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Jandus C, Bauché D, Faget J, Durand I, Chopin N, Tredan O, Marie JC,

Dubois B, Guitton J, Romero P, Caux C, Ménétrier-Caux C

Journal: Cancer research

Year: 2018 Jul 1

Issue: 78

Volume: 13

Pages: 3604-3618

DOI: 10.1158/0008-5472.CAN-17-2405

In the absence of a copyright statement, users should assume that standard copyright protection applies, unless the article contains
an explicit statement to the contrary. In case of doubt, contact the journal publisher to verify the copyright status of an article.

http://dx.doi.org/10.1158/0008-5472.CAN-17-2405


 1 

Title : Autocrine Adenosine regulates tumor polyfunctional CD73+CD4+ 

effector T cells devoid of immune checkpoints 

Nicolas Gourdin1,2,3, Marion Bossennec1,2, Céline Rodriguez1,2,3, Selena Vigano4, Christelle 

Machon5,6, Camilla Jandus4, David Bauché2,8,10, Julien Faget1,2,3, Isabelle Durand2,9, Nicolas 

Chopin11, Olivier Tredan11, Julien C. Marie2,8,10, Bertrand Dubois1,2, Jérôme Guitton5,7, Pedro 

Romero4, Christophe Caux1,2,3†, Christine Ménétrier-Caux1,2,3†*. (†: Co-last authorship) 

 

Affiliations: 
1 Team 11, INSERM U1052, Cancer Research Center of Lyon, F-69008 Lyon, France 
2 Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon 
Bérard, Centre de recherche en cancérologie de Lyon, Lyon, 69008, France 
3 Innovation and translational research department of Department, Centre Léon Bérard, 
Lyon, F-69008, France 
4Ludwig Cancer Research Center, Department of Oncology, Faculty of Biology and Medicine, 
University of Lausanne, Lausanne, Switzerland 
5Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Laboratoire de Biochimie et 
Toxicologie, F-69495 Pierre-Bénite, France 
6Université de Lyon, Université Lyon 1, ISPB Faculté de pharmacie, Laboratoire de Chimie 
Analytique, F-69008 Lyon, France 

 
7Université de Lyon, Université Lyon 1, ISPB Faculté de pharmacie, Laboratoire de 
Toxicologie, F-69008 Lyon, France 
8  TGF- and Immuno-evasion Department of Immunology Virology and Inflammation 
INSERM U1052, Cancer Research Center of Lyon, F-69000 Lyon, France 
9 Cytometry platform, INSERM U-1052, Cancer Research Center of Lyon, F-69000 Lyon, 
France 
10 TGF- and Immuno-evasion, Tumor immunology Program, DKFZ, Heidelberg, Germany 
11 Centre Léon Bérard, « Medical Oncology Department», Lyon, F-69008, France 
 

Running title: Autocrine Ado regulates polyfunctional CD73+CD4+ T cells 

 

*To whom correspondence should be addressed: Christine Ménétrier-Caux, Phone (+33) 4-

78-78-27-50; e-mail address: christine.caux@lyon.unicancer.fr 

 

No Conflict of Interest to disclose 

 

Abstract  

The production of CD73-derived Adenosine (Ado) by Tregs, has been proposed as a 

resistance mechanism to anti-PD1 therapy in murine tumor models. We reported that 
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Human Tregs express the ecto-nucleotidase CD39, that generates AMP from ATP, but do not 

express the AMPase CD73. In contrast, CD73 defined a subset of effector CD4+ T cells (Teffs), 

enriched in polyfunctional Th1.17 cells characterized by expression of CXCR3, CCR6 and 

MDR1 and production of IL-17A/IFN-/IL-22/GM-CSF. CD39+ Tregs selectively targeted CD73+ 

Teffs through cooperative degradation of ATP into Ado inhibiting and restricting the ability of 

CD73+ Teffs to secrete IL-17A. 

CD73+ Teffs infiltrating breast and ovarian tumors, were functionally blunted by Tregs 

expressing upregulated levels of CD39 and ATPase activity. Moreover, tumor-infiltrating 

CD73+ Teffs failed to express inhibitory immune checkpoints suggesting that CD73 might be 

selected under pressure from immune checkpoint blockade therapy and thus may represent 

a non-redundant target for restoring antitumor immunity.  

 

Edited significance: Polyfunctional CD73+ T cell effectors lacking other immune checkpoints 

are selectively targeted by CD39 overexpressing Tregs that dominate the breast tumor 

environment. 

 

Introduction 

During infection or tumor development, adenosine triphosphate (ATP) is released into the 

extracellular space and can be found at high levels in inflamed tissues, including tumors (1). 

Extracellular ATP represents a pro-inflammatory alarmin for the immune system. It induces 

the chemo-attraction of dendritic cells (DC) and the activation of inflammasomes and IL-1β 

secretion by monocytes/macrophages (Mϕ) through the engagement of P2 purinergic 

receptors (for review: (2)). Interestingly, the degradation of ATP into adenosine (Ado) by 

murine CD4+ regulatory T cells (Tregs), co-expressing CD39 and CD73, has been associated 

with immunosuppression (3), particularly within tumor environment (4, 5). Mechanistically, 

CD39 (ectonucleoside triphosphate diphosphohydrolase-1, ENTPD1) degrades ATP and 

adenosine diphosphate (ADP) into adenosine monophosphate (AMP), which is then 

hydrolyzed by CD73 (5’-ectonucleotidase, NT5E) into Ado. Ado can favor tumor progression 

by inhibiting the function of immune cells (T cells, monocytes, DCs, Mϕ), through the 

engagement of its receptors (AdoR) A2a or A2b (for review: (6)). These AdoR induce an 

increased concentration of intracellular cyclic AMP, resulting in the inhibition of 

proliferation, cytotoxic functions and cytokine secretion (IL-2, TNF-α, IFN-γ and IL-13) of T 
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cells (for review: (6)). Ado can act also on innate immune cells by inhibiting IL-12 production 

by DCs (7, 8), and inducing IL-10 and VEGF secretion by Mϕ which favor immunosuppression 

and angiogenesis (9, 10). Moreover, Ado can act on non-immune cells, such as tumor cells, 

through A1 or A3 receptors coupled to Gαi proteins, fostering tumor cell proliferation and 

migration (for review: (6)). The importance of Ado signaling in immunosuppression is 

evidenced in patients with Severe Combined Immunodeficiency (SCID), in whom 

accumulation of Ado, due to a lack of adenosine deaminase (ADA) enzyme that degrades 

Ado into Inosine, is observed (11). Remarkably, in CD73-deficient mice, in mice with CD73-

deficient Tregs, or in A2a-deficient mice, the antitumor immune response is increased, 

leading to the tumor rejection and to the inhibition of metastases (12-15). Also, in murine 

models, targeting of CD73 alone or in combination with immunotherapy (anti-CTLA-4 or anti-

PD-1) enhances tumor rejection and blocks metastases, demonstrating that endogenous Ado 

limits the efficacy of these immunotherapies (16, 17). 

Studies investigating the expression of CD73 and CD39 on human T cells subsets remain 

scarce. In fact, despite the poor prognostic value of Tregs in breast and ovarian tumors (18, 

19), the co-expression of CD39 and CD73 on human Tregs remains controversial (20-23). A 

recent report by Doherty et al also suggests the interconnection between CD73 expression 

on memory CD4+ T cells and a Th17 profile (24). 

