition. We pulse labeled cells with BrdU at
the time of release from double thymidine block and fixed them
in next cell cycle (15 h from G1/S release). Notably, native BrdU
signal was highly abundant in cells lacking SET8, suggesting the
presence of ssDNA as compared to that in the control situation
(Fig. 4a, b). Consistently, the major ssDNA-binding protein
RPA33,34 was increased on chromatin in the absence of SET8
further implying the presence of ssDNA (Fig. 4c and Supple-
mentary Fig. 8c, d).

To further investigate the role of chromatin structure in
controlling replication licensing and preventing DNA unwinding,
we analyzed both native BrdU signal and RPA chromatin loading
in cells treated with sucrose, in the same experimental set-up as in
Fig. 4a. Indeed, native BrdU signal and RPA loading were
significantly reduced by adding hypertonic medium to cells
lacking SET8 (Fig. 4a–c and Supplementary Fig. 8c). Taken
together, these data indicate that chromatin compaction thresh-
old prevents DNA unwinding possibly by limiting the chromatin
association of pre-RC components in cells progressing through
G1 phase.

Chromatin-mediated suppression of the MCM2-7 complex
promotes genome integrity. Our results suggested an important
role for suppression of MCM activity in chromatin compaction-
dependent genome integrity. To further test this, we first depleted
the MCM7 subunit of the MCM2-7 complex to levels sufficient to
still allow cell cycle progression (Supplementary Fig. 9a, b).
Conspicuously, reducing MCM7 protein levels inhibited the
challenge to genome integrity in cells lacking SET8 (Fig. 4d, e).
Importantly, ssDNA levels were also reduced after MCM7 co-
depletion in cells lacking SET8 (Supplementary Fig. 9b).

DDK-dependent phosphorylation is required for activation of
MCM2-7 helicase activity35,36. Moreover, in yeast, it has been
reported that an MCM5 mutant mimics CDC7-dependent MCM-
complex phosphorylation and activates the helicase activity of the
MCM-complex leading to aberrant DNA unwinding37. Therefore,
to further verify the functional involvement of MCMs in cells with
perturbed chromatin compaction, we determined whether DDK
activity contributes to ssDNA accumulation and γH2A.X signal-
ing. Notably, we observed a dramatic reduction in DNA damage,
as evident from γH2A.X-positive cells, when two different DDK
inhibitors (PHA-767491 and XL413)38–40 were added to the cells
lacking SET8 (Fig. 4f and Supplementary Fig. 9c). Moreover,
treatment of siSET8 cells with DDK inhibitor reduced ssDNA
accumulation (Supplementary Fig. 9d). These results support our
hypothesis that chromatin structure plays an important role in
proper loading and timing of activation of licensing factors.

Finally, we sought to determine whether chromatin relaxation
precedes DNA damage rather than the alternative scenario where
DNA damage leads to chromatin relaxation. To this end, we
performed MNase digestion of nuclei lacking SET8 and
simultaneously treated with DDKi to suppress MCM-dependent
genome instability. The results revealed that siSET8 cells retained
their relaxed chromatin even in the absence of DNA damage
(Supplementary Fig. 9e). Collectively, these results suggest that
abnormal chromatin relaxation precedes events that lead to the
loss of genome integrity.

Discussion
Here we identify a tightly regulated chromatin compaction
threshold, whereby SET8-mediated H4K20 methylation limits
replication licensing (Fig. 4g, h). This ensures proper replication
to maintain genome stability through the cell cycle. These results
provide a novel link between cell cycle-specific chromatin struc-
ture regulation and genome integrity.

Our data regarding the role of H4K20me in maintaining
ground-state chromatin compaction is in agreement with pre-
vious in vitro studies, in which histone H4 tail domains have been
shown to induce short-range nucleosome–nucleosome interac-
tions contributing to local array compaction and higher-order
chromatin folding41,42. Notably, nucleosome crystallization stu-
dies revealed that histone H4 tail residues from lysine 16 to iso-
leucine 26 interacts with an H2A/H2B acidic patch on a
neighboring nucleosome18,43,44. In vitro studies also revealed that,
in addition to acidic patch interaction, a region of the H4 tail
close to the histone fold domain mediates internucleosomal
interactions through direct contacts to both DNA and protein
targets in condensed chromatin structures45,46. In this regard,
H4K20me may favor more stable H4 internucleosomal interac-
tions either through increased H4 tail–acidic patch interactions or
via H4 tail–DNA interactions or both, which is consistent with
our results obtained in single-cell-based FRET assay. Further, we
find that global chromatin compaction in mitosis is not affected
in cells lacking SET8 and proper H4K20me levels. The high
degree of condensation during mitosis may be more dependent
on other factors, such as the SMC complex proteins47–50.
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Our data suggest that a histone H4K20me-dependent chro-
matin compaction threshold imposes constraints and hence
regulates the chromatin loading of ORC and the MCM2-7
complexes. This is consistent with recent reports using in vitro
replication assays to suggest that chromatin enforces origin
specificity by suppressing non-specific ORC binding51,52. The
licensing of replication origins can, therefore, be viewed as an
opportunistic mechanism aided by the ORC complex’s (and
MCM2-7 complex's) affinity for DNA per se, where ORC
bound at future replication origins may promote MCM2-7
complex loading and replication initiation by establishing a
permissive nucleosome-free chromatin environment52,53.
Consistently, the affinity of ORC1 and ORC-associated protein
(ORCA) to H4K20me marks and the role of SET8 in the
maintenance of properly compact chromatin structure would
contribute to create a restricted number of high ORC affinity
sites at specific positions along the genome28,29,54. Therefore,
in G1 cells depleted for SET8, our data suggest that both the
impairment of SET8-mediated high affinity for ORC proteins
and the de-compacted chromatin environment lead to

