M. E. Jones, Pyrimidine nucleotide biosynthesis in animals: genes, enzymes, and regulation of UMP biosynthesis, Annu Rev Biochem, vol.49, pp.253-79, 1980.

M. Davies, T. Heikkilä, G. A. Mcconkey, C. W. Fishwick, M. R. Parsons et al., Structure-based design, synthesis, and characterization of inhibitors of human and Plasmodium falciparum dihydroorotate dehydrogenases, J Med Chem, vol.52, pp.2683-93, 2009.

M. L. Booker, C. M. Bastos, M. L. Kramer, R. H. Barker, R. Skerlj et al., Novel inhibitors of Plasmodium falciparum dihydroorotate dehydrogenase with anti-malarial activity in the mouse model, J Biol Chem, vol.285, pp.33054-64, 2010.

J. M. Coteron, M. Marco, J. Esquivias, X. Deng, K. L. White et al., Structure-guided lead optimization of triazolopyrimidinering substituents identifies potent Plasmodium falciparum dihydroorotate dehydrogenase inhibitors with clinical candidate potential, J Med Chem, vol.54, pp.5540-61, 2011.

R. T. Skerlj, C. M. Bastos, M. L. Booker, M. L. Kramer, R. H. Barker et al., Optimization of Potent Inhibitors of P. falciparum Dihydroorotate Dehydrogenase for the Treatment of Malaria, ACS Med Chem Lett, vol.2, pp.708-721, 2011.

P. Reyes, P. K. Rathod, D. J. Sanchez, J. E. Mrema, K. H. Rieckmann et al., Enzymes of purine and pyrimidine metabolism from the human malaria parasite, Plasmodium falciparum, Mol Biochem Parasitol, vol.5, pp.275-90, 1982.

A. Bonavia, M. Franti, P. Keaney, E. Kuhen, K. Seepersaud et al., Identification of broad-spectrum antiviral compounds and assessment of the druggability of their target for efficacy against respiratory syncytial virus (RSV), Proc Natl Acad Sci USA, vol.108, pp.6739-6783, 2011.

H. H. Hoffmann, A. Kunz, V. A. Simon, P. Palese, and M. L. Shaw, Broad-spectrum antiviral that interferes with de novo pyrimidine biosynthesis, Proc Natl Acad Sci USA, vol.108, pp.5777-82, 2011.

H. Munier-lehmann, M. Lucas-hourani, S. Guillou, O. Helynck, G. Zanghi et al., Original 2-(3-alkoxy-1H-pyrazol-1-yl)pyrimidine derivatives as inhibitors of human dihydroorotate dehydrogenase (DHODH), J Med Chem, vol.58, pp.860-77, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-01101526

M. Lucas-hourani, H. Munier-lehmann, E. Mazouni, F. Malmquist, N. A. Harpon et al., Original 2-(3-Alkoxy-1H-pyrazol-1-yl)azines Inhibitors of Human Dihydroorotate Dehydrogenase www.impactjournals.com/oncotarget (DHODH), J Med Chem, vol.58, pp.5579-98, 2015.

H. Munier-lehmann, P. O. Vidalain, F. Tangy, and Y. L. Janin, On dihydroorotate dehydrogenases and their inhibitors and uses, J Med Chem, vol.56, pp.3148-67, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-00819070

J. D. Oliver, G. E. Sibley, N. Beckmann, K. S. Dobb, M. J. Slater et al., F901318 represents a novel class of antifungal drug that inhibits dihydroorotate dehydrogenase, Proc Natl Acad Sci, 2016.

R. I. Fox, M. L. Herrmann, C. G. Frangou, G. M. Wahl, R. E. Morris et al., Mechanism of action for leflunomide in rheumatoid arthritis, Clin Immunol, vol.93, pp.198-208, 1999.

M. L. Herrmann, R. Schleyerbach, and B. J. Kirschbaum, Leflunomide: an immunomodulatory drug for the treatment of rheumatoid arthritis and other autoimmune diseases, Immunopharmacology, vol.47, pp.273-89, 2000.

E. K. Li, L. S. Tam, and B. Tomlinson, Leflunomide in the treatment of rheumatoid arthritis, Clin Ther, vol.26, pp.90048-90051, 2004.