Th17 cells, implicated in the response to extracellular pathogens, are characterized by the 

secretion of IL-17A, IL-17F and IL-22. Recently, the involvement of a subset of Th17 cells, 

called Th1.17 co-producing IL-17A, IFN-γ and GM-CSF, in the development of autoimmune 

diseases, was unveiled (25), highlighting the polyfunctionality of these cells (26, 27). In 

tumor biology, a pro-tumoral role of Th17 was reported and mainly associated with the 

secretion of IL-17A, however, co-production of IFN-γ and GM-CSF was not considered, 

except in a recent report, demonstrating that Th1.17 cell subset contributes to tumor 

rejection (28).  

In the present work, we demonstrate that CD73, not detected on human Tregs, defines a 

subpopulation of CD4+ effector T cells (Teffs) associated with cytokine polyfunctionality 

similar to that described in Th1.17 cells. CD73+CD4+ Teffs cooperate with CD39+ Tregs to 

degrade ATP into immunosuppressive Ado inhibiting and restricting function of CD73+CD4+ 

Teffs to IL-17A secretion. This cooperation does not require cell contact and, in a spaced-out 

microenvironment, induces specific inhibition of CD73+CD4+ Teffs through autocrine ATP-
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derived Ado action without affecting distant CD73negCD4+ Teffs. Interestingly, we reveal that 

CD73+CD4+ Teffs are present in breast and ovarian tumor environment together with 

CD39high Tregs and express only low levels of inhibitory immune checkpoints (i-ICPs) 

highlighting CD73 as a potential resistance mechanism to current immunotherapies, and as a 

non-redundant target for restoring antitumor immunity. 

 

Material and methods 

Human samples 

HD-blood was purchased anonymously from the French Blood Service (EFS). In addition, 

blood and primary tumor samples were obtained from patients with non-pretreated breast 

tumors and chemotherapy-pretreated ovarian tumors. All of these samples were provided 

by the tissue bank (BRC) of Léon Bérard Cancer Center (CLB), after approval from the 

institutional review board and ethics committee (L-06-36 and L-11-26) and patients’ written 

informed consent, in accordance with the Declaration of Helsinki. Human healthy colon 

endoscopic biopsies obtained during routine endoscopic check-ups of healthy donors 

selected on the basis that they were neither under chemotherapy nor taking antibiotics 

were obtained from the BRC of the CLB after approval from the institutional review board 

and ethics committee (French agreement number: AC-2013-1871) and donors’ written 

informed consent.  

Purification of the different cell subsets  

PBMC were purified from blood of HDs or cancer patients by Ficoll density gradient. Memory 

CD4+ T cells were purified using MagniSortTM Human CD4+ Memory T Cell Enrichment Kit 

(eBioscience). CD73negCD4+ Teffs (CD4+CD45RAnegCD127+CD25neg CD39negCD73neg), 

CD73+CD4+ Teffs (CD4+CD45RAnegCD127+CD25negCD39negCD73+) and total Tregs 

(CD4+CD45RAnegCD127negCD25+) or CD39+ and CD39neg Treg subsets  were sorted from 

purified memory CD4+ T cells by multi-parametric FC (FACSAria III, BD Biosciences) using 

antibodies against CD25 (2A3, BD-Biosciences), CD45RA (2H4LDH11LDB9, Beckman-Coulter), 

as well as CD127 (eBioRDR5), CD39 (eBioA1) and CD73 (AD2) (all from eBioscience), 

alongside a viability marker (DAPI). Infiltrating CD4+ T cells from breast and ovarian tumors 

and healthy colonic tissues were isolated from single cell suspensions, obtained by 

enzymatic disaggregation (18), with the Dynabeads Human CD4+ Kit (Life Technologies). 
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Tumor-infiltrating CD4+ Teffs (CD127+CD25neg) and Tregs (CD127negCD25+) were sorted from 

single cell suspensions by multi-parametric FC using antibodies against CD127, CD25, 

CD45RA, and a viability marker (Fixable Viability Dye, Biolegend).  

Flow cytometry analyses 

Multi-parametric FC analyses were performed on i) PBMC from HDs or cancer patients, or on 

ii) single cell suspensions derived either from primary breast and ovarian tumors or healthy 

colonic tissues. The FC panels used to assess T cell differentiation relied on the use of anti-

human antibodies against CD3 (UCHT1), CD4 (RPA-T4), CD8 (SK1), CD95 (DX2) and CD28 

(CD28.2) (all from BD-Biosciences), CD27 (O323, eBioscience), CCR7 (G043H7, Biolegend), 

CD45RA, CD39 and CD73 (see above), while those used to evaluate T cell polarization relied 

on the use of the anti-human antibodies against CD3, CD4, CD45RA, CD127, CD25, CD39 and 

CD73 (see above), CCR6 (11A9, BD-Biosciences), CXCR3 (G025H7) and CRTH2 (BM16) from 

Biolegend, and a viability marker. The i-ICPs panel included antibodies against CD3, CD4, CD8 

(see above), CD45 (HI30), PD-1 (EH12.1), TIM-3 (7D3) (all from BD-Biosciences), CD45RA 

(HI100) and CTLA-4 (L3D10) (Biolegend), TIGIT (MBSA43), CD39 and CD73 (eBioscience) and 

a fixable viability marker (Zombie Fixable Viability Dyes, Biolegend). The production of 

intracellular cytokines on CD73+CD4+ and CD73negCD4+ Teffs was analyzed using the test 

previously described (29) with some modifications, in particular the evaluation of IL-22 

(22URTI, BD-Biosciences) instead of IL-21. Cells were analyzed on a LSR-Fortessa (BD 

Biosciences) and data were processed using the FlowJo Software (Tree Star). For the co-

expression of i-ICPs, data were analyzed using the Boolean method on the FlowJo software 

and then represented using SPICE v5.3 software. 

MDR1 staining and activity assay 

Purified memory CD4+ T cells were incubated with Rh123 (1µg/ml, Sigma-Aldrich) for 30 min 

on ice. After washes in PBS, cells were incubated at 37°C for 2h efflux phase. Cells were then 

washed in PBS and stained with surface markers for FC analysis. In some conditions, a MDR1 

inhibitor, Elacridar (1µM, Tocris), or vehicle (DMSO) were added to cells immediately before 

the efflux phase. MDR1 expression was assessed using an anti-human MDR1 antibody (UIC2, 

eBioscience) for 20 min at 37°C in the presence of Cyclosporin A (25 µM, R&D Systems), as 

described previously (30). 
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Transcriptomic analyses  

CD73neg and CD73+ CD4+ Teffs were sorted from the PBMC of six HDs blood samples. Cells 

were activated in the presence of anti-CD3/anti-CD28 beads (Expand beads, Life 

Technologies, ratio 1 bead to 4 cells) in complete RPMI medium (supplemented with 

antibiotics, L-glutamine (Life Technologies) and 5% of human serum AB+ (EFS)) at 37°C under 

5% CO2. Resting and short-term activated cells (mix of 6 hours and 24 hours activation), were 

lyzed for mRNA extraction (miRNeasy micro Kit, Qiagen) and transcriptomic analyses (Human 

Gene-Expression 8x60K Microarray Kit AMADID 039494, Agilent Technologies) were 

performed. 