opportunistic binding of ORC/MCM complexes to DNA,
thereby causing this promiscuous overloading in G1 cell cycle
phase. Furthermore, increased loading of licensing factors in
the context of decompacted chromatin may not only allow for
increased availability of the substrate to the activating kinases
(DDK/CDKs) but also facilitates access for these S phase
kinases, thereby promoting accumulation of ssDNA. Thus we
suggest that moderately compacted chromatin with appro-
priate H4K20 methylation levels limits the number of poten-
tially available ORC-binding sites for the formation of
replication origins and in turn keep a check on activating
kinases.

Previous studies linked SET8 and H4K20me with a positive
role in licensing29,54. However, these studies were carried out
under extended periods of analysis (e.g., >72 h in Tardat et al.29),
when loss of SET8 activity significantly reduced H4K20me2 and
H4K20me3 levels and thus affected the stability of ORC complex
binding to chromatin28,29. Furthermore, these studies mainly
focused on the consequence of SET8 stabilization during S phase.
In the current study, we used relatively short-term depletion of
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SET8 (21 h) in synchronized cells, thereby allowing the persis-
tence of H4K20me2 (Fig. 3d) that serves as an ORC recruiting
chromatin mark. Notably, this approach allowed us to uncover
specifically the role of SET8-mediated chromatin compaction in
replication licensing after a single passage through mitosis. Of
note, our finding that general HDAC inhibition shows a highly
similar effect, which is mediated by chromatin structure control,
further supports a general role of chromatin compaction in the
regulation of replication licensing process.

SET8 has previously been shown to promote genome stability
and proper S-phase progression11,12. In the current work, we
demonstrated that appearance of DNA damage in the absence of
SET8 parallels with the loss of ground-state chromatin compac-
tion and aberrant licensing in cells exiting mitosis. These events
are followed by abnormal activation of MCM helicase and an
accumulation of ssDNA. Thus our findings shed light on a fun-
damental role of SET8 in maintaining chromatin structure,
thereby explaining initial events leading to appearance of high
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levels of replication stress and DNA damage during S phase in
cells lacking SET811,12. Furthermore, our data indicate that SET8
regulates chromatin compaction and maintains genome stability
specifically via histone H4K20 methylation. Overall, these find-
ings support the notion that chromatin structural organization in
G1 phase allows for fine-tuned regulation of DNA-based pro-
cesses, such as replication, thereby preventing replication stress
and endogenous damage55.

Methods
Cell culture, cell cycle synchronization, and chemicals. U2OS were obtained
from ATCC and maintained in Dulbecco’s modified Eagle’s medium containing
10% fetal bovine serum and 1% Penicillin–Streptomycin. For synchronization at
G1/S, U2OS cells were cultured in the presence of 2 mM thymidine (Sigma) for
20 h, washed three times with phosphate-buffered saline (PBS), and released in
fresh medium without thymidine for 10 h. After another 17 h in thymidine, cells
were washed three times with PBS and cultured in fresh medium. Cells were then
collected at 15 h. DOX-inducible stable U2OS cell lines were generated using
Lenti-X Tet-One-inducible expression system (Clontech Laboratories). Briefly,
N-terminal FLAG-HA-tagged histone H4 as HindIII-EcoRI fragment was PCR
amplified from pcDNA4/TO-FLAG-HA-H4 and cloned into pLVX-TetOne-
Puro vector to generate pLVX-H4WT using the In-Fusion-HD Cloning Kit
(Clontech Laboratories). pLVX-H4K20A/R variants were generated using site-
directed mutagenesis. For constitutively expressing histone H4WT and
H4K20A/R variants, pQCXIP-H4WT was generated by cloning the histone H4-
3xFLAG into pQCXIP (retroviral vector, Clonetech) by PCR using pCMV-H4-
3xFLAG vector. pQCXIP H4K20A substitution mutant was generated by site-
directed mutagenesis56. The list of primers is provided as supplementary table 1
in supplementary information. For various cellular treatments, the following
drugs were used: 3 µM DDKi (PHA-767491 and XL413 were from Sigma), TSA
25 μM (Sigma), sucrose 125 mM (Sigma), nocodazole 40 ng per ml (Sigma),
DOX 1 µg per ml (Sigma).

siRNA transfections. siRNA transfections were performed with 20 nM siRNA
duplexes using Lipofectamine® RNAiMAX (Invitrogen), according to the manu-
facturer’s instructions. The siRNA sequences used for knockdown are (5’–3’):

SET8 (GUACGGAGCGCCAUGAAGU) and
MCM7 (UAGCCUACCUCUACAAUGA).

