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Abstract 

Tumor heterogeneity in ovarian cancer has been reported at the histological and genetic levels 

and are associated with adverse clinical outcomes. Tumor evaluation using standard computed 

tomography or magnetic resonance imaging techniques does not account for the intra- or inter-

tumoral heterogeneity in advanced ovarian cancer with peritoneal carcinomatosis. As such, 

computational approaches in assessing tumor heterogeneity have been proposed using radiomics 

and radiogenomics in order to analyze the whole tumor heterogeneity as opposed to single 

biopsy sampling. As part of radiomics, texture analysis, which includes the extraction of multiple 

data from images has been proposed recently to evaluate advanced ovarian tumor heterogeneity. 

In this short review, we explain the basics of radiomics, how to perform texture analysis, and its 

applications to ovarian cancer imaging. 

Index terms: Ovarian cancer; Radiomics; Texture analysis; Genomics; Advanced imaging 

Introduction  

Traditionally, radiologists subjectively evaluate clinical images based on their training and 

experience to provide a diagnosis or an assessment of a clinical state (e.g. treatment response 

evaluation). This approach introduces a high degree of variability in image interpretation. Tools 

for more automated imaging analyses have been tested, not only to reduce this variability, but to 

provide more objective clinically relevant information [1]. Furthermore, the role of computed 

tomography (CT) or that of magnetic resonance imaging (MRI) in cancer evaluation, especially 

in ovarian cancer is evolving. In the near future, a simple description of the tumor and its extent 

may not be sufficient when challenged regarding which molecularly-targeted drug to give or 

about early response to treatment and best timing for surgery [2, 3].  

 Radiomics has been introduced as an emergent tool for postprocessing CT or MR images 

and developing new quantification metrics linking qualitative and/or qualitative imaging data to 

clinical endpoints [4-10]. This may allow development of new biomarkers for diagnosis, 

prognosis and response evaluation [11, 12]. The term radiogenomics links imaging features with 

genomic data for the same purpose [13-17]. Initially, radiomics referred mainly to the extraction 

of multiple qualitative parameters assessed subjectively by a radiologist such as the presence of 
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tumor enhancement or tumor size [18]. In kidney cancer, for example, it was shown that 

mutations of VHL in clear cell type cancer were significantly associated with well-defined tumor 

margins, nodular tumor enhancement, and gross appearance of intra-tumoral vascularity at CT 

[18]. Recently, radiomics has embraced a more automated pathway with texture analysis (TA). 

TA is a form of radiomics which includes the extraction, analysis, and interpretation of 

quantitative features from medical images, leading to an exponential amount of data that can be 

correlated with tumor diagnosis, genomics and/or prognosis [19-31]. TA is of particular interest 

for the evaluation of tumor heterogeneity and has already demonstrated considerable potential in 

neuroradiology for lesion characterization [5, 32-34]. In renal cancer, TA has shown that features 

such as entropy and standard deviation were associated with histologic subtype and nuclear 

grade [35, 36]. Besides its correlation with histopathology, TA may also serve as a prognostic 

biomarker. In rectal cancer, T2-derived texture metrics extracted from the whole tumor volume 

have been shown to outperform the combination of T2- and diffusion-weighted images to assess 

complete response to therapy [37]. Ovarian cancer is a genomically diverse disease and such 

genomic and tumour microenvironment heterogeneity has been recently disease linked to 

platinum resistance [2]. Genomic evaluations performed by The Cancer Genome Atlas research 

group has shown large number of molecular alterations which may open new avenues to more 

targeted molecular based treatment [38-42]. The widespread disease associated with OC makes 

the evaluation of heterogeneity challenging both by single biopsy sampling and by traditional 

imaging tools. Therefore TA could be a potentially useful biomarker that allows assessment and 

quantification of tumor spatial heterogeneity and as such, better target the appropriate treatment 

in line with the tumor radiogenomic profile [3].  

 The purpose of this review is to describe how to perform TA, and discuss its current and 

potential applications in ovarian cancer imaging. 