Western blot analyses 

Tregs, CD73neg or CD73+ CD4+ Teffs (2x106 cells) were isolated and lyzed in RIPA-Buffer in the 

presence of proteinase inhibitors. Protein lysates were boiled, loaded on Mini-PROTEAN® 

TGX™ Precast Gels 5-20% (Biorad) and transferred to Trans-Blot® Turbo™ Mini PVDF 

membrane (Biorad). CD73 was detected using a mouse anti-hCD73 antibody (1D7, 1/500, 

Abcam). Pellets of MDA-MB231 cell line (LGC Standards) whose genetic profile has been 

verified (Eurofins Forensic Department) and negative for mycoplasma (MycoAlert 

mycoplasma detection kit, Lonza) and human purified HD blood monocytes were used as 

positive and negative control, respectively. ADA and A2b receptors were assessed either on 

purified CD73neg or CD73+ CD4+ Teffs, or after 1 or 4 days activation with Expand beads (ratio 

1:4), using a goat anti-A2bR antibody (ab40002, 1/1000, Abcam) and a mouse anti-hADA 

antibody (ab54969, 1/500, Abcam). The HRP-coupled secondary antibodies used were goat 

anti-mouse Ab (12-349, 1/5000, Upstate), rabbit anti-goat Ab (P 0449 1/2000, Dako). 

Membranes were revealed with Luminata Crescendo Reagent (Millipore) and analyzed on 

Chemidocs™ system (Biorad). 

Proliferation experiments  

CD73negCD4+ and CD73+CD4+ Teffs were stained respectively with the carboxyfluorescein 

succinimidyl ester (CFSE) (2 µM, Life Technologies) and CellTrace Violet (CTV) (20 µM, Life 

Technologies) proliferation markers, while Tregs were co-stained with both CFSE and CTV 

according to manufacturer’s instructions. CD73negCD4+ Teffs or CD73+ CD4+ Teffs (3x104) 

alone, in co-culture with Tregs (total or sorted CD39+ and CD39neg subsets) at a ratio 1:1 or 

co-culture of CD73negCD4+ Teffs, CD73+CD4+ Teffs and Tregs at physiological ratio 
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(70%:20%:10%) were incubated with Expand beads (ratio 1:4) in 96-round-bottomed-well 

plates (Falcon) in 200 µl of complete RPMI medium for 4 days at 37°C under 5% CO2. Ado, 

AMP, or ATP (Sigma-Aldrich) were added every day at the indicated concentration, whereas 

the CD73 inhibitor (APCP, 50 µM, Sigma-Aldrich), CD39 inhibitor (ARL-67156, 250 µM, Tocris) 

or rhADA (1 µg/ml, R&D Systems) were pre-incubated for 30 minutes before the beginning 

of the culture. At the end of the experimental time-course, cells were harvested and stained 

with a viability marker (LIVE/DEAD® Fixable Dead Cell Stains) and fixed in 2% formaldehyde. 

Cell proliferation was analyzed under an inverted Zeiss microscope (Objective 4x) using an 

Axiovision 4 software (Zeiss), and by FC (LSR Fortessa, BD Biosciences) according to the CFSE 

and CTV dilution.  

For experiments in Transwell Permeable Supports (polycarbonate membrane 0.4 µm pore 

Corning), in the 6.5 mm inserts, 6x104 CD73+CD4+ Teffs alone or in co-culture with Tregs (at a 

ratio of 1:1) were activated using Expand beads (ratio of 1:4) in the presence, in the bottom 

wells, of 1.5x105 CD73negCD4+ Teffs alone, or in co-culture with Tregs (at a ratio of 1:4) and 

Expand beads (ratio 1:4), in a total volume of 800 µl. 

Cytokines analysis 

CD73negCD4+ or CD73+CD4+ Teffs (5x104) were activated with either PMA 

(50ng/ml)/Ionomcycin (1µg/ml) (Sigma-Aldrich) for 24 hours or Expand beads (ratio of 1:4) 

for 48 hours in complete RPMI at 37°C under 5% CO2, and in the presence or not of Ado 

(75µM or 100µM). Supernatants were harvested and frozen, and cytokines were analyzed by 

ELISA using Luminex Multiplex Kits (eBioscience) (Multiplex 1: IL-2/TNF-/IFN-/IL-22/IL-

17A/IL-10/IL-13/IL-21; Multiplex 2: GM-CSF/IL-3). 

 

Nucleotides and nucleosides quantification by HPLC coupled to LC-MS/MS 

The capacity of 5x104 Tregs, CD73negCD4+ Teffs or CD73+CD4+ Teffs alone or co-culture of 

Tregs with either CD73negCD4+ Teffs or CD73+CD4+ Teffs (ratio 1:1), to degrade ATP or AMP 

was analyzed after 2 hours incubation at 37°C under 5% CO2 with labeled ATP13C,15N or 

AMP13C,15N (all from Sigma- Aldrich) in 200 µL of serum-free RPMI medium supplemented 

with antibiotics and L-glutamine (Life Technologies). In some cases, cells were pre-incubated 

with ARL-67156 (250 µM) or APCP (50 µM) for 30 minutes before the experiment. Cell 

supernatants were harvested, boiled at 65°C for 5 seconds and frozen at -20°C. ATP13C,15N, 
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AMP13C,15N, Ado13C,15N and Inosine13C,15N were quantified in 50 µl of supernatant. Nucleotides 

and nucleosides were extracted using off-line Oasis-WAX cartridges (60 mg; 3 cc). Briefly, 

cartridges were conditioned using 2 ml of methanol and 2 ml of water. After sample loading, 

cartridges were washed with 1 ml of water. Elution was performed thrice using 1 ml of the 

following mixture: NH4OH 0.25% pH 10.0/water/acetonitrile (30/30/40, v/v). Eluates were 

pooled and gas dried under nitrogen at 37°C. The residue was suspended in 250 μl of 5mM 

HA-0.5% DEA in water, and 10 µl were injected into a liquid chromatograph. 

Analysis was performed using liquid chromatography coupled with a tandem mass 

spectrometer (LC-MS/MS) as previously described by Machon et al (31). Quantification was 

conducted by adding standard solutions of labelled nucleotides (ATP13C, AMP15N, Ado13C and 

Inosine15N) to samples prior to the extraction step. ATP15N and GMP13C,15N were used as 

internal standards. Concentrations of nucleotides in the supernatants were calculated using 

calibration curves of the corresponding labelled nucleotides. We also verified that ARL-

67156 (250 µM) and APCP (50 µM) did not interfere with the ATP, AMP, Ado and Inosine 

quantification. 

Multi-immunofluorescence stainings on frozen tumor sections 

Tissue-Tek® O.C.T. (Sakura® Finetek) embedded frozen human primary breast tumors were 

used to generate 6 m frozen tissue sections with CryotomeTM (Thermo Fisher Scientific). 

