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Abstract

Tumor heterogeneity in ovarian cancer has beenrtepat the histological and genetic levels
and are associated with adverse clinical outcohesor evaluation using standard computed
tomography or magnetic resonance imaging technigoes not account for the intra- or inter-
tumoral heterogeneity in advanced ovarian cancéh eritoneal carcinomatosis. As such,
computational approaches in assessing tumor heteeity have been proposed using radiomics
and radiogenomics in order to analyze the wholeotuhreterogeneity as opposed to single
biopsy sampling. As part of radiomics, texture ga@l which includes the extraction of multiple
data from images has been proposed recently ta@eahdvanced ovarian tumor heterogeneity.
In this short review, we explain the basics of oadics, how to perform texture analysis, and its

applications to ovarian cancer imaging.

Index terms: Ovarian cancer; Radiomics; Texture analysis; Genspfidvanced imaging

Introduction

Traditionally, radiologists subjectively evaluaténical images based on their training and
experience to provide a diagnosis or an assessofentlinical state (e.g. treatment response
evaluation). This approach introduces a high degfeariability in image interpretation. Tools
for more automated imaging analyses have beerdtesdé only to reduce this variability, but to
provide more objective clinically relevant infornmat [1]. Furthermore, the role of computed
tomography (CT) or that of magnetic resonance imagMRI) in cancer evaluation, especially
in ovarian cancer is evolving. In the near fut@eimple description of the tumor and its extent
may not be sufficient when challenged regardingcWwhinolecularly-targeted drug to give or

about early response to treatment and best tinongurgery [2, 3].

Radiomics has been introduced as an emergentaiopbstprocessing CT or MR images
and developing new quantification metrics linkingatitative and/or qualitative imaging data to
clinical endpoints [4-10]. This may allow developmeof new biomarkers for diagnosis,
prognosis and response evaluation [11, 12]. The tadiogenomics links imaging features with
genomic data for the same purpose [13-17]. Injijiathdiomics referred mainly to the extraction

of multiple qualitative parameters assessed subgygtby a radiologist such as the presence of



tumor enhancement or tumor size [18]. In kidneyceanfor example, it was shown that
mutations of VHL in clear cell type cancer werendiigantly associated with well-defined tumor
margins, nodular tumor enhancement, and gross eppEaof intra-tumoral vascularity at CT
[18]. Recently, radiomics has embraced a more aatiepathway with texture analysis (TA).
TA is a form of radiomics which includes the extrag, analysis, and interpretation of
guantitative features from medical images, leadingn exponential amount of data that can be
correlated with tumor diagnosis, genomics and/ogposis [19-31]. TA is of particular interest
for the evaluation of tumor heterogeneity and Hesady demonstrated considerable potential in
neuroradiology for lesion characterization [5, 38-3n renal cancer, TA has showrat features
such as entropy and standard deviation were asedciwith histologic subtype and nuclear
grade [35, 36]. Besides its correlation with histilwlogy, TA may also serve as a prognostic
biomarker. In rectal cancer, T2-derived textureriogtextracted from the whole tumor volume
have been shown to outperform the combination efarl diffusion-weighted images to assess
complete response to therapy [37]. Ovarian carcexr genomically diverse disease and such
genomic and tumour microenvironment heterogenedg been recently disease linked to
platinum resistance [2]. Genomic evaluations penfa by The Cancer Genome Atlas research
group has shown large number of molecular altematwhich may open new avenues to more
targeted molecular based treatment [38-42]. Theesyicead disease associated with OC makes
the evaluation of heterogeneity challenging bothslmgle biopsy sampling and by traditional
imaging tools. Therefore TA could be a potentialbeful biomarker that allows assessment and
guantification of tumor spatial heterogeneity asdsach, better target the appropriate treatment

in line with the tumor radiogenomic profile [3].

The purpose of this review is to describe howddgrm TA, and discuss its current and

potential applications in ovarian cancer imaging.