Flow cytometry. Cells were fixed in 70% ethanol and stained with the indicated
antibodies for 1 h followed by 1 h incubation with the secondary antibodies. DNA
was stained using 0.1 mg/ml propidium iodide containing RNase for 30 min at 37 °
C. Flow cytometric analysis was performed on FACSCalibur using the CellQuest
Pro software (BD). Data were analyzed using the FlowJo software (v7.2.2; Tree
Star). The details of all primary and secondary antibodies used in this study are
provided as Supplementary Tables 2 and 5.

Cellular fractionation and chromatin isolation. To obtain soluble and chromatin-
enriched cellular fractions, cell fractionation was performed. In brief, cells were
lysed for 10 min in a small volume of CSK buffer (0.5% Triton X-100, 10 mM
Pipes, pH 6.8, 300 mM sucrose, 100 mM NaCl, and 1.5 mM MgCl2). The lysed cells
were pelleted by centrifugation at 2000 × g, and the supernatant was collected
(soluble fraction). The pellet was washed once with CSK buffer, resuspended in 0.2
M HCl, and incubated at 4 °C for 2 h. The supernatant represented the chromatin-
enriched fraction. HCl-containing samples were neutralized with Tris buffer before
sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE). To
obtain cytoplasmic, nuclear, and chromatin fractions, cellular fractionation was
performed as previously described29,57. Briefly, cells were resuspended in buffer A
(10 mM HEPES, [pH 7.9], 10 mM KCl, 1.5 mM MgCl2, 0.34 M sucrose, 10% gly-
cerol, 1 mM dithiothreitol (DTT), 5 μg of aprotinin per ml, 5 μg/ml leupeptin, 0.5
μg/ml pepstatin A, 0.1 mM phenylmethylsulfonyl fluoride (PMSF)). Triton X-100
(0.1%) was added, and the cells were incubated for 5 min on ice. Nuclei were
collected in pellet 1 (P1) by low-speed centrifugation (4 min, 1300 × g, 4 °C). The
supernatant (S1) was further clarified by high-speed centrifugation (15 min,
20,000 × g, 4 °C) to remove cell debris and insoluble aggregates (S2). Nuclei were
washed once in buffer A and then lysed in buffer B (3 mM EDTA, 0.2 mM EGTA,
1 mM DTT, protease inhibitors as described above). Insoluble chromatin (S3) was
collected by centrifugation (4 min, 1700 × g, 4 °C), washed once in buffer B, and
centrifuged again under the same conditions. The final chromatin pellet (P3) was
resuspended in Laemmli buffer and sonicated.

Immunoblotting and antibodies. Cells were lysed on ice in cold EBC-buffer (150
mM NaCl; 50 mM TRIS pH 7.4; 1 mM EDTA; 0.5% NP-40/Igepal) containing
protease inhibitors (1% aprotinin, 5 μg/ml leupeptin, 1 mM PMSF), phosphatase
inhibitors (50 mM sodium fluoride; β-glycerophosphate; 0.5 μM Calyculin A) and
1 mM DTT. The lysates were sonicated using a digital sonifier (102C CE Converter;
Branson). Proteins were separated by SDS–PAGE and transferred to a

nitrocellulose membrane. Blocking and blotting with primary antibodies were
performed in PBS-T supplemented with 5% skimmed milk powder. Proteins were
visualized on films using secondary horseradish peroxidase-conjugated antibodies
and ECL (GE Healthcare). Films were developed using an X-ray machine (Valsoe;
Ferrania Technologies). The details of all primary and secondary antibodies used in
this study are provided as Supplementary Tables 3 and 5. Supplementary Fig. 10
contains uncropped scans of the immunoblots.

Immunofluorescence microscopy. Cells were grown on coverslips, washed with
PBS, fixed with formaldehyde 4% for 10 min, permeabilized with PBS containing
0.3% Triton X-100 for 10 min at room temperature (RT) and blocked for 1 h in
PBS containing 0.1% Triton X-100 and 3% bovine serum albumin prior to incu-
bation with the indicated antibodies. For visualizing chromatin-bound proteins,
cells grown on coverslips were washed with PBS, then extracted on ice for 3 min
in ice-cold pre-extraction buffer (0.5% Triton X-100, 20 mM HEPES, pH 7.5,
300 mM sucrose, 50 mM NaCl, and 3 mM MgCl2), washed twice with PBS,
and fixed with 4% formaldehyde for 10 min at RT and then incubated in primary
antibodies followed by fluorochrome-labeled secondary antibodies. DAPI (4’,6-
diamidino-2-phenylindole, dihydrochloride) was used to counter stain the nuclei.
Images were acquired using either Leica TCS SP8 confocal microscope or Zeiss
LSM880 in AiryScan super-resolution mode. The details of all primary and
secondary antibodies used in this study are provided as Supplementary Tables 4
and 5.