Sections were fixed in paraformaldehyde, permeabilized in Triton X-100 and stained with 

murine anti-human CD4-AF488 (Biolegend, Clone RPA-T4), rat anti-human FoxP3-APC 

(Ebioscience, Clone PCH101), and uncoupled rabbit anti-human CD73 (Cell signalling, Clone 

D7F9A). CD73 staining was revealed with secondary Donkey anti-rabbit antibody (Life 

Technologies). Immunofluorescence stainings were analyzed on Upright Microscope (Nikon 

Ni-E) using ImageJ free software. 

Results 

CD39 and CD73 are expressed by distinct memory CD4+ T cells in humans  

We initially observed by flow cytometry (FC), that human CD4+ T cells in the blood of healthy 

donors (HD-blood) did not co-express CD39 and CD73 but exclusive CD39+ or CD73+ cells 

were observed among CD4+ T cell populations (Fig. 1A). While naive CD4+ T cells expressed 

no or very low levels of CD39 and CD73 (Fig. 1A, B), the expression of CD39 and CD73 was 

detectable on memory CD4+ T cells (Fig. 1A). Among memory CD4+ T cells, CD39, but not 
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CD73, was expressed at variable levels on human HD-blood Tregs defined by FoxP3 

expression (Fig. 1A, C). The absence of CD73 expression on Tregs purified from blood was 

also confirmed by western blot analysis (Fig. 1D). In contrast, CD73, but also CD39, can be 

expressed on distinct populations of CD4+ Teffs defined by the absence of FoxP3 expression 

(Fig. 1A, E). Of note, the intensity of CD73 expression on CD73+CD4+ Teffs was significantly 

higher compared to naive CD73+CD4+ T cells (Fig. 1F). Moreover, the percentage and the 

intensity of CD39 expression was lower on CD4+ Teffs compared to Tregs (Δ CD39 MFI Tregs/ 

CD4+ Teffs: 1.64 ± 0.33).   

Our results demonstrate that in contrast to murine Tregs, human Tregs only express CD39. 

They also highlight the expression of CD73 on a subset of CD4+ Teffs. Thus, we wondered 

whether the expression of CD73, favoring the generation of Ado, on a subset of CD4+ Teffs 

may denote a functional specialization of this population. 

 

CD73 identifies a population of CD4+ Teffs enriched in polyfunctional Th1.17 cells 

We analyzed by FC the expression pattern of the chemoattractant receptors CRTH2, CXCR3 

and CCR6 on blood CD73+ versus CD73neg CD4+ Teffs in order to determine the relative 

percentage of Th1 (CRTH2negCXCR3+CCR6neg), Th2 (CRTH2+CXCR3negCCR6neg), Th17 

(CRTH2negCXCR3negCCR6+) and Th1.Th17 (CRTH2negCXCR3+CCR6+) (26) (Fig. S1A). CD73+CD4+ 

Teffs contained a similar proportion of Th1, Th17 and Th2 subsets as CD73neg Teffs, but 

exhibited an increased proportion of the Th1.17 subset, which accounted for 27.98  7.99 % 

of total cells, at the expense of other Th cells (Fig. S1B, Fig. 2A). Consistent with this Th1.17 

enrichment, a higher proportion of CD73+CD4+ Teffs migrated toward a CXCL10 or CCL20 

gradient in Transwell chemotaxis assays (Fig. S1C). Analysis of the transcriptome of purified 

CD73+ and CD73neg CD4+ Teffs after short term TCR stimulation revealed an overexpression 

of Th1.17-related genes (CSF2, ABCB1, IL22, IL3, IFNG, GZMB, IL23R, TBX21, LGALS3) (25, 27) 

in the former subset, while genes related to Th2 cells (IL4, IL10, IL13, CCR4) and Th17, Tfh or 

Tr1 (LRMP, IKZF3, CXCR5, IL21, IL10) were downregulated (Fig. 2B). IL-17A and IL-17F gene 

were not detected likely due to insufficient sensitivity of transcriptomic chip used in our 

conditions. 

We also performed short-term in vitro reactivation of PBMC with PMA/ionomycin to analyze 

cytokines production by intra-cytoplasmic staining in CD73+ versus CD73neg CD4+ Teffs. We 

found a higher proportion of cells producing IL-2, TNF-, IL-17A, IFN-, IL-22, in CD73+ CD4+ 
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Teffs (Fig. 2C). More precisely, CD73+CD4+ Teffs were enriched in cells co-producing IFN/IL-

17A (Fig. 2C). A multiplex immunoassay performed with supernatants of these in vitro 

activated subsets confirmed the significantly increased production of all cytokines but also of 

IL-3 and GM-CSF by CD73+CD4+ Teffs (Fig. 2D) except IL-2 analyzed by FC (Fig. 2C). In 

addition, this assay revealed the low production of IL-10, IL-13 and IL-21 (Fig. 2D) compared 

to CD73negCD4+ Teffs in accordance with Th1.17 gene signature (Fig. 2B). 

One of the most upregulated genes differentiating CD73+ and CD73neg CD4+ Teffs (Fig. 2B) 

after CSF2 gene (coding for GM-CSF) is the ABCB1 gene, coding for the multidrug transporter 

MDR1 and recently proposed as a Th1.17 specific marker (27). A significantly increased 

expression of MDR1 on CD73+CD4+ Teffs compared to CD73negCD4+ ones was observed at the 

protein level by FC (Fig. 2E) and at the functional level with the Rh123 exclusion assay (Fig. 

2E, Fig. S1D). 

Taken together, our results demonstrate that CD73 identifies a subset of CD4+ Teffs enriched 

in polyfunctional Th1.17 cells. Consistent with this conclusion, a high proportion of 

CD73+CD4+ Teffs was observed in the colon of healthy individuals (Fig. 2F), a mucosal tissue 

known to be enriched in Th17 and Th1.17 populations (32). 

 

CD73+CD4+ Teffs cooperate with CD39+ Tregs for Ado production 

Next, we evaluated the capacity of CD73+CD4+ Teffs to generate Ado from AMP through the 

measurement of nucleotides and nucleosides by HPLC (31). AMP degradation and 

generation of Ado were observed after 2-hours incubation with AMP and were abrogated by 

a specific CD73 inhibitor (Fig. 3A). Whereas purified human CD73+CD4+ or CD73negCD4+ Teffs 

were not able to degrade ATP (Fig. 3B), purified human Tregs were able to degrade 48.24 ± 

6.20% of ATP into AMP without generation of Ado (Fig. 3B). We confirmed that degradation 

of ATP results from CD39 expression by Tregs as only purified CD39+ Tregs but not CD39neg 

Tregs generated AMP and that ATP degradation was blocked by a CD39 inhibitor (Fig.3C). 