TA in ovarian cancer

Epidemiology
Ovarian cancer is the seventh diagnosed cancergamomen in the world and epithelial type is

the most predominant one [43, 44]. Ovarian cansesubsequently divided into five major

histopathology subtypes that differ in origin, pegbnesis, molecular alterations, risk factors,



and prognosis [45]. High-grade serous ovarian aqafid€SOC), the focus of this review, is the
most common histological subtype (representing 90Poovarian cancers) with the least
favorable prognosis [45]. Adjuvant or neoadjuvaratment with platinum-based chemotherapy
has response rates of 70-80 % but most patients relapse and develop chemotherapy-
resistant disease [46]. The five-year survival liatéess than 35% for patients with advanced
ovarian cancer [46, 47]. As such, only marginal iowement in overall survival has been
achieved over the past decades despite major nhetigances. Recent data have shown that
ovarian cancers have substantial molecular hetasyeat presentation, which may explain
drug resistance [2, 38-41, 48] Indeed, The CanezroBe Atlas (TCGA) Research Network has
performed copy number analysis, expression and yiaithn arrays, and exome sequencing of
more than 18 500 genes in 489 cases of HGSOC (J9Nearly all tumors harbored a mutation
in the p53 gene (TP53) as well as a large numbgené copy number alterations, which could
explain this wide heterogeneity [50]. From this Wat was also found th&®RCAL1/2 genes play

a role in HGSOC, irrespective of germline statug[51

Additional work evaluating ovarian cancer heterogjy at the genomic level has been
done. Studies have shown that wide inter-tumoraérbgeneity exists at the genomic level
between primary ovarian cancer and peritoneal iniplg62-58]. Supporting these findings, a
preliminary analysis of a small cohort of patiewtso underwent MRI examination has revealed
that ovarian tumors and metastatic peritoneal intplare already phenotypically heterogeneous
at the time of diagnosis [59]. In this study, irdihg 22 patients, Sala et al. found significant
differences in baseline apparent diffusion coedfiti (ADC) values among primary ovarian
cancer, omental cake and peritoneal deposits itwicéor the first time that diffusivity profiles
may be tumor-site dependent and suggesting thedioheterogeneity of the disease for the first

time on imaging[59].

Radiomics and radiogenomics:

Moving forward to the era of radiomics, radiogencsnanalysis has been evaluated on ovarian

cancer to correlate CT tumor phenotype with getteepraand survival.



Qualitative analysis

Based on TCGA research network data, microarragéddsanscriptomic profiles have been
integrated as a prognostic algorithm for HGSOC kmaas classification of ovarian cancer
(CLOVAR) [50]. Four prognostically relevant CLOVARubtypes of HGSOC have been
identified and labeled as: differentiated, immumatere, mesenchymal, and proliferative [60,
61]. Patients with mesenchymal subtype have a highte of platinum resistance (63%)
compared with patients with other subtypes (239%),well as shorter median survival (23
months for mesenchymal tumors vs. 46 months foerathbtypes). Vargas et al. investigated the
relationships between CT features and CLOVAR sudgygpf HGSOC [62]. This study included
46 women with HGSOC, whose tumors were subjectechdtecular analysis performed by
TCGA [62]. Two readers independently evaluated ipkeit CT qualitative features of the
primary ovarian tumor and sites of peritoneal caymatosis spread including location, shape,
pattern of spread and implants size [62]. They fbtirat CLOVAR mesenchymal subtype was
significantly associated with higher risk of penéal involvement and the presence of
mesenteric infiltration. In addition, they foundathpatients with HGSOC in whom mesenteric
infiltration was identified on CT images had shorfgogression-free survival and overall
survival [62]. These results may explain the regdrpoorer prognosis of patients with the
CLOVAR mesenchymal subtype of HGSOC [61]. More relge those later results have been
tentatively validated in a cohort of 92 patientshwHGSOC with transcriptomic CLOVAR
profiles [63]. Eight radiologists from the Cancer Genome Atlas r@va Cancer Imaging
Research Group independently recorded multipleditgtiee CT features. Similar associations
were found between the extent of peritoneal involest, time to progression, and CLOVAR
subtypes. The presence of mesenteric infiltrat®a @oor prognostic factor in HGSOC was not
validated in this study. One possible explanatierthe poor interobserver agreement in the
assessment of this feature € 0.23) [63]. Indeed, this study highlight as wéle low
interobserver reproducibility of some imaging feagiand the limits of subjective evaluation

which in turn advocates for the potential benedftautomated or semiautomated analysis [63].

Concomitantly to CLOVAR analysis, radiogenomicsaleation has been performed in
the context of BRCA gene alterations. BRCA 1 andCBR2 play both a major role in DNA
repair [64-67]. Several studies have suggestedpha¢nts with BRCA-mutant HGSOC have
improved survival compared to those with BRCA wijgpe HGSOC [68-78]. More favorable