Micrococcal nuclease digestion. Two million U2OS cells were labeled with 14C
(radioactive isotope of Carbon) during synchronization with double thymidine and
were harvested in G1 phase. Nuclei were prepared as described previously58.
Briefly, cells for each condition were resuspended in cytosolic lysis buffer (10 mM
Tris-HCl, pH 7.5, 10 mM NaCl, 5 mM MgCl2, 0.5% NP-40, and 0.25 mM PMSF)
and incubated on ice for 8 min. Nuclei were pelleted by centrifugation (1700 × g for
10 min at 4 °C). The pellet was washed once in nuclei buffer (60 mM KCl, 15 mM
NaCl, 0.34M sucrose, 0.25 mM PMSF, and 1 mM DDT) and resuspended in nuclei
buffer. CaCl2 (2 mM) was added, and the samples were pre-warmed to 25 °C.
Micrococcal nuclease (0.1 U/µl; Sigma-Aldrich) was added to each sample and
aliquoted into 7 pre-chilled eppendorf tubes. Six tubes were incubated at 37 °C for
the indicated time periods (0, 1, 3, 8, 13, and 20 min) and 1 tube from each sample
was sonicated as a control for 14C incorporation efficiency in the cells. All samples
were immediately centrifuged at 10,000 × g and supernatants were collected in the
scintillation tubes containing 4 ml of scintillation liquid (Ultima Gold, Perkin
Elmer). All samples were quantified using scintillation counter.

Electron microscopy. Cells were fixed in Karnofski solution (3% paraformalde-
hyde, 0.5% glutaraldehyde in 10 mM PBS, pH 7.4) for 1 h, washed once in PBS, and
post-fixed first in 1% reduced osmium tetroxide (containing 1.5% potassium fer-
ricyanide) for 40 min and subsequently in 1% osmium tetroxide for another 40
min. After washing in water, fixed samples were dehydrated in an ascending
ethanol series, embedded in Epon resin (Fluka, Buchs, Switzerland). Thin sections
were cut on a Reichert Ultracut microtome (Reichert-Jung Optische Werke,
Vienna, Austria) using a diamond knife (Diatome, Biel, Switzerland). The sections
were collected on parlodion-coated copper grids and stained with 6% uranylacetate
for 1 h followed by 2% lead citrate for 2 min59. EM micrographs were recorded on a
Phillips CM-100 transmission electron microscope equipped with a CCD camera at
an acceleration voltage of 80 kV. Images were recorded using the systems software
and processed using Adobe Photoshop. Quantification of chromatin density was
performed using ImageJ. Briefly, on each image 15 points/areas were randomly
selected and pixel density was measured. Pixel density of the background was
measured at five random image points outside the cell. Background density was
subtracted from the measured chromatin density and values were normalized
relative to chromatin density in control siRNA-treated cells set as 1 (Fig. 1h). To
avoid negative relative values, values in Supplementary Fig. 6b were normalized to
the lowest value (siSET8), which was defined as 1.

FLIM-FRET measurements and analysis. FLIM-FRET experiments were per-
formed in U2OS cells stably expressing H2B-GFP alone (U2OSH2B-GFP) or with
mCherry-tagged histone H2B (U2OSH2B-2FPs). FLIM was performed using an
inverted laser scanning multiphoton microscope LSM780 (Zeiss) equipped with
temperature- and CO2-controlled environmental black wall chamber. Measure-
ments were acquired in live cells at 37 °C, 5% CO2, and with a ×40 oil immersion
lens NA 1.3 Plan-Apochromat objective from Zeiss. Two-photon excitation was
achieved using a Chameleon Ultra II tunable (680–1080 nm) laser (Coherent) to
pump a mode-locked frequency-doubled Ti:Sapphire laser that provided sub-150-
femtosecond pulses at a 80Mhz repetition rate with an output power of 3.3W at
the peak of the tuning curve (800 nm). Enhanced detection of the emitted photons
was afforded by the use of the HPM-100 module (Hamamatsu R10467-40 GaAsP
hybrid PMT tube). The fluorescence lifetime imaging capability was provided by
TCSPC electronics (SPC-830; Becker & Hickl GmbH). TCSPC measures the time
elapsed between laser pulses and the fluorescence photons. Enhanced green
fluorescent protein (EGFP) and mCherry fluorophores were used as a FRET pair.
The optimal two-photon excitation wavelength to excite the donor (EGFP) was
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890 nm. Laser power was adjusted to give a mean photon count rate of the order
1 × 105–5 × 105 photons/s. Fluorescence lifetime measurements were acquired over
60 s and fluorescence lifetimes were calculated for all pixels in the field of view
(256 × 256 pixel). The analysis of the FLIM measurements was performed by using
the SPCImage software (Becker & Hickl, GmbH). Because FRET interactions cause
a decrease in the fluorescence lifetime of the donor molecules (EGFP), the FRET
efficiency was calculated by comparing the FLIM values obtained for the EGFP
donor fluorophores in the presence (U2OSH2B-2FPs) and absence (U2OSH2B-GFP) of
the mCherry acceptor fluorophores. FRET efficiency (E FRET) was derived by
applying the following equation:

E FRET ¼ 1� τDA=τDð Þ

where τDA is the mean fluorescence lifetime of the donor (H2B-EGFP) in the
presence of the acceptor mCherry-H2B in U2OSH2B-2FPs cells and τD is the mean
fluorescence lifetime of H2B-EGFP (in the absence of acceptor) in U2OSH2BGFP
cells that are present in the same field of view. FRET efficiency values were cal-
culated from 20 to 30 cells and then normalized. Graphical representation was
done using the GraphPad Prism software.