The addition of purified CD73+CD4+ Teffs with Tregs favored the generation of Ado following 

ATP degradation (Fig. 3B).   
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Ado suppresses proliferation and restricts polyfunctional CD73+CD4+ Teffs to IL-17A 

secretion 

The capacity of CD73+CD4+ Teffs to generate Ado suggests that these cells may be 

particularly sensitive to Ado. This immunosuppressive molecule exerts its immuno-

suppressive functions by engaging A2a or A2b receptors but can be degraded into Inosine by 

the enzyme ADA. Our transcriptomic data revealed that ADORA2A, but not ADORA2B, was 

expressed on resting CD73+ and CD73neg CD4+ Teffs, and that both receptors were 

upregulated following short-term TCR triggering (Fig. 4A). In contrast, ADORA1 (A1R) and 

ADORA3 (A3R) were not detected as described in the literature (6). ADA mRNA expressed at 

steady state, decreased after activation on both subsets (Fig. 4A). The modulation observed 

for ADORA2B and ADA at mRNA level was confirmed at the protein level, which gradually 

increased for A2bR and decreased for ADA until 4 days of activation (Fig. 4B). These data 

demonstrated the acquisition of an Ado-sensitive phenotype by CD73+ and CD73neg CD4+ 

Teffs upon TCR triggering, as observed in the murine model (3). Otherwise, no significant 

difference in the cell-proliferation capacities of both subsets were observed using same 

proliferation markers evaluated by FC (Fig. S1E).  

The metronomic addition of exogenous Ado (75 µM/day) inhibited the proliferation of both 

subsets as shown by the reduction of cell clusters size (round bottomed well observation, 

(Fig. 4C) and dilution of the CTV proliferation marker (Fig. S2) compared to the medium 

condition. The addition of recombinant ADA (rhADA, 1 µg/ml), restored the proliferative 

capacity of both T cell subsets (Fig. 4C, Fig. S2).  

The impact of Ado was also analyzed on the cytokines production capacity of both purified 

CD4+ Teffs subsets. To avoid any confounding effects of Ado on proliferation, cytokine 

secretions were analyzed after 2 days of TCR triggering, determined as the optimal time 

lapse for cell activation without proliferation. Of great interest, Ado significantly inhibited 

the secretion of most of the cytokines produced by CD73+CD4+ Teffs except IL-17A and only a 

slight effect was observed on IL-22 secretion (Fig. 4D).  

These results indicate that Ado suppresses the proliferation of both subsets in the same 

manner but dramatically restricts the functionality of CD73+CD4+ Teffs to IL-17A production. 
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CD39+ Tregs make CD73+CD4+ Teffs sensitive to ATP-derived Ado in spaced-out 

environment.  

We previously observed that CD73+CD4+ Teffs were able to generate Ado from AMP 

produced by the ATP degradation from CD39+ Tregs (Fig. 3). Moreover, we found that 

functional CD73 on CD4+ Teffs favored their suppression mediated by AMP-derived Ado 

similar to that observed in presence of exogenous Ado (Fig.S3A, S3B). We then analyzed the 

biological impact of the cooperation between CD39+ Tregs and CD73+CD4+ Teffs, by co-

culturing Tregs with purified CD73+ or CD73neg CD4+ Teffs in presence or absence of 

exogenous ATP. As previously reported (18, 33), Tregs did not present any sign of 

proliferation, due to their anergic status. Conversely, the proliferation of purified CD73+ or 

CD73neg CD4+ Teffs was unaltered by the addition of Tregs, due to the strong TCR triggering 

signal. Although ATP alone did not modulate the proliferation of either CD4+ Teffs 

subpopulations, combination of Tregs and ATP strongly suppressed the proliferation of 

CD73+CD4+ Teffs, but not CD73negCD4+ Teffs. This inhibition was reversed by the addition of 

inhibitors of CD73 (APCP) or CD39 (ARL67156) (Fig. 5A, Fig. S4).  

Similar suppression experiments performed with Treg subsets sorted based on CD39 

expression confirmed that CD39+ Tregs but not CD39neg ones suppressed specifically the 

proliferation of CD73+CD4+Teffs in presence of exogenous ATP (Fig. 5B).  

Transwell experiments enabled us to address the importance of the co-localization of 

CD73+CD4+ Teffs and Tregs in this Ado-mediated suppression. CD73+CD4+ Teffs were 

cultured in the upper chamber and CD73negCD4+ Teffs in the lower one, whereas Tregs were 

added in either one or the other. The addition of exogenous ATP, whatever the localization 

of Tregs, induced a strong inhibition of CD73+CD4+ Teffs proliferation, indicating that the co-

localization of CD73+CD4+ Teffs and Tregs is not necessary to obtain ATP-mediated inhibition 

of CD73+CD4+ Teffs (Fig. 5C).  

Of importance, these experiments revealed that the proliferation of CD73negCD4+ Teffs 

localized in the lower chamber was not altered by Ado generated by CD73+CD4+ Teffs in the 

upper one demonstrating that CD73+ cells among CD4+ Teffs were preferentially inhibited by 

Tregs through Ado generation (Fig. 5C). As Ado similarly inhibited purified CD73neg or CD73+ 

CD4+ Teffs in ‘U’ wells (Fig. 4C) and in Transwell (Fig. 5C), we addressed the importance of 

both CD4+ Teffs populations co-localization for Ado-mediated inhibition resulting from ATP 

degradation. In cultures where Tregs, CD73+CD4+ Teffs and CD73neg CD4+ Teffs, mixed at 
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physiological ratio observed in blood (10%/20%/70%), were co-localized altogether in “U” 

wells, the CD73+CD4+ Teffs subset was suppressed by autocrine generation of Ado through 

collaboration with Tregs, but the CD73neg population was also suppressed by paracrine 

action of generated Ado (Fig. 5C, D, E). This demonstrated that, in a culture system favoring 

close interactions between T cell subsets, cooperation of Tregs and CD73+CD4+ Teffs 

degrading ATP into Ado, inhibited proliferation of CD73+CD4+ Teffs but also surrounding 

CD73negCD4+ Teffs. 

Collectively, these data highlight that the cooperation between Tregs and CD73+CD4+ Teffs 

does not require cell-contact. Furthermore, Ado, acting in an autocrine manner on 

CD73+CD4+ Teffs, does not affect the proliferation of CD73negCD4+ Teffs except if they are co-

localized at high cell density, through collateral paracrine effect. Altogether our data suggest 

that the CD73+ population among CD4+ Teffs is selectively targeted by CD39+ Tregs through 

autocrine Ado production. 

 

CD73+CD4+ Teffs are present in the tumor microenvironment enriched in CD39+ Tregs  

We analyzed CD73+CD4+ Teffs and CD39+ Tregs in patients with primary Breast (BT) or 

Ovarian (OT) tumors. The frequency of memory cells among CD4+ T cells (Fig. S5A), Tregs 

among memory CD4+ T cells (Fig. S5B), and the CD39/CD73 expression pattern on Tregs and 

CD4+ Teffs in BT- or OT-blood were similar to that observed in healthy donors (Fig. 6A, B). 

However, in contrast to that observed on CD4+ Teffs, the percentage and intensity of CD39 

on Tregs tended to increase in BT-blood (62.31 ± 14.94%) and OT-blood (62.79 ± 14.93%), 

compared to HD-blood (50.01 ± 24.88%). Conversely, there was no modulation of CD73+CD4+ 

Teffs proportion (Fig. S5C), cytokine production pattern (Fig. S5D) or Rh123 efflux capacity 

(Bossennec, in preparation), in the blood of cancer patients.  

