Waiting for integrative taxonomy: Morphospecies as an operational proxy for the radiative and reticulate genus Ophrys L. (Orchidaceae)?
Errol Véla, Khellaf Rebbas, Roland Martin, Geraud de Premorel, Jean-Marc Tison

To cite this version:
Errol Véla, Khellaf Rebbas, Roland Martin, Geraud de Premorel, Jean-Marc Tison. Waiting for integrative taxonomy: Morphospecies as an operational proxy for the radiative and reticulate genus Ophrys L. (Orchidaceae)?. European Journal of Environmental Sciences, Charles University in Prague, 2015, 5 (2), pp.153-157. 10.14712/23361964.2015.89 . hal-02284808

HAL Id: hal-02284808
https://hal.umontpellier.fr/hal-02284808
Submitted on 26 Mar 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License
WAITING FOR INTEGRATIVE TAXONOMY: MORPHOSPECIES AS AN OPERATIONAL PROXY FOR THE RADIATIVE AND RETICULATE GENUS OPHrys L. (orchidaceae)?

ERROL VÉLA1,*, KHELLAF REBBAS2, ROLAND MARTIN3, GERAUD DE PREMOREL1, and JEAN-MARC TISON4

1 University of Montpellier; UMR AMAP, CIRAD bâtiment PS2, TA/AS1, 34298 Montpellier cedex 5, France
2 University Mohamed Boudiaf of M’Sila; Département des sciences de la nature et de la vie, Faculté des sciences, 28000 M’Sila, Algeria
3 Mediterranean Society of Orchidology; rue Aramand, 84240 La Motte-d’Aigues, France
4 French Botanical Society; 4 promenade du Décumanus, 38080 L’Isle-d’Abeau, France

* Corresponding author: errol.vela@cirad.fr

ABSTRACT

Recently published botanical floras provided an opportunity to develop operational systems for identifying in the field in France of species of the difficult genus Ophrys. Its specific and infra-specific taxonomy is extremely complex because of conflicting points of view and/or insufficient knowledge about specific biological features. In order to produce an identification key based on observable morphological criteria we developed a pragmatic taxonomy suitable for non-expert botanists, which includes “morphospecies” that are unambiguously identifiable based on a number of unique or a combination of diagnostic criteria and “subspecies” that are sets of populations sharing the same geographical and ecological adaptations but not distinctly differing morphologically. The taxonomic scheme reviewed here for the section Pseudophrys is well correlated with the floral chemical signatures of all the French taxa. This intermediate position, between splitters (mainly orchidologists) and lumpers (mainly geneticists), will hopefully enable us to revise the taxonomy of this genus at the Euro-Mediterranean level.

Keywords: morphospecies, Ophrys, taxonomy

Introduction

Recent publication of two French floras (Tison and De Foucault 2014; Tison et al. 2014) provided an opportunity to work on French species of the taxonomically difficult genus Ophrys L. (Orchidaceae). As for all classical floras, the main objective of these floras was to develop an operational system for identifying plant species in the field, including difficult radiative and/or reticulate genera like Hieracium L. (Krak et al. 2013), Rosa L. (Ritz et al. 2005) or Ophrys (Breitkopf et al. 2015). The radiative genera are characterised by a long-time isolated clade and then a very quick, intense and recent diversification phase. The reticulate genera are characterised by non-linear diversification phases due to crossing between clades. Both are making the taxonomic assessments more difficult.

Specific and infra-specific taxonomy within the genus Ophrys is extremely complex because of conflicting points of view (splitters vs. lumpers, Table 1) and/or poor knowledge of specific features (pollination, floral chemistry, karyology, phylogeny...). For example, the specific pollinators of 80 of the 250 species are unknown (Delforge 2012), which generally are contradictory with from 6 to 14 Pseudophrys taxa.

Because of this confusion, we decided to produce an identification key based on observable morphological criteria, which is pragmatic and can be used by non-expert botanists. Of course, this provisional taxonomy, although useful, will eventually be superseded by the development of a truly integrative taxonomy (Pires and Marinoni 2010). But pending the outcome of DNA barcoding we need a taxonomy based on morphology (Dunn 2003), especially for Ophrys orchids.