TA in ovarian cancer 

Epidemiology 

Ovarian cancer is the seventh diagnosed cancer among women in the world and epithelial type is 

the most predominant one [43, 44]. Ovarian cancer is subsequently divided into five major 

histopathology subtypes that differ in origin, pathogenesis, molecular alterations, risk factors, 
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and prognosis [45]. High-grade serous ovarian cancer (HGSOC), the focus of this review, is the 

most common histological subtype (representing 90% of ovarian cancers) with the least 

favorable prognosis [45]. Adjuvant or neoadjuvant treatment with platinum-based chemotherapy 

has response rates of 70–80 % but most patients have relapse and develop chemotherapy-

resistant disease [46]. The five-year survival rate is less than 35% for patients with advanced 

ovarian cancer [46, 47]. As such, only marginal improvement in overall survival has been 

achieved over the past decades despite major medical advances. Recent data have shown that 

ovarian cancers have substantial molecular heterogeneity at presentation, which may explain 

drug resistance [2, 38-41, 48] Indeed, The Cancer Genome Atlas (TCGA) Research Network has 

performed copy number analysis, expression and methylation arrays, and exome sequencing of 

more than 18 500 genes in 489 cases of HGSOC [49, 50]. Nearly all tumors harbored a mutation 

in the p53 gene (TP53) as well as a large number of gene copy number alterations, which could 

explain this wide heterogeneity [50]. From this work, it was also found that BRCA1/2 genes play 

a role in HGSOC, irrespective of germline status[51]. 

 Additional work evaluating ovarian cancer heterogeneity at the genomic level has been 

done. Studies have shown that wide inter-tumoral heterogeneity exists at the genomic level 

between primary ovarian cancer and peritoneal implants [52-58]. Supporting these findings, a 

preliminary analysis of a small cohort of patients who underwent MRI examination has revealed 

that ovarian tumors and metastatic peritoneal implants are already phenotypically heterogeneous 

at the time of diagnosis [59]. In this study, including 22 patients, Sala et al. found significant 

differences in baseline apparent diffusion coefficient (ADC) values among primary ovarian 

cancer, omental cake and peritoneal deposits indicating for the first time that diffusivity profiles 

may be tumor-site dependent and suggesting the biologic heterogeneity of the disease for the first 

time on imaging[59].  

Radiomics and radiogenomics: 

Moving forward to the era of radiomics, radiogenomics analysis has been evaluated on ovarian 

cancer to correlate CT tumor phenotype with gene pattern and survival.  
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Qualitative analysis 

Based on TCGA research network data, microarray-based transcriptomic profiles have been 

integrated as a prognostic algorithm for HGSOC known as classification of ovarian cancer 

(CLOVAR) [50]. Four prognostically relevant CLOVAR subtypes of HGSOC have been 

identified and labeled as: differentiated, immunoreactive, mesenchymal, and proliferative [60, 

61]. Patients with mesenchymal subtype have a higher rate of platinum resistance (63%) 

compared with patients with other subtypes (23%), as well as shorter median survival (23 

months for mesenchymal tumors vs. 46 months for other subtypes). Vargas et al. investigated the 

relationships between CT features and CLOVAR subtypes of HGSOC [62]. This study included 

46 women with HGSOC, whose tumors were subjected to molecular analysis performed by 

TCGA [62]. Two readers independently evaluated multiple CT qualitative features of the 

primary ovarian tumor and sites of peritoneal carcinomatosis spread including location, shape, 

pattern of spread and implants size [62]. They found that CLOVAR mesenchymal subtype was 

significantly associated with higher risk of peritoneal involvement and the presence of 

mesenteric infiltration. In addition, they found that patients with HGSOC in whom mesenteric 

infiltration was identified on CT images had shorter progression-free survival and overall 

survival [62]. These results may explain the reported poorer prognosis of patients with the 

CLOVAR mesenchymal subtype of HGSOC [61]. More recently, those later results have been 

tentatively validated in a cohort of 92 patients with HGSOC with transcriptomic CLOVAR 

profiles [63]. Eight radiologists from the Cancer Genome Atlas Ovarian Cancer Imaging 

Research Group independently recorded multiples qualitative CT features. Similar associations 

were found between the extent of peritoneal involvement, time to progression, and CLOVAR 

subtypes. The presence of mesenteric infiltration as a poor prognostic factor in HGSOC was not 

validated in this study. One possible explanation is the poor interobserver agreement in the 

assessment of this feature (α = 0.23) [63]. Indeed, this study highlight as well the low 

interobserver reproducibility of some imaging features and the limits of subjective evaluation 

which in turn advocates for the potential benefits of automated or semiautomated analysis [63].  