In breast and ovarian tumor tissues, we observed a strong enrichment of memory cells 

among CD4+ T cells (Fig. S5A) and of Tregs among memory CD4+ T cells, which frequency 

reached roughly 3-times that found in patient’s blood as previously reported by our team 

(18) and others (19). In the BT and OT microenvironment, as observed in blood, Tregs 

expressed CD39 but not CD73 (Fig. 6A). Interestingly, the percentage of CD39+ Tregs was 

also increased, leading to an increase of CD39+ Tregs frequency among total CD4+ T cells of 

about four fold compared to blood. Finally, the intensity of CD39 expression was also 
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significantly higher in BT and OT compared to matched blood (Fig. 6C, D). In addition, CD39 

expression on tumor-infiltrating Tregs was higher than on CD4+ Teffs in terms of percentage 

and intensity of expression (Fig. 6E, F). The upregulated CD39 expression on tumor Tregs 

compared to blood Tregs was associated to an increased capacity to degrade exogenous ATP 

into AMP (Fig. 6G). In contrast, the proportion of CD73+CD4+ Teffs was not significantly 

modulated in the tumor microenvironment (BT: 4.74 ± 2.64%; OT: 4.73 ± 2.71%) compared 

to blood (HD-blood: 7.37 ± 3.21%) (Fig. 6B, H). Tumor-infiltrating CD73+CD4+ Teffs, activated 

with PMA/ionomycin, presented a higher percentage of IL-2, TNF-, IFN-, IL-17A producers, 

and IFN-/IL-17A co-producers compared to the CD73negCD4+ Teffs (Fig. 6I), as observed in 

BT- and OT-blood (Fig. S5D) and HD blood (Fig. 2D). Multi-Immunofluorescence stainings on 

primary BT frozen sections confirmed the co-detection of Tregs (FoxP3+) and CD73+CD4+ 

Teffs within the stromal immune infiltrate (Fig. 6J). 

The presence of CD73+CD4+ Teffs and the enrichment of CD39+ Tregs in BT and OT support 

the idea that in breast and ovarian tumor environments, CD39/CD73-mediated Ado 

generation can occur and suppress CD4+CD73+ Teffs activation.  

 

Tumor-infiltrating CD73+CD4+ Teffs have lower expression of inhibitory immune 

checkpoints  

To determine whether the intrinsic capacity to transform AMP into Ado may constitute the 

main functional regulatory pathway of CD73+CD4+ Teffs, we analyzed, by FC, the co-

expression of i-ICPs namely TIGIT, CTLA-4, TIM-3 and PD-1 on CD4+ Teffs (Fig. 7A). i-ICPs 

expression was mostly observed on tumor-infiltrating CD4+ T cells compared to paired blood. 

The relative percentage of TIGIT+ or PD-1+ cells were significantly lower in CD73+ cells 

compared to CD73neg ones among CD4+ Teffs from tumor tissues (Fig. 7A, B). Indeed, tumor-

infiltrating CD73+CD4+ Teffs contained higher proportion of cells devoid of i-ICPs and fewer 

cells co-expressing 2, 3 or 4 i-ICPs, compared to CD73negCD4+ Teffs (Fig. 7C). Moreover, the 

intensity of PD-1 expression was lower on tumor-infiltrating CD73+CD4+ Teffs compared to 

CD73negCD4+ Teffs (Fig. 7D).  

These findings, associated with the previous evidence that CD73+CD4+ Teffs are functionally 

suppressed by autocrine Ado generated through cooperation with CD39+ Tregs, strongly 

suggest that the CD39/CD73/Ado pathway might constitute the main pathway controlling 

the Th1.17 potency of human CD73+CD4+ Teffs.  
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Consistent with this conclusion, analyses done on PD-1 expressing CD4+ tumor-infiltrating T 

cells in BT and OT unveils that, the proportion of cells devoid of i-ICPs was reduced to 7% 

among BT-infiltrating PD1+CD4+ Teff (and 15,5% for OT) contrasting with more than 63% 

among BT-infiltrating CD73+CD4+ Teffs (and 46,8 for OT) (Fig. S5E). 

 

Discussion 

We have herein demonstrated that CD73 expression on CD4+ T cells delineates 

polyfunctional memory CD4+ Teffs enriched in Th1.17 cells whereas Tregs are devoid of CD73 

expression.  CD73+CD4+ Teffs are targeted by CD39+ Tregs through ATP degradation into Ado 

inhibiting and restricting their functionality to IL-17A secretion. This contact independent 

cooperation induces specific inhibition of CD73+ cells among CD4+ Teffs in a spaced-out 

environment. In breast and ovarian tumor environments, the increased proportion of Tregs 

overexpressing CD39 and the presence of CD73+CD4+ Teffs almost devoid of i-ICPs strongly 

suggest that CD73-mediated generation of autocrine Ado represents an essential regulatory 

mechanism of these potent CD4+ Teffs. 

Our results highlight that, compared to CD73negCD4+ Teffs, the CD73+ subset secretes higher 

levels of pro-inflammatory cytokines (IL-17A, IFN-γ, GM-CSF, IL-22, TNF-α, IL-2, IL-3), and 

lower levels of anti-inflammatory ones (IL-10, IL-13, IL-21). Of importance, FC analyses reveal 

the higher propensity of CD73+CD4+ Teffs to co-produce IFN-γ and IL-17A and co-express 

CXCR3/CCR6, in line with Th1.17 compared to CD73negCD4+ Teffs. Our results extend the 

work of Doherty et al (24), who identified the memory CD73+CD4+ T cells as Th17 cells. 

Indeed, the exploitation of the transcriptome data from Ramesh et al (27), comparing 

MDR1+ and MDR1neg CD4+ memory populations (Gene Expression Omnibus (GEO) repository, 

accession ID: GSE49702), reveals that nt5e mRNA, coding for CD73, is one of the most 

significantly upregulated genes in the MDR1+ population (Log2-fold change (FC) = 0.867; p 

value = 0.004). Moreover, CD73+CD4+ Teffs present a number of features of Th1.17 cells 

recently described by Ramesh et al (27). They express high level of functional MDR1, secrete 

IL-3 and GM-CSF and present higher expression of IL-23R in contrast to non-pathogenic Th17 

that produce only IL-17A, IL-22, IL-10 and IL-21 (26, 27, 34). Altogether, our data emphasize 

the poly-functionality of CD73+CD4+ Teffs and their similarity with Th1.17. 

Th1.17 cells are known to play a pathogenic role in autoimmune diseases through their 

production of IFN- and GM-CSF in addition to IL-17A (for review: (35)). While, Th1.17 cells, 
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also called pathogenic Th17 induced by Gram+ bacteria influence gut anti-tumor immune 

response in murine models (36), information on the impact of this population in breast and 

ovarian tumor remains limited. In fact, in patients with invasive breast carcinoma, IL-17A 

produced by CD4+ T cells positively correlates with a high histological grade and with triple 

negative molecular subtype, and represents an independent prognostic factor for shorter 

disease-free survival (37, 38). In line with these observations, neutralization of IL-17 in 

murine mammary tumor models inhibits tumor growth (39). In contrast, in ovarian 

carcinoma, the detection of IL-17 within the tumor microenvironment (40), and more 

precisely the presence of CD4+ T cells co-expressing IL-17 and IFN-γ (41), is associated with a 

good prognosis. Owing to their capacity to produce IFN-γ, these cells can exert a potent 

tumor suppressive activity in synergy with IL-17 in order to reprogram recruited neutrophils 

and myeloid-derived suppressor cells into potent antitumor effectors, and to neutralize the 

pro-angiogenic effects of IL-17 through the production of the CXCR3 ligand (CXCL10) (41). 