Methodology and Taxonomical Choices

As herbaria are generally not very useful for studying the flower morphology of the genus Ophrys, we studied populations of living plants in the field. The method used was as follows: 1) In a given country, several popula-
tions of each species were studied; 2) At each locality, the whole population was surveyed; 3) The variability, based on at least 10 and if possible 30 specimens, was recorded, which also included extreme values; 4) We worked in the field and took calibrated photographs in order to record and eventually improve the measurements. 5) For each flower of *Pseudophrys*, we usually measured: length and width of sepals, length and width of petals, length and width of labellum and width of yellow border, if present (cf. Barriau et al. 2011).

We then classified the specimens studied using the following definitions:

- “**morphospecies**” are phenotypical entities that can be unambiguously identified based on a number of unique or a combination of diagnostic criteria;
- “**subspecies**” is a set of populations with the same geographical and ecological adaptations (e.g. specific pollinator, flowering time, etc.) within a morphospecies, which can often be discriminated in terms its quantitative range of variation, but not by an unambiguous morphological criterion;
- unclassified variation includes both intraspecific variability and (at least provisional) taxonomical synonyms.

Cases Studied

We delimited species and produced an identification key for French and Algerian-Tunisian *Ophrys*, with particular emphasis on the section *Pseudophrys*. In France, including Corsica, (Tison and de Foucault 2014) we identified 6 morphospecies of *Pseudophrys* and considered other specific names to be undistinguished infraspecific variations and/or taxonomic synonyms (at least provisionally). In Algeria (Rebbas and Véla 2013) we identified 12 morphospecies, without considering subspecies (at least at this stage). In Tunisia (Martin et al. 2015) we identified a total of 14 elementary taxa consisting of 12 morphospecies and 2 subspecies.

For the 4 main taxa in continental Mediterranean France (Tison et al. 2014): *O. funerea* Viv., *O. fusca*, *O. lutea* and *O. marmorata* G. and W. Foelsche, we provided an *a posteriori* calibration of the morphometric results (Barriau et al. 2011). Box-plot graphs or principal component analyses enabled us to distinguish between discriminant vs. diagnostic criteria: a lot of partially overlapping averages and variances of statistical values can be used to statistically discriminate between taxa but are not diagnostic for their identification and therefore not useful in keys, while in some cases a single criterion or combination of criteria is sufficient to distinguish between taxa, which we call “morphospecies” (Fig. 1):

- a wide yellow border is diagnostic for *O. lutea* vs. the other three species;
- the length / width ratio of the lip is a discriminant criterion for *O. lutea* and *O. fusca* but not a diagnostic one;
- the relative length of the petals is a discriminant criterion for *O. funerea* and diagnostic if combined with the shape and colour of the labellum;
- the combined criterion « yellow border + labellum length » is diagnostic for *O. marmorata* vs. *O. fusca*.

A comparison of our results with species delimitations based on the floral chemical signature of the main taxa in Mediterranean France and Corsica (Joffard et al. 2014) surprisingly revealed almost the same taxonomic scheme as that deduced from our morphometric study:

- For *O. fusca* (sensu lato) vs. *O. marmorata* (sensu lato), the chemical signature is diagnostic, confirming our morphospecies delimitations.
- Within *O. marmorata* sensu lato (incuding *O. bilunulata* Risso, *O. peraiolae* G. Foelche et al. and *O. delforgei* J and P Devillers T), the discriminant but not diagnostic chemical signatures suggest possible subspecies, as expected for continental populations (Véla et al. 2007; Fig. 2).
- For *O. lutea* vs. *O. corsica* G. and W. Foelsche, the chemical signature is discriminant but not diagnostic, suggesting a subspecies level, not yet formalized in the current floras.

Northwestern Africa (particularly Algeria and Tunisia) is a regional hotspot for the section *Pseudophrys*. The classical flora (e.g. Maire 1960) already includes 6 species or 9 taxonomic units when infraspecific ranks are considered, plus 3 poorly known taxonomic units, considered to be hybrids by the author. The modern revision of Faurholdt and Pedersen (2009), who are considered to be lumpers, recognize 4 elementary taxa at the species level and 9 if subspecies are included. According to our methodology, there are 14 morphospecies and 19 taxonomic units including subspecies in both Algeria and Tunisia. Five of the six morphospecies in France are also present in north western Africa, but are different sub-species.