prognosis of BRCA-mutant HGSOC has been linked tgreater sensitivity to platinum
chemotherapy in primary and recurrent disease,alisas to unique tumor biology that confers
survival advantage regardless of chemotherapy t8atys{68, 71, 73-78]. In a study including
108 patients, Nougaret et al. evaluated multiplesitative CTs phenotypic tumor features that
could explain the different behavior of these motat [79]. These authors found that certain CT
features of HGSOC differ based on BIRCA mutation status. Nodular peritoneal carcinomatosis
implants pattern and presence of peritoneal diseagmstrohepatic ligament were associated
with BRCA-mutant HGSOC at multiple regression analysis [T the opposite, infiltrative
peritoneal disease pattern, presence of mesenteviclvement, and supradiaphragmatic
lymphadenopathy were associatBRCA-wildtype HGSOC. Those results are in line with
histopathologic data that found peritoneal deposiith rounded or “pushing” contours
associated with BRCA-mutant HGSOC, whereas BRCAlipe HGSOC show infiltrative
peritoneal implants [80-82]. It can be hypothesiteat nodular type disease found in BRCA
mutant HGSOC might achieve higher rate of completreductive surgery compared to
infiltrative ill-defined disease found in BRCA wiiype HGSOC and this might explain the
higher overall survival. However, statistical siggance was not reached in Nougaret et al. study

and larger cohort studies will be needed.

Quantitative analysis

As previously discussed, the subjective assessofeqalitative features may be limited by a
poor interobserver reproductivity. In the study\¢drgas et al., the interobserver agreement
(between 8 readers) for the shape of the peritodesdase (diffuse, no peritoneal disease,
nodular, peritoneal enhancement only, predominatiffuse, predominantly nodular) was only
0.353 [63]. As such, TA may decrease the varigbit visual interpretation and may be of
interest in the evaluation of ovarian cancer. lstady including 38 patients, Vargas et al.
developed 12 quantitative metrics to capture spetiar-site imaging heterogeneity in HGSOC
[83]. The authors found that of the 12 inter-sg&ttire heterogeneity metrics evaluated, those
capturing the differences in texture similaritiesass sites were associated with shorter overall
survival (inter-site similarity entropy, similaritgvel cluster shade, and inter-site similaritydiev
cluster prominence? < 0.05) and incomplete surgical resection (simyjal@vel cluster shade,

inter-site similarity level cluster prominence amaer-site cluster variance) [83]. On the



opposite, the total number of disease sites ancathvamor volume was associated with overall
survival. Those results suggest that TA may prowddded value in the evaluation of patients
with HGSOC, beyond the traditional evaluation af #ole peritoneal disease extent. They are in
line with genetic data that have shown differentatianal landscapes between primary ovarian
lesions and peritoneal implants [60, 61]. Rizzaletevaluated whether CT radiomics features
alone or combined with clinical data were assodiatéth residual tumor at surgery in 101
patients with HGSOC and where able to predict isleaf disease progression within 12 months
[84]. TA was performed on the primary ovarian tunootty. The authors found that radiomic
features related to mass size, randomness and leoribgwere associated with residual tumor.
Compactnessl below the median (in link with mage)siGrayLevelCooccurenceMatrix25/0-
linformationMeasureCorr2 below the median (repriasgrihe degree of randomness within the
mass) and GraylLevelCooccurenceMatrix25/-333-1Iredasiance above the median
(representing mass homogeneity) were associatdd avihigher risk of residual tumor after
surgery [84]. The authors found as well that tis& of progression at 12 months was associated
with three radiomic features. At multivariate arsady F2 shape/ Max3DDiameter (in link with
tumor size) was the single feature significantlyogsated with progression at 12 months. Adding
this radiomic feature to a clinically based modgh#icantly increased prediction of progression
at 12 months by 14% (AUC = 0.73 for clinical mossl 0.87 for clinical radiomic model) [84].
Based on these studies, it has been hypothesiz¢dl it may serve as a new biomarker for
patient selection for effective new therapies i@ toming years, as well as anticipation of

treatment resistant lesions (Figure 1).

How to perform TA?

To date, TA is not available for standard practoel usually requires in house developed
software, although commercially available options emerging. In this following chapter, we

will briefly review the required steps to perforlAT

A post processing software is needed, either a eneially available tool or an in-house design,
most of which are CT or MRI vendor neutral. As astpprocessing method, TA can be

performed retrospectively and be briefly descrilvegeven main steps below [85, 86].



Image acquisition

Image acquisition can be performed on the multipdelalities, e.g MRI, CT or PET scanner.

Image filtration

Images can be further filtered in order to reduee rioise, which an important issue with CT.
Most of the heterogeneity on the CT images are tduphoton noise, masking actual tissue
heterogeneity [87]. The use of filters is therefoiseful to reduce photon noise and improve
tumor heterogeneity measurement [88]. These filterssist in methods of discretization that
could be absolute or relative and the optimal nundbdevel of grey for CT studies has been

established by a recent consensus [89]. Of notepnsensus exists for MR imaging to date.

