, In short, larval heads containing the brain and imaginal discs were dissected in PBS, fixed for 20 min at RT in PBS with 4% formaldehyde, washed 3× for 10 min in PBS with 0.2% Triton X-100 (PBX), and blocked for 30 min in PBX with 0.1% BSA. Primary antibodies were then incubated overnight at 4°C under gentle agitation in PBX, Antibody staining of wing imaginal discs were performed using standard protocols

, Samples were then washed 3× for 15 min in PBX, and fluorescent dyecoupled secondary antibodies were incubated for 90 min in PBX and 1% BSA at RT. After several washes in PBX, the stained tissues were then transferred to CitiFluor AF1 (Agar) mounting media for overnight equilibration. Individual discs were then dissected and mounted in CitiFluor. Images were acquired with an SP2-405 confocal microscope (Leica Microsystems) or an Apotome2 microscope (ZEI SS) and processed using ImageJ, p.2

, Developmental Studies Hybridoma Bank [DSHB]), mouse anti-?-galactosidase (1:25, pp.40-41

. Dshb) and . Crb, , p.25

. Cq4,

. Dshb) and . Dlg, :25; 4F3; DSHB), mouse anti-Ena (1:200; 5G2; DSHB), mouse anti-Rho1 (1:25; p1D9; DSHB)

S. Cruz-biotechnology, ;. Janody, and ;. Amândio, and rat anti-E-Cad (1:25; DCAD2; DSHB). Actin fibers were visualized using TRI TC-phalloidin (1:500; P1951; Sigma-Aldrich). Secondary antibodies used were conjugated to the Alexa Fluor, Inc.), rabbit anti-Bbg (1:5,000; polyclonal directed against Bbg aa, vol.2, p.500, 2000.

. Djiane, In brief, in each wing disc, the mean level of gray was measured by ImageJ in an equivalent area in the anterior (non-GFP) and posterior (GFP) of the wing pouch, excluding the anterior/posterior and dorsal/ ventral boundaries, Diap1-LacZ and ex-LacZ quantifications Quantifications were performed as described previously, 2014.

K. Afshar, B. Stuart, and S. A. Wasserman, Functional analysis of the Drosophila diaphanous FH protein in early embryonic development, Development, vol.127, pp.1887-1897, 2000.

A. R. Amândio, P. Gaspar, J. L. Whited, and F. Janody, Subunits of the Drosophila actin-capping protein heterodimer regulate each other at multiple levels, PLoS One, vol.9, 2014.

G. Aranjuez, E. Kudlaty, M. S. Longworth, and J. A. Mcdonald, On the role of PDZ domain-encoding genes in Drosophila border cell migration. G3 (Bethesda), vol.2, pp.1379-1391, 2012.

C. Badouel, L. Gardano, N. Amin, A. Garg, R. Rosenfeld et al., The FERM-domain protein Expanded regulates Hippo pathway activity via direct interactions with the transcriptional activator Yorkie, Dev. Cell, vol.16, pp.411-420, 2009.

A. J. Baines, Evolution of spectrin function in cytoskeletal and membrane networks, Biochem. Soc. Trans, vol.37, pp.796-803, 2009.

R. Baumgartner, I. Poernbacher, N. Buser, E. Hafen, and H. Stocker, The WW domain protein Kibra acts upstream of Hippo in Drosophila, Dev. Cell, vol.18, pp.309-316, 2010.

J. E. Bear and F. B. Gertler, Ena/VASP: towards resolving a pointed controversy at the barbed end, J. Cell Sci, vol.122, pp.1947-1953, 2009.

V. Bennett and A. J. Baines, Spectrin and ankyrin-based pathways: metazoan inventions for integrating cells into tissues, Physiol. Rev, vol.81, pp.1353-1392, 2001.

F. Bonnay, E. Cohen-berros, M. Hoffmann, S. Y. Kim, G. L. Boulianne et al., big bang gene modulates gut immune tolerance in Drosophila, Proc. Natl. Acad. Sci. USA, vol.110, pp.2957-2962, 2013.

C. Chen, K. M. Gajewski, F. Hamaratoglu, W. Bossuyt, L. Sansores-garcia et al., The apical-basal cell polarity determinant Crumbs regulates Hippo signaling in Drosophila, Proc. Natl. Acad. Sci. USA, vol.107, pp.15810-15815, 2010.

V. A. Codelia, G. Sun, and K. D. Irvine, Regulation of YAP by mechanical strain through Jnk and Hippo signaling, Curr. Biol, vol.24, pp.2012-2017, 2014.

M. Das-thakur, Y. Feng, R. Jagannathan, M. J. Seppa, J. B. Skeath et al., Ajuba LIM proteins are negative regulators of the Hippo signaling pathway, Curr. Biol, vol.20, pp.657-662, 2010.

H. Deng, W. Wang, J. Yu, Y. Zheng, Y. Qing et al., Spectrin regulates Hippo signaling by modulating cortical actomyosin activity. eLife. 4:e06567, 2015.