Assay of transposase accessible chromatin sequencing. ATAC-seq was per-
formed as originally described by Buenrostro et al.15. Briefly, nuclei were prepared
by spinning 50,000 cells at 500 × g for 5 min, followed by washing with ice-cold 1×
PBS followed by centrifugation at 500 × g for 5 min. Cells were lysed using cold
lysis buffer (10 mM Tris-HCl, pH 7.4, 10 mM NaCl, 3 mM MgCl2, and 0.1% NP40,
followed by centrifugation at 500 × g for 10 min using a refrigerated centrifuge.
Following the nuclei preparations, the pellet was resuspended in the transposase
reaction mix (25 μl 2× TD buffer, 2.5 μl transposase (Illumina), and 22.5 μl
nuclease-free water) and incubated at 37 °C for 30 min. The sample was purified
using a Qiagen MinElute Kit. After purification, the DNA fragments were amplified
using Nextera PCR master mix (NPM) and 1.25 μM of custom Nextera (Illumina)
PCR primers 1 and 2, using the following PCR conditions: 72 °C for 5 min; 98 °C
for 30 s; and thermocycling at 98 °C for 10 s, 63 °C for 30 s, and 72 °C for 1 min. We
performed the size selection (<600 bp) using Ampure XP magnetic beads (Beck-
man Coulter Inc.) according to manufacturer’s protocol. To reduce GC and size
bias in our PCR, we performed a quantitative real-time PCR (qPCR)-based library
quantification. First, one fifth of the purified PCR product was amplified using 2x
KAPA SYBR FAST qPCR Master mix (KK4932) for 40 cycles. The optimal number
of cycles were determined by the cycle number that corresponds to one third of
maximum fluorescent intensity (usually around 7–8 cycles). The full libraries were
then amplified for the corresponding number of cycles (determined in previous
step) for each sample. The libraries were again then purified with size selection
(<600 bp) using Ampure XP magnetic beads according to the manufacturer’s
protocol. Libraries were quantified using the Qubit DNA HS Kit, and for quality
control, 1 µl of each sample was run on Bioanalyzer High Sensitivity DNA Chip. In
all, 4 nM of all libraries were pooled and 1.5 pM were analyzed on Illumina
NextSeq500 (500/550 High Output v2 Kit—150 cycles).

The raw paired-end reads were first trimmed for Nextera transposase adapter
sequences using Trimmomatic (v0.32) in palindrome mode with default settings
except ILLUMINACLIP:2:30:10:1:true MINLEN:25. FastQC of reads before and
after trimming confirmed the removal of any 3’ adapter sequences, while also
clearly showing the known insertion Tn5 motif in the 5’-ends. The trimmed PE
reads were mapped to the hg19 assembly (canonical chromosomes only) using
bowtie2 v.2.2.9 with default settings except -k 2 -X 2000 --no-mixed --no-
discordant. After sorting (SortSam) and labeling duplicates (MarkDuplicates) with
Picard tools (v. 2.6.0-27-g915ffa7-SNAPSHOT) and adding a NH tag (number of
reported alignments), reads were filtered to exclude unmapped, multimapping, and
mitochondrial reads (samtools view -f 2 -F 4 and custom filter). The filtered bam
files were converted to bed format using bedtools bamtobed (v2.26.0-92-g88cd6c5),
and read start and stop coordinates were finally adjusted by +5 bp and −4 bp,
respectively, to adjust for Tn5-binding properties as previously described15.

ATAC-seq peaks were identified individually for each set of data using macs2
(v2.1.1.20160309)60 callpeak broad -f BAMPE -t $f -g hs -q 0.05, intersected
using bedtools61 multiinter -I, and regions positive in at least two sets were
merged within 1 kbp of each other using bedtools merge -i 1000. Subsequent
handling and visualization was done using EaSeq (v1.05)62. Values in scatter plots
were quantified within a 1-kbp window surrounding the center of each region
using the Quantify-tool, quantile normalized using the Normalize-tool, and
averaged for all replicates in Microsoft Excel. Tracks were visualized using the
FillTrack-tool and replicates were made transparent and superimposed in Adobe
Illustrator.

Data availability
The ATAC-seq data presented in this article is deposited in GEO database: GSE118606.