This is in line with the strong antitumor response associated to Th1.17 cells in murine 

ovarian tumor model (28, 41).  

Of importance, we observe that Ado blocks all cytokines produced by CD73+CD4+ Teffs, 

except IL-17A. In this context, the analysis of cytokine pattern in 102 human breast and 

ovarian tumor mechanic disaggregation milieu (STM: soluble tumor milieu) with sensitive 

method highlight that 51% (n=52) STM were negative for both IL-17A and IFNγ, 28.4% (n=29) 

contained only IL-17A whereas 18.6% (n=19) contained both IL-17A and IFNγ and 2.9% (n=3) 

IFNγ only. As CD73+CD4+ Teffs were detected in most tumors at frequency similar to blood 

and preserve their capacity to co-produce IL-17A and IFNγ upon PMA+Ionomycin activation 

(Fig. 6), these STM data suggest that the level of endogenous Ado production may vary from 

tumor to tumor, a high level of Ado production leading to IL-17A only, while a low Ado level 

allowing both IL-17A and IFNγ co-production. Moreover, 87.5% of STM producing both IL-

17A and IFNγ contained high concentrations of CXCL10 (>8ng/ml) whereas only 12.5% of 

those with IL-17A only and none of the other contained significant levels of CXCL10. This 

represents another argument that IL-17/IFNγ found in STM may be co-produced by 

CCR6+CXCR3+ Th1.17 CD73+ Teffs. Further analyses remain necessary to confirm this. 

Importantly, we demonstrate that in the presence of exogenous ATP, CD39+ Tregs potently 

inhibit the proliferation and cytokine production of purified CD73+CD4+ Teffs through CD73-

dependent Ado generation without impacting CD73negCD4+ Teffs. These results support the 
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concept that the potent CD73+ Th1.17 cells are selectively inhibited by CD39+ Tregs, through 

the cooperative production of Ado in their local microenvironment. The localized effect of 

Ado can be explained by its short half-life in tissues due to the presence of ADA and specific 

membrane transporters (42).  

High ATP concentrations released in the tumor microenvironment (1) play an important role 

in the initiation of the immune response, whereas Ado, also found in human tumor 

environment (43), fosters tumor progression through its immunosuppressive functions (for 

review: (2)). 

In this study, we confirm the increase in Tregs proportion in breast and ovarian tumor 

environment (18, 19) and demonstrate an overexpression of CD39 on these tumor-

infiltrating Tregs (frequency of CD39+ Tregs within total CD4+ T cells, about 4 fold in tumor 

compared to blood) which efficiently degrades exogenous ATP into AMP. Consequently, 

CD73+CD4+ Teffs will be inhibited through autocrine Ado production. These results support 

the concept that the Th1.17 potency of CD73+CD4+ effectors can be selectively inhibited by 

tumor-infiltrating CD39+ Tregs through cooperative Ado production.  Others CD39-

expressing cells such as Mϕ or B cells may also contribute to the regulation of this CD73+CD4 

Teffs (44, 45). 

Of further relevance for therapy, CD73+CD4+ Teffs from blood or tumor present a high 

expression of the functional multidrug transporter MDR1 suggesting their protection from 

deleterious effects of chemotherapy, thus strengthening the role they could play in the 

antitumor immunity. This key property could be evaluated through the analysis of the 

proportion of these CD73+CD4+ Teffs following neo-adjuvant chemotherapy. Furthermore, 

CD73+CD4+ Teffs express very low levels of i-ICPs (PD-1, TIM-3, TIGIT, CTLA-4), suggesting the 

non-redundancy of i-ICPs and the adenosinergic pathway in the regulation of these cells. 

These results corroborate recent reports, in murine tumor models, demonstrating that Ado 

limits the efficacy of immunotherapeutic interventions targeting CTLA-4 or PD-1/PDL-1, and 

that CD73 neutralization enhances the efficacy of these therapies (16, 17). Thus, CD73-

mediated generation of Ado is an important mechanism of regulation of these 

polyfunctional CD73+CD4+ Teffs, and may represent a critical resistance mechanism to 

current immunotherapies (anti-PD1/L1, CTLA-4). These findings should promote the 

development of combined therapies based on immunotherapies targeting i-ICPs and the 

neutralization of the enzymatic function of CD73 (46, 47).  
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Furthermore, clinical investigations are required to evaluate the presence of CD73+CD4+ 

Teffs in primary or chemotherapy-treated tumors and their clinical impact on the survival of 

the patients in association with the presence of CD39+ cells such as Tregs or Mϕ. 
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Figures legends 

Figure 1: CD39 and CD73 are expressed on distinct subsets of memory CD4+ T cells. (A) 

Representative expression of CD39 and CD73 on CD4+ T cell subsets from HD-blood analyzed 

by FC. (B, C, E) Cumulative data from seventeen donors of the different subsets defined by 

the expression of CD39 and CD73 among naive CD4+ T cells (B) CD4+ Tregs (C) and CD4+ Teffs 

(E) (statistical analysis: Friedman Test). (D) Tregs were analyzed for CD73 expression by 

Western Blot analysis (CD73: 70 kDa). (F) Intensity of CD73 staining on naive CD4+ T cells and 

CD4+ Teffs (statistical analysis: Wilcoxon Test). 

Figure 2: CD73+CD4+ Teffs are enriched in poly-functional Th1.17 cells. (A) HD-blood CD73+ 

and CD73neg CD4+ Teffs were analyzed by FC for their composition in T helper subsets. Data 

represented mean of seven donors (B) Transcriptomic analysis was performed on resting or 

short term activated CD73+ or CD73neg CD4+ Teffs (n = 6), (p-value < 0.05 for the genes 

presented) and genes related to Th profiles were extracted. (C) Percentage of IL-2 or TNF-, 

IFN-, IL-22, IL-17A producing cells and IFN-/IL-17A co-producing cells was assessed by FC 

on CD73+ (black) and CD73neg (white) CD4+ Teffs from HD-blood after short-term 

PMA/ionomycin reactivation (statistical analysis: Wilcoxon Test). (D) Quantification of 

cytokines produced by purified HD-blood CD73+ (black) and CD73neg (white) CD4+ Teffs 

activated for 24h with PMA/ionomycin (n=16 for IL-2,TNFα, IFNγ,IL17A, IL10, IL13, and IL21 
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with exception due to out of range quantification, and n=10 for IL-22, GM-CSF and IL-3) 

(statistical analysis: Wilcoxon test). (E) MDR1 expression and MDR1 functionality was 

assessed by FC on CD73+ (black) and CD73neg CD4+ (white) Teffs (statistical analysis: Wilcoxon 

Test).   (F) CD73+CD4+ Teffs frequency in HD-blood and healthy colonic tissues (statistical 

analysis: Mann-Whitney Test).  