 Concomitantly to CLOVAR analysis, radiogenomics evaluation has been performed in 

the context of BRCA gene alterations. BRCA 1 and BRCA 2 play both a major role in DNA 

repair [64-67]. Several studies have suggested that patients with BRCA-mutant HGSOC have 

improved survival compared to those with BRCA wild-type HGSOC [68-78]. More favorable 
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prognosis of BRCA-mutant HGSOC has been linked to a greater sensitivity to platinum 

chemotherapy in primary and recurrent disease, as well as to unique tumor biology that confers 

survival advantage regardless of chemotherapy sensitivity [68, 71, 73-78]. In a study including 

108 patients, Nougaret et al. evaluated multiples qualitative CTs phenotypic tumor features that 

could explain the different behavior of these mutations [79]. These authors found that certain CT 

features of HGSOC differ based on the BRCA mutation status. Nodular peritoneal carcinomatosis 

implants pattern and presence of peritoneal disease in gastrohepatic ligament were associated 

with BRCA-mutant HGSOC at multiple regression analysis [79]. On the opposite, infiltrative 

peritoneal disease pattern, presence of mesenteric involvement, and supradiaphragmatic 

lymphadenopathy were associated BRCA-wildtype HGSOC. Those results are in line with 

histopathologic data that found peritoneal deposits with rounded or “pushing” contours 

associated with BRCA-mutant HGSOC, whereas BRCA wild-type HGSOC show infiltrative 

peritoneal implants [80-82]. It can be hypothesized that nodular type disease found in BRCA 

mutant HGSOC might achieve higher rate of complete cytoreductive surgery compared to 

infiltrative ill-defined disease found in BRCA wild-type HGSOC and this might explain the 

higher overall survival. However, statistical significance was not reached in Nougaret et al. study 

and larger cohort studies will be needed. 

Quantitative analysis 

As previously discussed, the subjective assessment of qualitative features may be limited by a 

poor interobserver reproductivity. In the study of Vargas et al., the interobserver agreement 

(between 8 readers) for the shape of the peritoneal disease (diffuse, no peritoneal disease, 

nodular, peritoneal enhancement only, predominantly diffuse, predominantly nodular) was only 

0.353 [63]. As such, TA may decrease the variability of visual interpretation and may be of 

interest in the evaluation of ovarian cancer. In a study including 38 patients, Vargas et al. 

developed 12 quantitative metrics to capture spatial inter-site imaging heterogeneity in HGSOC 

[83]. The authors found that of the 12 inter-site texture heterogeneity metrics evaluated, those 

capturing the differences in texture similarities across sites were associated with shorter overall 

survival (inter-site similarity entropy, similarity level cluster shade, and inter-site similarity level 

cluster prominence; P ≤ 0.05) and incomplete surgical resection (similarity level cluster shade, 

inter-site similarity level cluster prominence and inter-site cluster variance) [83]. On the 
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opposite, the total number of disease sites and overall tumor volume was associated with overall 

survival. Those results suggest that TA may provide added value in the evaluation of patients 

with HGSOC, beyond the traditional evaluation of the sole peritoneal disease extent. They are in 

line with genetic data that have shown different mutational landscapes between primary ovarian 

lesions and peritoneal implants [60, 61]. Rizzo et al. evaluated whether CT radiomics features 

alone or combined with clinical data were associated with residual tumor at surgery in 101 

patients with HGSOC and where able to predict the risk of disease progression within 12 months 

[84]. TA was performed on the primary ovarian tumor only. The authors found that radiomic 

features related to mass size, randomness and homogeneity were associated with residual tumor. 

Compactness1 below the median (in link with mass size), GrayLevelCooccurenceMatrix25/0-

1InformationMeasureCorr2 below the median (representing the degree of randomness within the 

mass) and GrayLevelCooccurenceMatrix25/-333-1InverseVariance above the median 

(representing mass homogeneity) were associated with a higher risk of residual tumor after 

surgery [84]. The authors found as well that the risk of progression at 12 months was associated 

with three radiomic features. At multivariate analysis, F2 shape/ Max3DDiameter (in link with 

tumor size) was the single feature significantly associated with progression at 12 months. Adding 

this radiomic feature to a clinically based model significantly increased prediction of progression 

at 12 months by 14% (AUC = 0.73 for clinical model vs. 0.87 for clinical radiomic model) [84]. 

Based on these studies, it has been hypothesized that TA may serve as a new biomarker for 

patient selection for effective new therapies in the coming years, as well as anticipation of 

treatment resistant lesions (Figure 1). 

How to perform TA?  

To date, TA is not available for standard practice and usually requires in house developed 

software, although commercially available options are emerging. In this following chapter, we 

will briefly review the required steps to perform TA.  