Received: 2 March 2018 Accepted: 9 August 2018

References
1. Nagano, T. et al. Cell-cycle dynamics of chromosomal organization at single-

cell resolution. Nature 547, 61–67 (2017).
2. Bannister, A. J. & Kouzarides, T. Regulation of chromatin by histone

modifications. Cell Res. 21, 381–395 (2011).
3. Rothbart, S. B. & Strahl, B. D. Interpreting the language of histone and DNA

modifications. Biochim. Biophys. Acta 1839, 627–643 (2014).
4. Woodcock, C. L. & Ghosh, R. P. Chromatin higher-order structure and

dynamics. Cold Spring Harb. Perspect. Biol. 2, a000596 (2010).
5. Hendzel, M. J. et al. Mitosis-specific phosphorylation of histone H3 initiates

primarily within pericentromeric heterochromatin during G2 and spreads in
an ordered fashion coincident with mitotic chromosome condensation.
Chromosoma 106, 348–360 (1997).

6. Doenecke, D. Chromatin dynamics from S-phase to mitosis: contributions of
histone modifications. Cell Tissue Res. 356, 467–475 (2014).

7. Wang, F. & Higgins, J. M. Histone modifications and mitosis: countermarks,
landmarks, and bookmarks. Trends Cell Biol. 23, 175–184 (2013).

8. Dimitrova, D. S., Prokhorova, T. A., Blow, J. J., Todorov, I. T. & Gilbert, D. M.
Mammalian nuclei become licensed for DNA replication during late telophase.
J. Cell Sci. 115, 51–59 (2002).

9. Prioleau, M. N. & MacAlpine, D. M. DNA replication origins-where do we
begin? Genes Dev. 30, 1683–1697 (2016).

10. Mechali, M., Yoshida, K., Coulombe, P. & Pasero, P. Genetic and epigenetic
determinants of DNA replication origins, position and activation. Curr. Opin.
Genet. Dev. 23, 124–131 (2013).

11. Jorgensen, S. et al. The histone methyltransferase SET8 is required for S-phase
progression. J. Cell Biol. 179, 1337–1345 (2007).

12. Tardat, M., Murr, R., Herceg, Z., Sardet, C. & Julien, E. PR-Set7-dependent
lysine methylation ensures genome replication and stability through S phase. J.
Cell Biol. 179, 1413–1426 (2007).

13. Oda, H. et al. Monomethylation of histone H4-lysine 20 is involved in
chromosome structure and stability and is essential for mouse development.
Mol. Cell. Biol. 29, 2278–2295 (2009).

14. Jorgensen, S., Schotta, G. & Sorensen, C. S. Histone H4 lysine 20 methylation:
key player in epigenetic regulation of genomic integrity. Nucleic Acids Res. 41,
2797–2806 (2013).

15. Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J.
Transposition of native chromatin for fast and sensitive epigenomic profiling
of open chromatin, DNA-binding proteins and nucleosome position. Nat.
Methods 10, 1213–1218 (2013).

16. Lleres, D., James, J., Swift, S., Norman, D. G. & Lamond, A. I. Quantitative
analysis of chromatin compaction in living cells using FLIM-FRET. J. Cell Biol.
187, 481–496 (2009).

17. Lu, X. et al. The effect of H3K79 dimethylation and H4K20 trimethylation on
nucleosome and chromatin structure. Nat. Struct. Mol. Biol. 15, 1122–1124
(2008).

18. Kalashnikova, A. A., Porter-Goff, M. E., Muthurajan, U. M., Luger, K. &
Hansen, J. C. The role of the nucleosome acidic patch in modulating higher
order chromatin structure. J. R. Soc. Interface 10, 20121022 (2013).

19. Houston, S. I. et al. Catalytic function of the PR-Set7 histone H4 lysine 20
monomethyltransferase is essential for mitotic entry and genomic stability. J.
Biol. Chem. 283, 19478–19488 (2008).

20. Toth, K. F. et al. Trichostatin A-induced histone acetylation causes
decondensation of interphase chromatin. J. Cell Sci. 117, 4277–4287 (2004).

21. Ricci, M. A., Manzo, C., Garcia-Parajo, M. F., Lakadamyali, M. & Cosma, M.
P. Chromatin fibers are formed by heterogeneous groups of nucleosomes
in vivo. Cell 160, 1145–1158 (2015).

22. Richter, K., Nessling, M. & Lichter, P. Experimental evidence for the influence
of molecular crowding on nuclear architecture. J. Cell Sci. 120, 1673–1680
(2007).

23. Albiez, H. et al. Chromatin domains and the interchromatin compartment
form structurally defined and functionally interacting nuclear networks.
Chromosome Res. 14, 707–733 (2006).

24. Eskeland, R. et al. Ring1B compacts chromatin structure and represses gene
expression independent of histone ubiquitination. Mol. Cell 38, 452–464
(2010).

25. Gillespie, P. J., Li, A. & Blow, J. J. Reconstitution of licensed replication origins
on Xenopus sperm nuclei using purified proteins. BMC Biochem. 2, 15
(2001).

26. Remus, D. et al. Concerted loading of Mcm2-7 double hexamers around DNA
during DNA replication origin licensing. Cell 139, 719–730 (2009).

27. Evrin, C. et al. A double-hexameric MCM2-7 complex is loaded onto origin
DNA during licensing of eukaryotic DNA replication. Proc. Natl. Acad. Sci.
USA 106, 20240–20245 (2009).