Image segmentation

For further analysis, tumor segmentation is aaaitstep. Region of interest (ROI) or volume of
interest (VOI) are used to define the region inakihieatures are calculated. This can be done
manually, semi-automatically or automatically byddated software. Semi automatically
methods are better than manually methods to optim@producibility of the different parameters
extracted [90]The choice of the ROI or VOI is @di as it influences the quantification of the
subsequent features [91]. Care to avoid contananaif the ROI/VOI by adjacent structures is

mandatory.

Image interpolation:

TA requires interpolation to isotropic voxel spagito be rotationally invariant, and to allow
comparison between image data from different sasnghel cohorts. Voxel interpolation affects
image feature values as many image features asgtigerto changes in voxel size. Maintaining
consistent isotropic voxel spacing across differeamasurements and devices is therefore
important for reproducibility. Different interpolanh algorithms have been proposed to perform

image interpolation[92].



Image re-segmentation

Image re-segmentation is an optional step that beayperformed to remove voxels from the
intensity mask that fall outside of a specifiedganAn example is the exclusion of voxels with
Hounsfield units indicating air and bone tissuethe tumour ROI within CT images, or low

activity areas on positron emission tomography/@&gdes.

Feature extraction

Various methods can be employed such as structmatiel-based, statistical or frequency
methods [93]. The statistical method is the mostiusr TA [85]. Radiomics features extracted
by statistical methods during the sixth step, aveddd into several order statistics that differ in

the description of the gray level distribution etimage:
Shape parameters related to the description of 2D or 3D shape eflésion.

First-order statistics (or intensity histogram) is related to the frequyedistribution of the
pixel intensity inside the ROI. The intensity-bassditistical features describe how grey levels
within the ROI are distributed. It includes commstatistics what can be extracted from the
histogram such as: mean, standard deviation, v@@iémeasure the histogram width deviation
around the mean), skewness (measure the asymnidtrg bistogram around the mean). First-
order histogram analysis does not account for dhation of the pixels and lacks any reference

to the spatial interrelationship between gray val{fégure 2)

Second-order statistics (or texture based features) characterize spaéhdtionships
between pixels and are measured primarily from icegrsuch as co-occurrence matrices (e. g.,
gray level co-occurrence matrix [GLCM]) [92]. Thosmatrices evaluate the particular
relationship between a pixel with a certain grayelewith another pixel of another gray level,
and this in the whole ROI and for all the pixel5][8GLCM calculation is explained in Figure 3.
Texture features computed from the GLCM consiseokrgy (a measure of the amount of grey
level variation within a given region), entropy (@serement of randomness or disorder in the
distribution of signal intensities, variation), hogeneity (the uniformity in the distribution of
co-occurrent intensity pairs), and contrast (a mea®f variation in the distribution of co-

occurrent intensity pairs).



Higher-order statistics examine location and relationships between thremare pixels
and evaluate features such as contrast, coarseamesbusyness. Higher-order features have the
advantage of evaluating voxels in their local captéaking the relationship with neighboring

voxels into account.

Analysis

Finally, between 50 and 5000 features are exuactdis large number needs to be
reduced by feature qualification to select only fis&ures that are informative, reproducible on
other similar studies and not redundant [92]. Mamgthods exist and may be classified into
three categories), filtration methods for selecting parameters adew to their strengthen and
repeatability occurring during the different segtagion performed for example and according
their non redundancyi) transformation methods for combining several peai@rs obtained in
new ones including the analysis in main componentiro descriptive componentiii)
classification methods which may be supervised bgltistic tree or support vector machine

SVM for examples) or unsupervised (K-means clustefor example).

There are multiple methods of selection and diassion. Indeed, Pamar et al. have
studied 14 selection methods and 12 methods ofifitztion applied on 440 parameters
extracted from on a series of 464 CT examinatiagr$opmed for lung cancers [94]. Complex
multivariate statistical analysis was required étest the most accurate classification based on
its AUC [92].

Challenges and limitations of TA

TA is still an emergent tool and its implementatiandaily busy routine practice will requires
optimization and standardization of each step [86}. now, multiple platforms either commer-
cially available or in-house applications have besed but their reproducibility need to be
tested [91]. TA process from type of segmentatethe different features extracted vary widely
across different platforms and studies, makingcttraparison and reproducibility of their results
difficult [91]. Recently, an international panel oésearchers have published a white paper
regarding definitions and recommendations for m@shaised in radiomics studies [89].