M. M. Goldenberg, Leflunomide, a novel immunomodulator for the treatment of active rheumatoid arthritis, Clin Ther, vol.21, issue.00, pp.86732-86738, 1999.

P. O'connor, J. S. Wolinsky, C. Confavreux, G. Comi, L. Kappos et al., Randomized trial of oral teriflunomide for relapsing multiple sclerosis, N Engl J Med, vol.365, pp.1293-303, 2011.

C. Warnke, O. Stüve, and B. C. Kieseier, Teriflunomide for the treatment of multiple sclerosis, Clin Neurol Neurosurg, vol.115, issue.1, pp.90-94, 2013.

P. O'connor, G. Comi, M. S. Freedman, A. E. Miller, L. Kappos et al., Multiple Sclerosis Oral (TEMSO) Trial Group and the MRI-AC in Houston, Texas. Long-term safety and efficacy of teriflunomide: nine-year follow-up of the randomized TEMSO study, Neurology, vol.86, pp.920-950, 2016.

P. Baumann, S. Mandl-weber, A. Völkl, C. Adam, I. Bumeder et al., Dihydroorotate dehydrogenase inhibitor A771726 (leflunomide) induces apoptosis and diminishes proliferation of multiple myeloma cells, Mol Cancer Ther, vol.8, pp.366-75, 2009.

S. Zhu, X. Yan, Z. Xiang, H. F. Ding, and H. Cui, Leflunomide reduces proliferation and induces apoptosis in neuroblastoma cells in vitro and in vivo, PLoS One, vol.8, 2013.

R. M. White, J. Cech, S. Ratanasirintrawoot, C. Y. Lin, P. B. Rahl et al., DHODH modulates transcriptional elongation in the neural crest and melanoma, Nature, vol.471, pp.518-540, 2011.

A. A. Khutornenko, V. V. Roudko, B. V. Chernyak, A. B. Vartapetian, P. M. Chumakov et al., Pyrimidine biosynthesis links mitochondrial respiration to the p53 pathway, Proc Natl Acad Sci USA, vol.107, pp.12828-12861, 2010.

A. A. Khutornenko, A. A. Dalina, B. V. Chernyak, P. M. Chumakov, and A. G. Evstafieva, The Role of Dihydroorotate Dehydrogenase in Apoptosis Induction in Response to Inhibition of the Mitochondrial Respiratory Chain Complex III, Acta Naturae, vol.6, pp.69-75, 2014.

D. B. Sykes, Y. S. Kfoury, F. E. Mercier, M. J. Wawer, J. M. Law et al., Inhibition of Dihydroorotate Dehydrogenase Overcomes Differentiation Blockade in Acute Myeloid Leukemia, Cell, vol.167, pp.171-186, 2016.

M. Meuth, The molecular basis of mutations induced by deoxyribonucleoside triphosphate pool imbalances in mammalian cells, Exp Cell Res, vol.181, issue.89, pp.90090-90096, 1989.

B. A. Kunz, S. E. Kohalmi, T. A. Kunkel, C. K. Mathews, E. M. Mcintosh et al., International Commission for Protection Against Environmental Mutagens and Carcinogens. Deoxyribonucleoside triphosphate levels: a critical factor in the maintenance of genetic stability, Mutat Res, vol.318, pp.1-64, 1994.

A. C. Bester, M. Roniger, Y. S. Oren, M. M. Im, D. Sarni et al., Nucleotide deficiency promotes genomic instability in early stages of cancer development, Cell, vol.145, pp.435-481, 2011.

M. Anglana, F. Apiou, A. Bensimon, and M. Debatisse, Dynamics of DNA replication in mammalian somatic cells: nucleotide pool modulates origin choice and interorigin spacing, Cell, vol.114, issue.03, pp.569-574, 2003.

W. C. Burhans and M. Weinberger, DNA replication stress, genome instability and aging, Nucleic Acids Res, vol.35, pp.7545-56, 2007.

A. M. Carr, M. Moudjou, N. J. Bentley, and I. M. Hagan, The chk1 pathway is required to prevent mitosis following cell-cycle arrest at 'start', Curr Biol, vol.5, pp.1179-90, 1995.