A. Djiane, H. Shimizu, M. Wilkin, S. Mazleyrat, M. D. Jennings et al., Su(dx) E3 ubiquitin ligase-dependent and -independent functions of polychaetoid, the Drosophila ZO-1 homologue, J. Cell Biol, vol.192, pp.189-200, 2011.

A. Djiane, S. Zaessinger, A. B. Babao?lan, and S. J. Bray, Notch inhibits Yorkie activity in Drosophila wing discs, PLoS One, vol.9, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-01067825

S. Dupont, L. Morsut, M. Aragona, E. Enzo, S. Giulitti et al., Role of YAP/TAZ in mechanotransduction, Nature, vol.474, pp.179-183, 2011.

B. G. Fernández, P. Gaspar, C. Brás-pereira, B. Jezowska, S. R. Rebelo et al., Actin-Capping Protein and the Hippo pathway regulate F-actin and tissue growth in Drosophila, Development, vol.138, pp.2337-2346, 2011.

G. C. Fletcher, A. Elbediwy, I. Khanal, P. S. Ribeiro, N. Tapon et al., The Spectrin cytoskeleton regulates the Hippo signalling pathway, EMBO J, vol.34, pp.940-954, 2015.

P. Gaspar and N. Tapon, Sensing the local environment: actin architecture and Hippo signalling, Curr. Opin. Cell Biol, vol.31, pp.74-83, 2014.

J. Gates, J. P. Mahaffey, S. L. Rogers, M. Emerson, E. M. Rogers et al., Enabled plays key roles in embryonic epithelial morphogenesis in Drosophila, Development, vol.134, pp.2027-2039, 2007.

A. Genevet, M. C. Wehr, R. Brain, B. J. Thompson, and N. Tapon, Kibra is a regulator of the Salvador/Warts/Hippo signaling network, Dev. Cell, vol.18, pp.300-308, 2010.

E. E. Grevengoed, D. T. Fox, J. Gates, and M. Peifer, Balancing different types of actin polymerization at distinct sites, J. Cell Biol, vol.163, pp.1267-1279, 2003.

N. A. Grzeschik, L. M. Parsons, M. L. Allott, K. F. Harvey, and H. E. Richardson, Lgl, aPKC, and Crumbs regulate the Salvador/Warts/Hippo pathway through two distinct mechanisms, Curr. Biol, vol.20, pp.573-581, 2010.

G. Halder and R. L. Johnson, Hippo signaling: growth control and beyond, Development, vol.138, pp.9-22, 2011.

F. Hamaratoglu, M. Willecke, M. Kango-singh, R. Nolo, E. Hyun et al., The tumour-suppressor genes NF2/Merlin and Expanded act through Hippo signalling to regulate cell proliferation and apoptosis, Nat. Cell Biol, vol.8, pp.27-36, 2006.

K. Harvey and N. Tapon, The Salvador-Warts-Hippo pathway -an emerging tumour-suppressor network, Nat. Rev. Cancer, vol.7, pp.182-191, 2007.

K. F. Harvey, C. M. Pfleger, and I. K. Hariharan, The Drosophila Mst ortholog, hippo, restricts growth and cell proliferation and promotes apoptosis, Cell, vol.114, pp.457-467, 2003.

S. Y. Kim, M. K. Renihan, and G. L. Boulianne, Characterization of big bang, a novel gene encoding for PDZ domain-containing proteins that are dynamically expressed throughout Drosophila development, Gene Expr. Patterns, vol.6, pp.504-518, 2006.

J. K. Lee, E. Brandin, D. Branton, and L. S. Goldstein, 1997. alpha-Spectrin is required for ovarian follicle monolayer integrity in Drosophila melanogaster, Development, vol.124, pp.353-362
URL : https://hal.archives-ouvertes.fr/halshs-00293285

C. Ling, Y. Zheng, F. Yin, J. Yu, J. Huang et al., The apical transmembrane protein Crumbs functions as a tumor suppressor that regulates Hippo signaling by binding to Expanded, Proc. Natl. Acad. Sci. USA, vol.107, pp.10532-10537, 2010.

E. P. Lucas, I. Khanal, P. Gaspar, G. C. Fletcher, C. Polesello et al., The Hippo pathway polarizes the actin cytoskeleton during collective migration of Drosophila border cells, J. Cell Biol, vol.201, pp.875-885, 2013.

S. Maitra, R. M. Kulikauskas, H. Gavilan, and R. G. Fehon, The tumor suppressors Merlin and Expanded function cooperatively to modulate receptor endocytosis and signaling, Curr. Biol, vol.16, pp.702-709, 2006.

A. C. Martin, M. Kaschube, and E. F. Wieschaus, Pulsed contractions of an actin-myosin network drive apical constriction, Nature, vol.457, pp.495-499, 2009.

E. Médina, J. Williams, E. Klipfell, D. Zarnescu, G. Thomas et al., Crumbs interacts with moesin and beta(Heavy)-spectrin in the apical membrane skeleton of Drosophila, J. Cell Biol, vol.158, pp.941-951, 2002.