Table 1

Number of taxa in the genus *Ophrys* according to authors that can be classified to varying degrees as splitters or lumpers.

<table>
<thead>
<tr>
<th>Number of units according to maximum taxonomic level considered</th>
<th>Delforge 2005</th>
<th>Baumann et al. 2006</th>
<th>Pedersen and Faurholdt 2007; Faurholdt and Pedersen 2009</th>
<th>Devey et al. 2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>Species</td>
<td>250</td>
<td>65</td>
<td>25</td>
<td>10</td>
</tr>
<tr>
<td>Subspecies</td>
<td>–</td>
<td>175</td>
<td>80</td>
<td>–</td>
</tr>
</tbody>
</table>

European Journal of Environmental Sciences, Vol. 5, No. 2
Waiting for integrative taxonomy: morphospecies as an operational proxy for the radiative and reticulate genus *Ophrys* L. (*Orchidaceae*)

Taxonomic Debate

The evolutionary biology of genus *Ophrys* is so complex that several interpretations of its taxonomy are possible (Bateman et al. 2010) depending on 1) which criterion is given priority (morphology, pollination biology, genetics …), and 2) where the limit between species is placed (splitter vs lumper), i.e. the analytical level and accuracy of our knowledge. Over the last few decades advances were made thanks to studies on pollination biology, which resulted in ethological species delimitations based on species-specific interactions between *Ophrys* and pollinators (Paulus and Gack 1983, 1990; Paulus 2006). This liberal, pollinator-centred and ethological taxonomy, however, was recently criticised and still remains controversial (cf. Bateman et al. 2011; Vereecken et al. 2011).

The point of view presented here is clearly intermediate between those of the most extreme splitters and lumpers, respectively Delforge (2005) and Devey et al. (2008). From a methodological point of view, our taxonomic delimitations are similar to those of Sundermann, which were formally approved by Pedersen and Faurholdt (Pedersen and Faurholdt 2007; Faurholdt and Pedersen 2009), but with a tendency to split more than lump (cf. Véla 2008b). Simplifying, our subspecies rank corresponds to their variety rank, our species to their subspecies and their species to our non-formal rank of aggregate. Their hybrid complexes, which they treated as species, were carefully studied, and we limited the hybrid appellation to the recently hybridogenic populations that are still morphologically unstable. Using this slightly modified threshold, we provide a more operational proxy, acceptable by both moderate orchidologists and rational botanists. Our analytical level is quite similar to that of Baumann et al. (2006) but gave different results, mainly because they did not have an objective methodology. Depending on the opinion of taxonomists, i.e. if they are more of a splitter or lumper than us, it is possible to use the same framework but change the cursor’s position.

Conclusion

This methodological framework can be used as the starting point of a debate and offers an alternative to the subjective and empirical approaches traditionally developed by orchidologists. As a practical test, the analytical keys for identification can be evaluated by users and improvements incorporated.
From now on, it will be possible to revise *Ophrys* taxonomy for the whole Euro-Mediterranean area on a sound and scientific basis, including at least morphology, phenology and biogeography. At each stage in the geographic expansion of the analysis, morphospecies and subspecies are distinguished respectively by diagnostic and discriminating criteria, which implies a continual revision of the general taxonomic scheme and identification keys for this genus.

Acknowledgments

This point of view was presented at the ‘TORC’15 international conference at Samos, Greece, 13–19 April 2015. Nina Joffard and Bertrand Schatz (UMR CEFE, CNRS / University of Montpellier, France) participated in our thinking and helped to ameliorate our manuscript.

REFERENCES

Breitkopf H, Onstein RE, Cafasso D, Schlüter PM, Cozzolino...
Waiting for integrative taxonomy: morphospecies as an operational proxy for the radiative and reticulate genus Ophrys L. (Orchidaceae)?

Joffard N, Dormont L, Schatz B (2014) Dynamique écologique et

Fournier P (1947) Les Quatre flores de la France, Corse comprise

Faurholdt N, Pedersen HÆ (2009) Flueblomster fra Marokko til

Belin, Paris.