M. N. Boddy, B. Furnari, O. Mondesert, P. Russell, C. Feijoo et al., Activation of mammalian Chk1 during DNA replication arrest: a role for Chk1 in the intra-S phase checkpoint monitoring replication origin firing, J Cell Biol, vol.280, pp.913-936, 1998.

C. X. Ma, J. W. Janetka, and H. Piwnica-worms, Death by releasing the breaks: CHK1 inhibitors as cancer therapeutics, Trends Mol Med, vol.17, pp.88-96, 2011.

G. Rodier, O. Kirsh, M. Baraibar, T. Houlès, M. Lacroix et al., The transcription factor E4F1 coordinates CHK1-dependent checkpoint and mitochondrial functions, Cell Reports, vol.11, pp.220-253, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01213872

A. Blasina, J. Hallin, E. Chen, M. E. Arango, E. Kraynov et al., Breaching the DNA damage checkpoint via PF-00477736, a novel small-molecule inhibitor of checkpoint kinase 1, Mol Cancer Ther, vol.7, pp.2394-404, 2008.

R. Rawlinson and A. J. Massey, ?H2AX and Chk1 phosphorylation as predictive pharmacodynamic biomarkers of Chk1 inhibitor-chemotherapy combination treatments, BMC Cancer, vol.14, p.483, 2014.

L. Zannini, D. Delia, and G. Buscemi, CHK2 kinase in the DNA damage response and beyond, J Mol Cell Biol, vol.6, pp.442-57, 2014.

F. Al-ejeh, M. Pajic, W. Shi, M. Kalimutho, M. Miranda et al., Australian Pancreatic Cancer Genome Initiative. Gemcitabine and CHK1 inhibition potentiate EGFR-directed radioimmunotherapy against pancreatic ductal adenocarcinoma, Clin Cancer Res, vol.20, pp.3187-97, 2014.

D. Food and . Administration, Pharmacology review(s) for Teriflunomide -Center for drug evaluation and research -Application number 202992Orig1s000, 2012.

M. Dobbelstein and C. S. Sørensen, Exploiting replicative stress to treat cancer, Nat Rev Drug Discov, vol.14, pp.405-428, 2015.

Y. Xiao, J. Ramiscal, K. Kowanetz, D. Nagro, C. Malek et al., Identification of preferred chemotherapeutics for combining with a CHK1 inhibitor, Mol Cancer Ther, vol.12, pp.2285-95, 2013.

H. Zhao and H. Piwnica-worms, ATR-mediated checkpoint pathways regulate phosphorylation and activation of human Chk1, Mol Cell Biol, vol.21, pp.4129-4168, 2001.

S. B. Koh, A. Courtin, R. J. Boyce, R. G. Boyle, F. M. Richards et al., CHK1 Inhibition Synergizes with Gemcitabine Initially by Destabilizing the DNA Replication Apparatus, Cancer Res, vol.75, pp.3583-95, 2015.

S. Mcneely, C. Conti, T. Sheikh, H. Patel, S. Zabludoff et al., Chk1 inhibition after replicative stress activates a double strand break response mediated by ATM and DNA-dependent protein kinase, Cell Cycle, vol.9, pp.995-1004, 2010.

L. Albiges, A. Goubar, V. Scott, C. Vicier, C. Lefèbvre et al., Chk1 as a new therapeutic target in triple-negative breast cancer, Breast, vol.23, pp.250-58, 2014.

M. R. Cook, S. N. Pinchot, R. Jaskula-sztul, J. Luo, M. Kunnimalaiyaan et al., Identification of a novel Raf-1 pathway activator that inhibits gastrointestinal carcinoid cell growth, Mol Cancer Ther, vol.9, pp.429-466, 2010.

A. R. Kinsella, D. Smith, and M. Pickard, Resistance to chemotherapeutic antimetabolites: a function of salvage pathway involvement and cellular response to DNA damage, Br J Cancer, vol.75, pp.935-980, 1997.

E. Tallantyre, N. Evangelou, and C. S. Constantinescu, Spotlight on teriflunomide, Int MS J, vol.15, pp.62-68, 2008.

P. Skehan, R. Storeng, D. Scudiero, A. Monks, J. Mcmahon et al., New colorimetric cytotoxicity assay for anticancer-drug screening, J Natl Cancer Inst, vol.82, pp.1107-1119, 1990.