Z. Meng, T. Moroishi, and K. Guan, Mechanisms of Hippo pathway regulation, Genes Dev, vol.30, pp.1-17, 2016.

B. F. Ng, G. K. Selvaraj, C. Santa-cruz-mateos, I. Grosheva, I. Alvarez-garcia et al., 2016. ?-Spectrin and integrins act together to regulate actomyosin and columnarization, and to maintain a monolayered follicular epithelium, Development, vol.143, pp.1388-1399
URL : https://hal.archives-ouvertes.fr/hal-02015361

M. Pellikka, G. Tanentzapf, M. Pinto, C. Smith, C. J. Mcglade et al., Crumbs, the Drosophila homologue of human CRB1/ RP12, is essential for photoreceptor morphogenesis, Nature, vol.416, pp.143-149, 2002.

C. Rauskolb, S. Sun, G. Sun, Y. Pan, and K. D. Irvine, Cytoskeletal tension inhibits Hippo signaling through an Ajuba-Warts complex, Cell, vol.158, pp.143-156, 2014.

B. S. Robinson, J. Huang, Y. Hong, and K. H. Moberg, Crumbs regulates Salvador/Warts/Hippo signaling in Drosophila via the FERM-domain protein Expanded, Curr. Biol, vol.20, pp.582-590, 2010.

L. Sansores-garcia, W. Bossuyt, K. Wada, S. Yonemura, C. Tao et al., Modulating F-actin organization induces organ growth by affecting the Hippo pathway, EMBO J, vol.30, pp.2325-2335, 2011.

M. C. Schroeder and G. Halder, Regulation of the Hippo pathway by cell architecture and mechanical signals, Semin. Cell Dev. Biol, vol.23, pp.803-811, 2012.

J. Settleman, Rac 'n Rho: the music that shapes a developing embryo, Dev. Cell, vol.1, pp.53-56, 2001.

P. R. Stabach, I. Simonovi?, M. A. Ranieri, M. S. Aboodi, T. A. Steitz et al., The structure of the ankyrinbinding site of beta-spectrin reveals how tandem spectrin-repeats generate unique ligand-binding properties, Blood, vol.113, pp.5377-5384, 2009.

G. H. Thomas and D. P. Kiehart, Beta heavy-spectrin has a restricted tissue and subcellular distribution during Drosophila embryogenesis, Development, vol.120, pp.2039-2050, 1994.

G. H. Thomas and J. A. Williams, Dynamic rearrangement of the spectrin membrane skeleton during the generation of epithelial polarity in Drosophila, J. Cell Sci, vol.112, pp.2843-2852, 1999.

G. H. Thomas, D. C. Zarnescu, A. E. Juedes, M. A. Bales, A. Londergan et al., Drosophila betaHeavy-spectrin is essential for development and contributes to specific cell fates in the eye, Development, vol.125, pp.2125-2134, 1998.

K. J. Venken, K. L. Schulze, N. A. Haelterman, H. Pan, Y. He et al., MiMIC: a highly versatile transposon insertion resource for engineering Drosophila melanogaster genes, Nat. Methods, vol.8, pp.737-743, 2011.

J. H. Vissers, S. A. Manning, A. Kulkarni, and K. F. Harvey, A Drosophila RNAi library modulates Hippo pathway-dependent tissue growth, Nat. Commun, vol.7, p.10368, 2016.

K. K. Wong, W. Li, Y. An, Y. Duan, Z. Li et al., 2015. ?-Spectrin regulates the hippo signaling pathway and modulates the basal actin network, J. Biol. Chem, vol.290, pp.6397-6407
URL : https://hal.archives-ouvertes.fr/hal-01586707

S. Wu, J. Huang, J. Dong, and D. Pan, hippo encodes a Ste-20 family protein kinase that restricts cell proliferation and promotes apoptosis in conjunction with salvador and warts, Cell, vol.114, issue.03, p.549, 2003.

S. Wu, Y. Liu, Y. Zheng, J. Dong, and D. Pan, The TEAD/TEF family protein Scalloped mediates transcriptional output of the Hippo growthregulatory pathway, Dev. Cell, vol.14, pp.388-398, 2008.

F. Yin, J. Yu, Y. Zheng, Q. Chen, N. Zhang et al., Spatial organization of Hippo signaling at the plasma membrane mediated by the tumor suppressor Merlin/NF2, Cell, vol.154, pp.1342-1355, 2013.

F. Yu and K. Guan, The Hippo pathway: regulators and regulations, Genes Dev, vol.27, pp.355-371, 2013.

J. Yu, Y. Zheng, J. Dong, S. Klusza, W. Deng et al., Kibra functions as a tumor suppressor protein that regulates Hippo signaling in conjunction with Merlin and Expanded, Dev. Cell, vol.18, pp.288-299, 2010.

D. C. Zarnescu and G. H. Thomas, Apical spectrin is essential for epithelial morphogenesis but not apicobasal polarity in Drosophila, J. Cell Biol, vol.146, pp.1075-1086, 1999.