B. Sakschewski, Resilience of Amazon forests emerges from plant trait diversity, Nat. Clim. Chang, vol.6, pp.1032-1036, 2016.

M. Pacifici, Species' traits influenced their response to recent climate change, Nat. Clim. Chang, vol.7, pp.205-208, 2017.

C. D. Thomas, Extinction risk from climate change, Nature, vol.427, pp.145-148, 2004.

D. E. Schindler and R. Hilborn, Prediction, precaution, and policy under global change, Science, vol.347, pp.953-954, 2015.

M. C. Urban, Improving the forecast for biodiversity under climate change, Science, vol.353, pp.1113-1122, 2016.

A. A. Hoffmann and C. M. Sgrò, Climate change and evolutionary adaptation, Nature, vol.470, pp.479-485, 2011.

A. Charmantier, Adaptive phenotypic plasticity in response to climate change in a wild bird population, Science, vol.320, pp.800-803, 2008.

J. A. Van-gils, Body shrinkage due to Arctic warming reduces red knot fitness in tropical wintering range, Science, vol.352, pp.819-821, 2016.

E. Post and M. C. Forchhammer, Climate change reduces reproductive success of an Arctic herbivore through trophic mismatch, Philos. Trans. R. Soc. Ser. B, vol.363, pp.2367-2373, 2008.

P. Gienapp, C. Teplitsky, J. S. Alho, J. A. Mills, and J. Merilä, Climate change and evolution: disentangling environmental and genetic responses, Mol. Ecol, vol.17, pp.167-178, 2008.

J. Merilä and A. P. Hendry, Climate change, adaptation, and phenotypic plasticity: the problem and the evidence, Evol. Appl, vol.7, pp.1-14, 2014.

C. Parmesan and G. Yohe, A globally coherent fingerprint of climate change impacts across natural systems, Nature, vol.421, pp.37-42, 2003.

S. J. Thackeray, Phenological sensitivity to climate across taxa and trophic levels, Nature, vol.535, pp.241-245, 2016.

Y. Yom-tov, S. Yom-tov, J. Wright, C. J. Thorne, and R. Du-feu, Recent changes in body weight and wing length among some British passerine birds, Oikos, vol.112, pp.91-101, 2006.

R. Pachauri, Synthesis Report, vol.5, 2014.

C. Parmesan, Influences of species, latitudes and methodologies on estimates of phenological response to global warming, Glob. Chang. Biol, vol.13, pp.1860-1872, 2007.

J. M. Cohen, M. J. Lajeunesse, and J. R. Rohr, A global synthesis of animal phenological responses to climate change, Nat. Clim. Chang, 2018.

E. S. Poloczanska, Global imprint of climate change on marine life, Nat. Clim. Chang, vol.3, pp.919-925, 2013.

K. M. Gotanda, C. Correa, M. M. Turcotte, G. Rolshausen, and A. P. Hendry, Linking macrotrends and microrates: re-evaluating microevolutionary support for Cope's rule, Evolution, vol.69, pp.1345-1354, 2015.

C. Teplitsky and V. Millien, Climate warming and Bergmann's rule through time: is there any evidence?, Evol. Appl, vol.7, pp.156-168, 2014.

J. Kattge, TRY-a global database of plant traits, Glob. Chang. Biol, vol.17, pp.2905-2935, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00639535

R. Salguero-gómez, COMADRE: a global data base of animal demography, J. Anim. Ecol, vol.85, pp.371-384, 2016.

K. E. Jones, PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals, Ecology, vol.90, pp.2648-2648, 2009.

J. G. Kingsolver, The strength of phenotypic selection in natural populations, Am. Nat, vol.157, pp.245-261, 2001.

J. G. Kingsolver and S. E. Diamond, Phenotypic selection in natural populations: what limits directional selection?, Am. Nat, vol.177, pp.346-357, 2011.

A. M. Siepielski, J. D. Dibattista, and S. M. Carlson, It's about time: the temporal dynamics of phenotypic selection in the wild, Ecol. Lett, vol.12, pp.1261-1276, 2009.

A. M. Siepielski, Precipitation drives global variation in natural selection, Science, vol.355, pp.959-962, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01605014

C. M. Caruso, What are the environmental determinants of phenotypic selection? A meta-analysis of experimental studies, Am. Nat, vol.190, pp.363-376, 2017.

R. Lande and S. J. Arnold, The measurement of selection on correlated characters, Evolution, vol.37, pp.1210-1226, 1983.

C. J. Brown, Ecological and methodological drivers of 'species' distribution and phenology responses to climate change, Glob. Chang. Biol, vol.22, pp.1548-1560, 2016.

E. Post, B. A. Steinman, and M. E. Mann, Acceleration of phenological advance and warming with latitude over the past century, Sci. Rep, vol.8, 2018.

A. J. Miller-rushing, T. L. Lloyd-evans, R. B. Primack, and P. Satzinger, Bird migration times, climate change, and changing population sizes, Glob. Chang. Biol, vol.14, pp.1959-1972, 2008.

, Contribution of working groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Core Writing Team, 2014.

H. M. Kharouba, Global shifts in the phenological synchrony of species interactions over recent decades, Proc. Natl. Acad. Sci, 2018.

R. B?rger and M. Lynch, Evolution and extinction in a changing environmenta quantitative-genetic analysis, Evolution, vol.49, pp.151-163, 1995.

L. M. Chevin, R. Lande, and G. M. Mace, Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory, PLoS Biol, vol.8, 2010.

S. Estes and S. J. Arnold, Resolving the paradox of stasis: models with stabilizing selection explain evolutionary divergence on all timescales, Am. Nat, vol.169, pp.227-244, 2007.

