J. Ferlay, I. Soerjomataram, R. Dikshit, S. Eser, C. Mathers et al., Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012, Int J Cancer, vol.136, pp.359-86, 2015.

P. Saintigny and J. A. Burger, Recent advances in non-small cell lung cancer biology and clinical management, Discov Med, vol.13, pp.287-97, 2012.

J. P. Thiery, Epithelial-mesenchymal transitions in tumour progression, Nat Rev Cancer, vol.2, pp.442-54, 2002.

V. Mittal, Epithelial mesenchymal transition in aggressive lung cancers, Adv Exp Med Biol, vol.890, pp.37-56, 2016.

J. Faget, S. Groeneveld, G. Boivin, M. Sankar, N. Zangger et al., Neutrophils and snail orchestrate the establishment of a Pro-tumor microenvironment in lung cancer, Cell Reports, vol.21, pp.3190-204, 2017.

J. J. Hung, M. H. Yang, H. S. Hsu, W. H. Hsu, J. S. Liu et al., Prognostic significance of hypoxia-inducible factor-1?, TWIST1 and Snail expression in resectable non-small cell lung cancer, Thorax, vol.64, pp.1082-89, 2009.

J. Yanagawa, T. C. Walser, L. X. Zhu, L. Hong, M. C. Fishbein et al., Snail promotes CXCR2 ligand-dependent tumor progression in non-small cell lung carcinoma, Clin Cancer Res, vol.15, pp.6820-6849, 2009.

E. L. Jackson, K. P. Olive, D. A. Tuveson, R. Bronson, D. Crowley et al., The differential effects of mutant p53 alleles on advanced murine lung cancer, Cancer Res, vol.65, pp.10280-88, 2005.

D. S. Hsu, H. J. Wang, S. K. Tai, C. H. Chou, C. H. Hsieh et al., Acetylation of snail modulates the cytokinome of cancer cells to enhance the recruitment of macrophages, Cancer Cell, vol.26, pp.534-582, 2014.

L. M. Knab, K. Ebine, C. R. Chow, S. S. Raza, V. Sahai et al., Snail cooperates with Kras G12D in vivo to increase stem cell factor and enhance mast cell infiltration, Mol Cancer Res, vol.12, pp.1440-1488, 2014.

C. Kudo-saito, H. Shirako, T. Takeuchi, and Y. Kawakami, Cancer metastasis is accelerated through immunosuppression during Snail-induced EMT of cancer cells, Cancer Cell, vol.15, pp.195-206, 2009.

L. Benetatos, E. Hatzimichael, E. Londin, G. Vartholomatos, P. Loher et al., The microRNAs within the DLK1-DIO3 genomic region: involvement in disease pathogenesis, Cell Mol Life Sci, vol.70, pp.795-814, 2013.

N. Takahashi, A. Okamoto, R. Kobayashi, M. Shirai, Y. Obata et al., Deletion of Gtl2, imprinted non-coding RNA, with its differentially methylated region induces lethal parent-origin-dependent defects in mice, Hum Mol Genet, vol.18, pp.1879-88, 2009.

Y. Zhou, P. Cheunsuchon, Y. Nakayama, M. W. Lawlor, Y. Zhong et al., Activation of paternally expressed genes and perinatal death caused by deletion of the Gtl2 gene, Development, vol.137, pp.2643-52, 2010.

J. R. Enterina, K. S. Enfield, C. Anderson, E. A. Marshall, K. W. Ng et al., DLK1-DIO3 imprinted locus deregulation in development, respiratory disease, and cancer, Expert Rev Respir Med, vol.11, pp.749-61, 2017.

S. Kaufhold and B. Bonavida, Central role of Snail1 in the regulation of EMT and resistance in cancer: a target for therapeutic intervention, J Exp Clin Cancer Res, vol.33, p.62, 2014.