Currently, no uniform measurement or reportingndéads exist. Some authors have



proposed a practice standardization to establisbhatexture features are most helpful, general
thresholds for what constitutes a heterogeneousnleand guidelines for imaging parameters for

given texture features and thresholds to overcdémsentide variability between studies [92].

Another major challenge is the huge amount of gataluced by TA. The investigation
of various features from a single dataset may aszehe risk of type | error and as such lead to
false results. A meta-analysis of multiple PET Tidées demonstrated that after applying a
statistical correction, significant results were longer found in many of the studies evaluated
[96]. Use of statistical corrections, such as H@onferroni sequential correction, or validation

datasets may be helpful for confirming the veraoitidentified associations [96].

Finally, and particularly for ovarian cancer, largolume disease means time consuming
manual segmentation. For now, automated softwasedgment the whole tumor burden are not
available and as such disease areas need to beallgasegmented which preclude routine
evaluation.Manual segmentation requires delineation of tumer glice; particularly time
consuming in large and irregularly shaped tumorb @rallenging in case of infiltrative disease.
A preliminary study, using an automated segmemaéipproach in rectal cancer has shown
promising results [97]. Future work will focus dmetdevelopment of complete automated post
processing methods enabling the extraction of makimformation from the images with the

added challenge to demonstrate a clinical benefiié assessment of tumor response.

Conclusion

Subjective extraction of multiple qualitative pamters has shown a link between phenotypic CT
features and gene pattern in ovarian cancer wehithitation of relatively poor interobserver

agreement. Quantitative analysis using TA is chagileg but has shown promising results
regarding tumor heterogeneity on CT and patientaue. Although many issues need to be
addressed before implementation in clinical practifA will allow radiologists to obtain

additional and more robust imaging data from swdleat are already being performed and
which could be combined with qualitative featuresthe era of artificial intelligence these types
of features could be incorporated into decisionpsup or computer-aided diagnosis tools to

predict tumor aggressiveness and response to therap
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FIGURE LEGENDS

Figure 1. Drawing summarizing advances in research in anacancer radiomics.

Figure 2. First-order statistical-based CT texture paransetelot of the pixel histogram,
where the x-axis represents gray-level values hagaxis represents the frequency of
occurrence. First-order parameters include the roé#re histogram (vertical red line), standard
deviation ang 95 of the histogram (horizontal dloe). When the distribution has a larger tail to
the left, the skew is negative (and the skew istppeswhen the tail is larger to the right). The
term kurtosis designates how pointy or smooth threecis compared to a normal distribution
(right). Kurtosis describes the peakedness of tkel pistogram. A pointier or more peaked
histogram is seen with positive and progressiveidr kurtosis values (right).

Figure 3. Second-order statistical-based texture paramdsdrand (b) show diagrams of

two different gray-scale images. Each of the squargains the same number of different shade-
of-grey “pixels,” so the first-order texture feadgrand pixel histograms are nearly identical for
these two images. However, second-order textutariemthat take into account pixel location
and relationship to adjacent pixels, such as geagtico-occurrence matrix are different between
these two images. The grey- scales of the imagdeaapresented by discrete values (c). The
gray-level co-occurrence matrix measures the frequevith which each type of pixel occurs in
the horizontal, vertical, and oblique planes adjate all other pixels (d). The number of co-
occurrences of pixel pairs for a given search wimdoe counted and a grey level co-occurrence
matrix is established.
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Subjective Radiomics Analysis:
Qualitative DATA

Phenotypic association between CT features and Gene alterations

BRCA +
Nodular pattern and lower risk of
mesenteric involvement

BRCA -
Infiltrative pattern and higher
risk of mesenteric involvement

Nougaret et al, Radiology 2017

CLOVAR
Mesenchymal subtype
Diffuse peritoneal disease and
mesenteric tethering

Vargas et al, Radiology 2015

Objective Radiomics Analysis:
Quantitative DATA with Texture analysis

Inter-Site (Spatial) Tumour Texture Heterogeneity May Predict
Outcome Irrespective of CLOVAR Gene Signature

Inter-tumoral Heterogeneity evaluation using
texture analysis and an inter-site similarity
matrix

Patient with fewer inter-site
dissimilarities have a better
outcome regardless their
CLOVAR gene signature

Patient with higher inter-site
dissimilarities have a poorer outcome
regardless their CLOVAR gene signature

Vargas et al, European Radiology 2017

« Radiomic features related to ovarian mass
size, randomness and homogeneity were
associated with residual tumor at surgery

« A model including clinical and radiomic
features performed betterthan only-clinical
model to predict progression of the disease at
12 months

Rizzo et al, European Radiology 2018
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