 

Figure 3: CD73+ CD4+ Teffs cooperate with Tregs to degrade ATP into Ado. (A) The capacity 

of HD CD73+ or CD73neg CD4+ Teffs to degrade AMP into Ado, was analyzed after a 2-hour 

incubation with the stable AMP13C,15N isotope (37.5 µM). Residual and generated metabolites 

were quantified by mass spectrometry coupled-HLPC and the role of CD73 was confirmed by 

pre-incubation of cells with the CD73 inhibitor (APCP, 50 µM) for 30 minutes before AMP 

addition. Experiments were performed in duplicate (n = 3 donors) (statistical analysis:  

Friedman Test). (B) The capacity of HD-blood Tregs alone or co-cultured with CD73+ or 

CD73neg CD4+ Teffs (ratio 1:1) to degrade ATP into Ado were analyzed after 2 hours’ 

incubation with ATP13C,15N isotope (37.5 µM), residual and generated metabolites were 

quantified by mass spectrometry coupled-HLPC. The role of CD39 and CD73 were confirmed 

by pre-incubation of cells with the CD39 inhibitor (ARL-67156, 250 µM) and/or the CD73 

inhibitor (APCP, 50 µM) for 30 minutes before ATP addition. Experiments were performed in 

duplicate (n = 3 donors) (statistical analysis:  Friedman Test). (C) Cell-sorted CD39neg and 

CD39+ Treg capacity to degrade ATP13C,15N isotope (37.5 µM) was analyzed by the 

quantification by mass spectrometry coupled-HLPC of ATP and metabolite (AMP) generated. 

The role of CD39 was confirmed by pre-incubation of cells with the CD39 inhibitor (ARL-

67156, 250 µM). Experiments were performed on 3 donors.  

 

Figure 4: Ado suppresses proliferation and restricts polyfunctional CD73+CD4+ Teffs to IL-

17A secretion. (A) Gene expression profiles of ADA and Ado receptors (AdoRa2a, AdoRa2b) 

were extracted from transcriptomic analyses of purified resting CD73+ or CD73neg CD4+ Teffs 

(statistical analysis: two-way ANOVA). (B) AdoRa2b and ADA proteins levels in CD73+ and 

CD73neg CD4+ Teffs before and after 1 or 4 days activation with Expand beads were 

quantified by Western blot. (C) The impact of Ado (75 µM/day) on the proliferation of 

purified CD73+ or CD73neg CD4+ Teffs after activation using Expand beads (1:4), was assessed 

by microscopy after 4 days. In some conditions cells were pre-incubated for 30 minutes with 

Research. 
on May 11, 2018. © 2018 American Association for Cancercancerres.aacrjournals.org Downloaded from 

Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 
Author Manuscript Published OnlineFirst on March 20, 2018; DOI: 10.1158/0008-5472.CAN-17-2405 

http://cancerres.aacrjournals.org/


 24 

rhADA (1 µg/ml), before adding Ado. Data are representative of three donors. (D) The 

impact of metronomic doses of Ado (37.5 µM or 75 µM/day) on cytokine secretion (IL22, IL-

17A, IFN-g, GM-CSF, IL-10, IL-13, IL-21, IL-3) by purified CD73+CD4+ Teffs was quantified by 

Multiplex Luminex assay in the supernatant of cells after a 48h-culture period with Expand 

beads (1:4) (statistical analysis: Friedman Test).  

 

Figure 5: Isolated CD73+ CD4+ Teffs are preferential target of CD39+ Tregs through the 

generation of Ado. (A-B) The impact of ATP (18.75 µM/day) on (A) the proliferation of 

purified CD73+ or CD73neg CD4+ Teffs alone, or in co-culture with total Tregs (A) or cell sorted 

CD39+ and CD39neg Tregs (B) at a ratio of 1:1, was assessed by microscopy (A) or by CTV 

dilution (B) 4 days after their activation with Expand beads (ration 1:4). (C) Similar 

experiments were performed using Transwell plates. CD73+ (black) and CD73neg (white) CD4+ 

Teffs were cultured in the upper and lower chamber, respectively, in the presence of with 

Expand beads (ratio 1:4), with or without ATP (18,75 µM/day) or Ado (75 µM/day), and total 

Tregs (R) were added either in the upper or lower chamber. (D-E) The impact of ATP was also 

assessed on the proliferation of CD73+ and CD73neg CD4+ Teffs, after the addition of Tregs, all 

present at a physiological ratio (20%/70%/10%), by microscopy and by FC, by measuring the 

dilution of proliferation markers (CTV: CD73+CD4+ Teffs; CFSE: CD73negCD4+ Teffs). The 

impact of CD73 and CD39 was assessed by pre-incubating cells with inhibitors of CD73 

(APCP: 50 µM) and CD39 (ARL-67156: 250 µM) for 30 minutes.  

 

Figure 6: Breast and ovarian tumors contain highly functional CD39+ Tregs and CD73+ CD4+ 

Teff with Th1.17 characteristics. (A) Representative FC expression of CD39 and CD73 on 

Tregs from paired BT and blood sample. (B) Representative example of CD39 and CD73 

expression on CD4+ Teffs from paired BT and OT and blood samples, by FC. The proportion 

(C) and MFI (D) of CD39 expression on Tregs from paired blood and BT (n=11) or OT (n=4) 

samples were analyzed by FC (statistical analysis: two-way ANOVA). (E-F) Comparison of 

CD39% (E) and MFI (F) of CD4+ Tregs and Teffs within breast (n=11) and ovarian (n=4) tumor 

environment. (G) Purified tumor-infiltrating Tregs were assessed for ATP (37.5 µM) 

degradation by HPLC, and compared to HD-blood Tregs. Thirty minutes pre-incubation with 

the CD39 inhibitor (ARL-67156, 250 µM), was used to validate the role of CD39.. (H) The 

proportion CD73+CD4+ Teffs from paired blood and BT (n=11) or OT (n=4) samples analyzed 
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by FC (statistical analysis: two-way ANOVA). (I) Single cell suspensions of BT (n=12) and 

OT(n=7) were reactivated with PMA/ionomycin, and single cytokine production (TNF-, IL-2, 

IFN- and IL-17A) and co-production of IFN- and IL-17A were analyzed by FC after gating on 

CD73+ (black circles) or CD73neg (white circles) Teffs (statistical analysis: two-way ANOVA). (J) 

Localization of Tregs (FoxP3+) and CD73+CD4+ Teffs was analyzed in frozen human breast 

tumor section by multi-IF stainings.  

 

Figure 7: CD73+ CD4+ Teffs express less i-ICPs. (A) Representative expression of i-ICPs (TIGIT, 

CTLA-4, TIM-3, PD-1) and CD73 on CD4+ Teffs from cancer patients blood (Blood-Teff) and 

paired Tumor-infiltrating CD4+ Teffs (Ti- CD4+ Teff), analyzed by FC. (B) Expression of i-ICPs 

on CD73+ (black) and CD73neg (white) CD4+ Teffs (statistical analysis: Two-way ANOVA) (C) Pie 

chart representing the expression and co-expression of i-ICPs (TIGIT, CTLA-4, TIM-3, PD-1) on 

CD73+ and CD73neg CD4+ Teffs from BT (n = 10) and OT (n = 10) samples. (D) MFI of i-ICPs 

(CTLA-4, PD-1, TIGIT, TIM-3) expressed on CD73neg versus CD73+ CD4+ Teffs from BT and OT 

samples (statistical analysis: Two-way ANOVA).  
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