O. M. Martínez-estrada, A. Cullerés, F. X. Soriano, H. Peinado, V. Bolós et al.,

S. , The transcription factors Slug and Snail act as repressors of Claudin-1 expression in epithelial cells, Biochem J, vol.394, pp.449-57, 2006.

J. Ikenouchi, M. Matsuda, M. Furuse, and S. Tsukita, Regulation of tight junctions during the epithelium-mesenchyme transition: direct repression of the gene expression of claudins/occludin by Snail, J Cell Sci, vol.116, pp.1959-67, 2003.

H. Merikallio, T. Turpeenniemi-hujanen, P. Pääkkö, R. Mäkitaro, K. Riitta et al., Snail promotes an invasive phenotype in lung carcinoma, Respir Res, vol.13, 2012.

P. N. Valdmanis, B. Roy-chaudhuri, H. K. Kim, L. C. Sayles, Y. Zheng et al., Upregulation of the microRNA cluster at the Dlk1-Dio3 locus in lung adenocarcinoma, Oncogene, vol.34, pp.94-103, 2015.

R. Kalluri, The biology and function of exosomes in cancer, J Clin Invest, vol.126, pp.1208-1223, 2016.

J. Kowal, G. Arras, M. Colombo, M. Jouve, J. P. Morath et al., Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes, Proc Natl Acad Sci U S A, vol.113, pp.968-77, 2016.

F. A. Falix, M. Tjon-a-loi, I. C. Gaemers, D. C. Aronson, and W. H. Lamers, DLK1 Protein Expression during Mouse Development Provides New Insights into Its Function, ISRN Developmental Biology, vol.2013, 2013.

A. E. Williams, S. A. Moschos, M. M. Perry, P. J. Barnes, and M. A. Lindsay, Maternally imprinted microRNAs are differentially expressed during mouse and human lung development, Dev Dyn, vol.236, pp.572-80, 2007.

E. Nadal, J. Zhong, J. Lin, R. M. Reddy, N. Ramnath et al., A MicroRNA cluster at 14q32 drives aggressive lung adenocarcinoma, Clin Cancer Res, vol.20, pp.3107-3124, 2014.

K. S. Enfield, V. D. Martinez, E. A. Marshall, G. L. Stewart, S. H. Kung et al., Deregulation of small noncoding RNAs at the DLK1-DIO3 imprinted locus predicts lung cancer patient outcome, Oncotarget, vol.7, pp.80957-66, 2016.

S. Molina-pinelo, A. Salinas, N. Moreno-mata, I. Ferrer, R. Suarez et al., Impact of DLK1-DIO3 imprinted cluster hypomethylation in smoker patients with lung cancer, Oncotarget, vol.9, pp.4395-410, 2016.

M. Wang, X. Ma, C. Zhu, L. Guo, Q. Li et al., The prognostic value of long non coding RNAs in non small cell lung cancer: A meta-analysis, Oncotarget, vol.7, pp.81292-304, 2016.

Y. Zhou, X. Zhang, and A. Klibanski, MEG3 noncoding RNA: a tumor suppressor, J Mol Endocrinol, vol.48, pp.45-53, 2012.

Q. Qin, F. Wei, J. Zhang, X. Wang, and B. Li, miR-134 inhibits non-small cell lung cancer growth by targeting the epidermal growth factor receptor, J Cell Mol Med, vol.20, pp.1974-83, 2016.

Z. Luo, C. Lin, A. R. Woodfin, E. T. Bartom, X. Gao et al., Regulation of the imprinted Dlk1-Dio3 locus by allele-specific enhancer activity, Genes Dev, vol.30, pp.92-101, 2016.

P. P. Das, D. A. Hendrix, E. Apostolou, A. H. Buchner, M. C. Canver et al., PRC2 is required to maintain expression of the maternal gtl2-rian-mirg locus by preventing de novo dna methylation in mouse embryonic stem cells, Cell Reports, vol.12, pp.1456-70, 2015.