28. Beck, D. B., Oda, H., Shen, S. S. & Reinberg, D. PR-Set7 and H4K20me1: at the
crossroads of genome integrity, cell cycle, chromosome condensation, and
transcription. Genes Dev. 26, 325–337 (2012).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-06066-8

10 NATURE COMMUNICATIONS |  (2018) 9:3704 | DOI: 10.1038/s41467-018-06066-8 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


29. Tardat, M. et al. The histone H4 Lys 20 methyltransferase PR-Set7 regulates
replication origins in mammalian cells. Nat. Cell Biol. 12, 1086–1093 (2010).

30. Tenca, P. et al. Cdc7 is an active kinase in human cancer cells undergoing
replication stress. J. Biol. Chem. 282, 208–215 (2007).

31. Tsuji, T., Ficarro, S. B. & Jiang, W. Essential role of phosphorylation of MCM2
by Cdc7/Dbf4 in the initiation of DNA replication in mammalian cells. Mol.
Biol. Cell 17, 4459–4472 (2006).

32. Weinreich, M. Molecular biology: DNA replication reconstructed. Nature 519,
418–419 (2015).

33. Bunting, S. F. et al. 53BP1 inhibits homologous recombination in Brca1-
deficient cells by blocking resection of DNA breaks. Cell 141, 243–254 (2010).

34. Kousholt, A. N. et al. CtIP-dependent DNA resection is required for DNA
damage checkpoint maintenance but not initiation. J. Cell Biol. 197, 869–876
(2012).

35. Siddiqui, K., On, K. F. & Diffley, J. F. Regulating DNA replication in eukarya.
Cold Spring Harb. Perspect. Biol. 5, a012930 (2013).

36. Yeeles, J. T., Deegan, T. D., Janska, A., Early, A. & Diffley, J. F. Regulated
eukaryotic DNA replication origin firing with purified proteins. Nature 519,
431–435 (2015).

37. Geraghty, D. S., Ding, M., Heintz, N. H. & Pederson, D. S. Premature
structural changes at replication origins in a yeast minichromosome
maintenance (MCM) mutant. J. Biol. Chem. 275, 18011–18021 (2000).

38. Poh, W. T., Chadha, G. S., Gillespie, P. J., Kaldis, P. & Blow, J. J. Xenopus
Cdc7 executes its essential function early in S phase and is counteracted by
checkpoint-regulated protein phosphatase 1. Open Biol. 4, 130138
(2014).

39. Hughes, S. et al. Crystal structure of human CDC7 kinase in complex with its
activator DBF4. Nat. Struct. Mol. Biol. 19, 1101–1107 (2012).

40. Alver, R. C., Chadha, G. S., Gillespie, P. J. & Blow, J. J. Reversal of DDK-
mediated MCM phosphorylation by Rif1-PP1 regulates replication initiation
and replisome stability independently of ATR/Chk1. Cell Rep. 18, 2508–2520
(2017).

41. Hansen, J. C. Conformational dynamics of the chromatin fiber in solution:
determinants, mechanisms, and functions. Annu. Rev. Biophys. Biomol. Struct.
31, 361–392 (2002).

42. Dorigo, B., Schalch, T., Bystricky, K. & Richmond, T. J. Chromatin fiber
folding: requirement for the histone H4 N-terminal tail. J. Mol. Biol. 327,
85–96 (2003).

43. Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F. & Richmond, T. J.
Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature
389, 251–260 (1997).

44. Dorigo, B. et al. Nucleosome arrays reveal the two-start organization of the
chromatin fiber. Science 306, 1571–1573 (2004).

45. Kan, P. Y., Caterino, T. L. & Hayes, J. J. The H4 tail domain participates in
intra- and internucleosome interactions with protein and DNA during folding
and oligomerization of nucleosome arrays. Mol. Cell. Biol. 29, 538–546 (2009).

46. Blacketer, M. J., Feely, S. J. & Shogren-Knaak, M. A. Nucleosome interactions
and stability in an ordered nucleosome array model system. J. Biol. Chem. 285,
34597–34607 (2010).

47. Barrington, C., Pezic, D. & Hadjur, S. Chromosome structure dynamics
during the cell cycle: a structure to fit every phase. EMBO J. 36, 2661–2663
(2017).

48. Uhlmann, F. SMC complexes: from DNA to chromosomes. Nat. Rev. Mol. Cell
Biol. 17, 399–412 (2016).

49. Schalbetter, S. A. et al. SMC complexes differentially compact mitotic
chromosomes according to genomic context. Nat. Cell Biol. 19, 1071–1080
(2017).

50. Hirano, T. Condensin-based chromosome organization from bacteria to
vertebrates. Cell 164, 847–857 (2016).

51. Kurat, C. F., Yeeles, J. T., Patel, H., Early, A. & Diffley, J. F. Chromatin
controls DNA replication origin selection, lagging-strand synthesis, and
replication fork rates. Mol. Cell 65, 117–130 (2017).

52. Devbhandari, S., Jiang, J., Kumar, C., Whitehouse, I. & Remus, D. Chromatin
constrains the initiation and elongation of DNA replication. Mol. Cell 65,
131–141 (2017).