A post processing software is needed, either a commercially available tool or an in-house design, 

most of which are CT or MRI vendor neutral. As a post processing method, TA can be 

performed retrospectively and be briefly described in seven main steps below [85, 86]. 
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Image acquisition 

Image acquisition can be performed on the multiple modalities, e.g MRI, CT or PET scanner.  

Image filtration 

Images can be further filtered in order to reduce the noise, which an important issue with CT. 

Most of the heterogeneity on the CT images are due to photon noise, masking actual tissue 

heterogeneity [87]. The use of filters is therefore useful to reduce photon noise and improve 

tumor heterogeneity measurement [88]. These filters consist in methods of discretization that 

could be absolute or relative and the optimal number of level of grey for CT studies has been 

established by a recent consensus [89]. Of note, no consensus exists for MR imaging to date. 

Image segmentation  

For further analysis, tumor segmentation is a critical step. Region of interest (ROI) or volume of 

interest (VOI) are used to define the region in which features are calculated. This can be done 

manually, semi-automatically or automatically by dedicated software. Semi automatically 

methods are better than manually methods to optimize reproducibility of the different parameters 

extracted [90]The choice of the ROI or VOI is critical as it influences the quantification of the 

subsequent features [91]. Care to avoid contamination of the ROI/VOI by adjacent structures is 

mandatory.  

 Image interpolation: 

TA requires interpolation to isotropic voxel spacing to be rotationally invariant, and to allow 

comparison between image data from different samples and cohorts. Voxel interpolation affects 

image feature values as many image features are sensitive to changes in voxel size. Maintaining 

consistent isotropic voxel spacing across different measurements and devices is therefore 

important for reproducibility. Different interpolation algorithms have been proposed to perform 

image interpolation[92]. 
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Image re-segmentation 

Image re-segmentation is an optional step that may be performed to remove voxels from the 

intensity mask that fall outside of a specified range. An example is the exclusion of voxels with 

Hounsfield units indicating air and bone tissue in the tumour ROI within CT images, or low 

activity areas on positron emission tomography/CT images.  

Feature extraction 

Various methods can be employed such as structural, model-based, statistical or frequency 

methods [93]. The statistical method is the most used for TA [85]. Radiomics features extracted 

by statistical methods during the sixth step, are divided into several order statistics that differ in 

the description of the gray level distribution in the image: 

 Shape parameters related to the description of 2D or 3D shape of the lesion. 

 First-order statistics (or intensity histogram) is related to the frequency distribution of the 

pixel intensity inside the ROI. The intensity-based statistical features describe how grey levels 

within the ROI are distributed. It includes common statistics what can be extracted from the 

histogram such as: mean, standard deviation, variance (measure the histogram width deviation 

around the mean), skewness (measure the asymmetry of the histogram around the mean). First-

order histogram analysis does not account for the location of the pixels and lacks any reference 

to the spatial interrelationship between gray values (Figure 2). 

 Second-order statistics (or texture based features) characterize spatial relationships 

between pixels and are measured primarily from matrices such as co-occurrence matrices (e. g., 

gray level co-occurrence matrix [GLCM]) [92]. Those matrices evaluate the particular 

relationship between a pixel with a certain gray level with another pixel of another gray level, 

and this in the whole ROI and for all the pixels [85]. GLCM calculation is explained in Figure 3. 

Texture features computed from the GLCM consist of: energy (a measure of the amount of grey 

level variation within a given region), entropy (measurement of randomness or disorder in the 

distribution of signal intensities, variation), homogeneity (the uniformity in the distribution of 

co-occurrent intensity pairs), and contrast (a measure of variation in the distribution of co-

occurrent intensity pairs). 
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 Higher-order statistics examine location and relationships between three or more pixels 

and evaluate features such as contrast, coarseness, and busyness. Higher-order features have the 

advantage of evaluating voxels in their local context, taking the relationship with neighboring 

voxels into account. 

Analysis  

 Finally, between 50 and 5000 features are extracted. This large number needs to be 

reduced by feature qualification to select only the features that are informative, reproducible on 

other similar studies and not redundant [92]. Many methods exist and may be classified into 

three categories: i), filtration methods for selecting parameters according to their strengthen and 

repeatability occurring during the different segmentation performed for example and according 

their non redundancy; ii) transformation methods for combining several parameters obtained in 

new ones including the analysis in main component or in descriptive component; iii) 

classification methods which may be supervised (proballistic tree or support vector machine 

SVM for examples) or unsupervised (K-means clustering for example).  