L. Liu, G. Z. Luo, W. Yang, X. Zhao, Q. Zheng et al., Activation of the imprinted Dlk1-Dio3 region correlates with pluripotency levels of mouse stem cells, J Biol Chem, vol.285, pp.19483-90, 2010.

J. P. Hagan, B. L. O'neill, C. L. Stewart, S. V. Kozlov, and C. M. Croce, At least ten genes define the imprinted Dlk1-Dio3 cluster on mouse chromosome 12qF1, PLoS One, vol.4, 2009.

P. Jelinic and P. Shaw, Loss of imprinting and cancer, J Pathol, vol.211, pp.261-68, 2007.

S. V. Laddha, S. Nayak, D. Paul, R. Reddy, C. Sharma et al., Genome-wide analysis reveals downregulation of miR-379/miR-656 cluster in human cancers, Biol Direct, vol.8, issue.10, 2013.

C. L. Haga and D. G. Phinney, MicroRNAs in the imprinted DLK1-DIO3 region repress the epithelial-tomesenchymal transition by targeting the TWIST1 protein signaling network, J Biol Chem, vol.287, pp.42695-707, 2012.

L. Li, J. Tan, Y. Zhang, N. Han, X. Di et al., DLK1 promotes lung cancer cell invasion through upregulation of MMP9 expression depending on Notch signaling, PLoS One, vol.9, 2014.

L. Li, B. Liu, O. L. Wapinski, M. C. Tsai, K. Qu et al., Targeted disruption of Hotair leads to homeotic www.oncotarget.com transformation and gene derepression, Cell Reports, vol.5, pp.3-12, 2013.

C. Battistelli, C. Cicchini, L. Santangelo, A. Tramontano, L. Grassi et al., The Snail repressor recruits EZH2 to specific genomic sites through the enrollment of the lncRNA HOTAIR in epithelial-tomesenchymal transition, Oncogene, vol.36, pp.942-55, 2017.

S. Al-harbi, G. S. Choudhary, J. S. Ebron, B. T. Hill, N. Vivekanathan et al., miR-377-dependent BCL-xL regulation drives chemotherapeutic resistance in B-cell lymphoid malignancies, Mol Cancer, vol.14, p.185, 2015.

E. Gardiner, N. J. Beveridge, J. Q. Wu, V. Carr, R. J. Scott et al., Imprinted DLK1-DIO3 region of 14q32 defines a schizophrenia-associated miRNA signature in peripheral blood mononuclear cells, Mol Psychiatry, vol.17, pp.827-867, 2012.

R. Dai, Y. Zhang, D. Khan, B. Heid, D. Caudell et al., Identification of a common lupus diseaseassociated microRNA expression pattern in three different murine models of lupus, PLoS One, vol.5, 2010.

R. Dai, R. Lu, and S. A. Ahmed, The Upregulation of genomic imprinted DLK1-Dio3 miRNAs in murine lupus is associated with global DNA Hypomethylation, PLoS One, vol.11, 2016.

M. Dupage, A. L. Dooley, and T. Jacks, Conditional mouse lung cancer models using adenoviral or lentiviral delivery of Cre recombinase, Nat Protoc, vol.4, pp.1064-72, 2009.

T. D. Schmittgen and K. J. Livak, Analyzing real-time PCR data by the comparative C(T) method, Nat Protoc, vol.3, pp.1101-1109, 2008.

M. E. Ritchie, B. Phipson, D. Wu, Y. Hu, C. W. Law et al., limma powers differential expression analyses for RNA-sequencing and microarray studies, Nucleic Acids Res, vol.43, pp.47-47, 2015.

A. Subramanian, P. Tamayo, V. K. Mootha, S. Mukherjee, B. L. Ebert et al., Gene set enrichment analysis: a knowledge-based approach for interpreting genomewide expression profiles, Proc Natl Acad Sci U S A, vol.102, pp.15545-50, 2005.