53. Eaton, M. L., Galani, K., Kang, S., Bell, S. P. & MacAlpine, D. M. Conserved
nucleosome positioning defines replication origins. Genes Dev. 24, 748–753
(2010).

54. Kuo, A. J. et al. The BAH domain of ORC1 links H4K20me2 to DNA
replication licensing and Meier-Gorlin syndrome. Nature 484, 115–119
(2012).

55. Nair, N., Shoaib, M. & Sorensen, C. S. Chromatin dynamics in genome
stability: roles in suppressing endogenous DNA damage and facilitating DNA
repair. Int. J. Mol. Sci. 18, 1486 (2017).

56. Brustel, J. et al. Histone H4K20 tri-methylation at late-firing origins ensures
timely heterochromatin replication. EMBO J. 36, 2726–2741 (2017).

57. Mendez, J. & Stillman, B. Chromatin association of human origin recognition
complex, cdc6, and minichromosome maintenance proteins during the cell
cycle: assembly of prereplication complexes in late mitosis. Mol. Cell. Biol. 20,
8602–8612 (2000).

58. Shoaib, M. et al. PUB-NChIP--“in vivo biotinylation” approach to study
chromatin in proximity to a protein of interest. Genome Res. 23, 331–340
(2013).

59. Fahrenkrog, B. et al. Domain-specific antibodies reveal multiple-site topology
of Nup153 within the nuclear pore complex. J. Struct. Biol. 140, 254–267
(2002).

60. Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9,
R137 (2008).

61. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for
comparing genomic features. Bioinformatics 26, 841–842 (2010).

62. Lerdrup, M., Johansen, J. V., Agrawal-Singh, S. & Hansen, K. An interactive
environment for agile analysis and visualization of ChIP-sequencing data. Nat.
Struct. Mol. Biol. 23, 349–357 (2016).

Acknowledgements
We are grateful to S. Jørgensen and C. Colding for assistance in the early stages of the
project and to Yasuko Antoku and Kasper Nørskov Kragh for immunofluorescence
analysis assistance. We thank Ursula Sauder and Vesna Oliveri for electron microscopy
expert technical assistance. We thank Brian Larsen for his help in Comet assay and Heike
Ilona Rösner for useful scientific discussions and advice. We also thank Sung-Bao Lee for
help in setting up MNase assay. We thank Montpellier Ressources Imagerie (MRI) for
assistance with FLIM-FRET microscopy. C.S.S., M.S., and D.W. are funded by The Novo
Nordisk Foundation (to C.S.S.), The Danish Cancer Society (to C.S.S.), The Lundbeck
Foundation (to C.S.S.), and The Danish Medical Research Council (to C.S.S.), Swiss
National Science Foundation (to D.W.), and Villum Foundation (to M.S.). B.F. is funded
by FNRS Belgium and P.J.G. and J.J.B. are funded by Cancer Research UK (grant C303/
A14301). F.I. and E.J. were supported by grants from French Plan-Cancer (EPIG2013-
13), Labex EpiGenMed, and SIRIC Montpellier Cancer. F.I. was supported by a PhD
fellowship from the French Ligue Contre le Cancer and Fondation pour la Recherche
Médicale. D.L. was supported by a Cancéropole GSO-Emergence grant (2014-E17) and
CNRS.

Author contributions
M.S., D.W., and P.J.G. designed, performed, and analyzed the experiments. F.I. and D.L.
generated the H4K20 mutants in 2FP-expressing U2OS cells and performed and ana-
lyzed the FLIM-FRET experiments. M.L. and J.V.J. analyzed the ATAC-seq data. B.F.
performed electron microscopic analysis. C.S.S., K.H., E.J., and J.J.B. directed the project.
C.S.S. and M.S. conceived and designed the project. M.S., C.S.S., and E.J. wrote the
manuscript.

Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-
018-06066-8.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2018

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-06066-8 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:3704 | DOI: 10.1038/s41467-018-06066-8 | www.nature.com/naturecommunications 11

https://doi.org/10.1038/s41467-018-06066-8
https://doi.org/10.1038/s41467-018-06066-8
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Histone H4K20 methylation mediated chromatin compaction threshold ensures genome integrity by limiting DNA replication licensing
	Results
	SET8 maintains chromatin compaction in cells exiting mitosis
	SET8 compacts chromatin through histone H4 lysine 20 methylation
	Ground-state chromatin compaction in G1 phase promotes genome stability
	Forced chromatin compaction rescues genome integrity after SET8 depletion
	Chromatin compaction threshold restricts excessive loading of licensing proteins
	Chromatin structure limits accumulation of ssDNA
	Chromatin-mediated suppression of the MCM2-7 complex promotes genome integrity

	Discussion
	Methods
	Cell culture, cell cycle synchronization, and chemicals
	siRNA transfections
	Flow cytometry
	Cellular fractionation and chromatin isolation
	Immunoblotting and antibodies
	Immunofluorescence microscopy
	Micrococcal nuclease digestion
	Electron microscopy
	FLIM-FRET measurements and analysis
	Assay of transposase accessible chromatin sequencing

	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	ACKNOWLEDGEMENTS