 There are multiple methods of selection and classification. Indeed, Pamar et al. have 

studied 14 selection methods and 12 methods of classification applied on 440 parameters 

extracted from on a series of 464 CT examinations performed for lung cancers [94]. Complex 

multivariate statistical analysis was required to select the most accurate classification based on 

its AUC [92]. 

Challenges and limitations of TA 

TA is still an emergent tool and its implementation in daily busy routine practice will requires 

optimization and standardization of each step [95]. For now, multiple platforms either commer-

cially available or in-house applications have been used but their reproducibility need to be 

tested [91]. TA process from type of segmentation to the different features extracted vary widely 

across different platforms and studies, making the comparison and reproducibility of their results 

difficult [91]. Recently, an international panel of researchers have published a white paper 

regarding definitions and recommendations for methods used in radiomics studies [89]. 

 Currently, no uniform measurement or reporting standards exist. Some authors have 
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proposed a practice standardization to establish which texture features are most helpful, general 

thresholds for what constitutes a heterogeneous lesion, and guidelines for imaging parameters for 

given texture features and thresholds to overcome this wide variability between studies [92].  

 Another major challenge is the huge amount of data produced by TA. The investigation 

of various features from a single dataset may increase the risk of type I error and as such lead to 

false results. A meta-analysis of multiple PET TA studies demonstrated that after applying a 

statistical correction, significant results were no longer found in many of the studies evaluated 

[96]. Use of statistical corrections, such as Holm-Bonferroni sequential correction, or validation 

datasets may be helpful for confirming the veracity of identified associations [96].  

 Finally, and particularly for ovarian cancer, large volume disease means time consuming 

manual segmentation. For now, automated software to segment the whole tumor burden are not 

available and as such disease areas need to be manually segmented which preclude routine 

evaluation. Manual segmentation requires delineation of tumor per slice; particularly time 

consuming in large and irregularly shaped tumors and challenging in case of infiltrative disease. 

A preliminary study, using an automated segmentation approach in rectal cancer has shown 

promising results [97]. Future work will focus on the development of complete automated post 

processing methods enabling the extraction of maximal information from the images with the 

added challenge to demonstrate a clinical benefit in the assessment of tumor response.  

Conclusion 

Subjective extraction of multiple qualitative parameters has shown a link between phenotypic CT 

features and gene pattern in ovarian cancer with the limitation of relatively poor interobserver 

agreement. Quantitative analysis using TA is challenging but has shown promising results 

regarding tumor heterogeneity on CT and patient outcome. Although many issues need to be 

addressed before implementation in clinical practice, TA will allow radiologists to obtain 

additional and more robust imaging data from studies that are already being performed and 

which could be combined with qualitative features. In the era of artificial intelligence these types 

of features could be incorporated into decision-support or computer-aided diagnosis tools to 

predict tumor aggressiveness and response to therapy. 
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FIGURE LEGENDS  

 

Figure 1. Drawing summarizing advances in research in ovarian cancer radiomics. 
 

Figure 2. First-order statistical-based CT texture parameters. Plot of the pixel histogram, 
where the x-axis represents gray-level values and the y-axis represents the frequency of 
occurrence. First-order parameters include the mean of the histogram (vertical red line), standard 
deviation ang 95 of the histogram (horizontal blue line). When the distribution has a larger tail to 
the left, the skew is negative (and the skew is positive when the tail is larger to the right). The 
term kurtosis designates how pointy or smooth the curve is compared to a normal distribution 
(right). Kurtosis describes the peakedness of the pixel histogram. A pointier or more peaked 
histogram is seen with positive and progressively higher kurtosis values (right). 
 

Figure 3. Second-order statistical-based texture parameters. (a) and (b) show diagrams of 
two different gray-scale images. Each of the square contains the same number of different shade-
of-grey “pixels,” so the first-order texture features and pixel histograms are nearly identical for 
these two images. However, second-order texture features that take into account pixel location 
and relationship to adjacent pixels, such as gray-level co-occurrence matrix are different between 
these two images. The grey- scales of the image can be represented by discrete values (c). The 
gray-level co-occurrence matrix measures the frequency with which each type of pixel occurs in 
the horizontal, vertical, and oblique planes adjacent to all other pixels (d). The number of co-
occurrences of pixel pairs for a given search window are counted and a grey level co-occurrence 
matrix is established.  