J. Vanderwal, Focus on poleward shifts in species' distribution underestimates the fingerprint of climate change, Nat. Clim. Chang, vol.3, pp.239-243, 2012.

V. Devictor, Differences in the climatic debts of birds and butterflies at a continental scale, Nat. Clim. Chang, vol.2, pp.121-124, 2012.

C. Parmesan, Ecological and evolutionary responses to recent climate change, Annu. Rev. Ecol. Evol. Syst, vol.37, pp.637-669, 2006.

J. C. Pierson, Incorporating evolutionary processes into population viability models, Conserv. Biol, vol.29, pp.755-764, 2015.

K. H. Schiffers and J. M. Travis, ALADYN-a spatially explicit, allelic model for simulating adaptive dynamics, Ecography J, vol.37, pp.1288-1291, 2014.

J. B. Socolar, P. N. Epanchin, S. R. Beissinger, and M. W. Tingley, Phenological shifts conserve thermal niches in North American birds and reshape expectations for climate-driven range shifts, Proc. Natl Acad. Sci. USA, 2017.

T. E. Reed, V. Grøtan, S. Jenouvrier, B. Saether, and M. E. Visser, Population growth in a wild bird is buffered against phenological mismatch, Science, vol.340, pp.488-491, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00822808

M. D. Rausher, The measurement of selection on quantitative traits: biases due to environmental covariances between traits and fitness, Evolution (N. Y), vol.46, pp.616-626, 1992.

O. Vedder, S. Bouwhuis, and B. C. Sheldon, Quantitative assessment of the importance of phenotypic plasticity in adaptation to climate change in wild bird populations, PLoS Biol, vol.11, 2013.

M. T. Burrows, Geographical limits to species-range shifts are suggested by climate velocity, Nature, 2014.

G. Torda, Rapid adaptive responses to climate change in corals, Nat. Clim. Chang, vol.7, pp.627-636, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01598493

L. E. Kruuk, Estimating genetic parameters in natural populations using the 'animal model, Philos. Trans. R. Soc. Lond. Ser. B, vol.359, pp.873-890, 2004.

A. Courtiol, F. C. Tropf, and M. C. Mills, When genes and environment disagree: Making sense of trends in recent human evolution, Proc. Natl Acad. Sci. USA, vol.113, pp.7693-7695, 2016.

L. E. Kruuk, J. Merilä, and B. C. Sheldon, When environmental variation short-circuits natural selection, Trends Ecol. Evol, vol.18, pp.207-209, 2003.

C. Parmesan and G. Yohe, A globally coherent fingerprint of climate change impacts across natural systems, Nature, vol.421, p.37, 2003.

J. E. Lane, L. E. Kruuk, A. Charmantier, J. O. Murie, and F. S. Dobson, Delayed phenology and reduced fitness associated with climate change in a wild hibernator, Nature, vol.489, pp.554-557, 2012.

W. T. Miles, Quantifying full phenological event distributions reveals simultaneous advances, temporal stability and delays in spring and autumn migration timing in long-distance migratory birds, Glob. Chang. Biol, vol.23, pp.1400-1414, 2017.

J. L. Gardner, A. Peters, M. R. Kearney, L. Joseph, and R. Heinsohn, Declining body size: a third universal response to warming?, Trends Ecol. Evol, vol.26, pp.285-291, 2011.

J. A. Sheridan and D. Bickford, Shrinking body size as an ecological response to climate change, Nat. Clim. Chang, vol.1, pp.401-406, 2011.

S. Meiri, D. Guy, T. Dayan, and D. Simberloff, Global change and carnivore body size: data are stasis, Glob. Ecol. Biogeogr, vol.18, pp.240-247, 2009.

D. A. Vasseur, Increased temperature variation poses a greater risk to species than climate warming, Proc. Biol. Sci, vol.281, p.20132612, 2014.

N. Mclean, C. R. Lawson, D. I. Leech, and M. Van-de-pol, Predicting when climate-driven phenotypic change affects population dynamics, Ecol. Lett, vol.19, pp.595-608, 2016.

T. Coulson, Modelling adaptive and nonadaptive responses of populations to environmental change, Am. Nat, vol.3, pp.313-336, 2017.

M. J. Lajeunesse, Facilitating systematic reviews, data extraction and metaanalysis with the metagear package for R, Methods Ecol. Evol, vol.7, pp.323-330, 2016.

F. Vaida and S. Blanchard, Conditional Akaike information for mixed-effects models, Biometrika, vol.92, pp.351-370, 2005.

R. Core, Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018.

F. Rousset and J. Ferdy, Testing environmental and genetic effects in the presence of spatial autocorrelation, Ecography J, vol.37, pp.781-790, 2014.

J. Koricheva, J. Gurevitch, and K. Mengersen, Handbook of Meta-analysis in Ecology and Evolution, 2013.

A. E. Goodenough, A. G. Hart, and S. L. Elliot, What prevents phenological adjustment to climate change in migrant bird species? Evidence against the 'arrival constraint' hypothesis, Int. J. Biometeorol, vol.55, pp.97-102, 2011.

F. Plard, Mismatch between birth date and vegetation phenology slows the demography of roe deer, PLoS Biol, vol.12, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02045105

P. Gienapp, Predicting demographically sustainable rates of adaptation: can great tit breeding time keep pace with climate change, Philos. Trans. R. Soc. Ser. B, vol.368, pp.20120289-20120289, 2012.

S. Wilson, D. R. Norris, A. G. Wilson, and P. Arcese, Breeding experience and population density affect the ability of a songbird to respond to future climate variation, Proc. R. Soc. Ser. B, vol.274, pp.2539-2545, 2007.

, Florentino de Lope 17 , André A. Dhondt 18, Juan Gabriel Martínez, vol.10, p.57