
HAL Id: hal-02283036
https://hal.umontpellier.fr/hal-02283036v1

Submitted on 10 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Systematic Conservation Planning for Sustainable
Land-use Policies: A Constrained Partitioning Approach

to Reserve Selection and Design.
Dimitri Justeau-Allaire, Philippe Vismara, Philippe Birnbaum, Xavier Lorca

To cite this version:
Dimitri Justeau-Allaire, Philippe Vismara, Philippe Birnbaum, Xavier Lorca. Systematic Conserva-
tion Planning for Sustainable Land-use Policies: A Constrained Partitioning Approach to Reserve
Selection and Design.. IJCAI 2019 - 28th International Joint Conference on Artificial Intelligence,
Aug 2019, Macao, China. pp.5902-5908, �10.24963/ijcai.2019/818�. �hal-02283036�

https://hal.umontpellier.fr/hal-02283036v1
https://hal.archives-ouvertes.fr


Systematic Conservation Planning for Sustainable Land-use Policies:
A Constrained Partitioning Approach to Reserve Selection and Design

Dimitri Justeau-Allaire1,2,3∗ , Philippe Vismara4,5 , Philippe Birnbaum1,2,3 and Xavier Lorca6
1CIRAD, UMR AMAP, Montpellier, France

2Institut Agronomique néo-Calédonien (IAC), Noumea, New Caledonia
3AMAP, Univ Montpellier, CIRAD, CNRS, INRA, IRD, Montpellier, France

4MISTEA, Montpellier SupAgro, INRA, Univ Montpellier, Montpellier, France
5LIRMM, Univ Montpellier, CNRS, Montpellier, France

6ORKID, Centre de Génie Industriel, IMT Mines Albi, Albi, France
{dimitri.justeau-allaire, philippe.birnbaum}@cirad.fr,

philippe.vismara@supagro.fr, xavier.lorca@mines-albi.fr

Abstract

Faced with natural habitat degradation, fragmen-
tation, and destruction, it is a major challenge for
environmental managers to implement sustainable
land use policies promoting socioeconomic devel-
opment and natural habitat conservation in a bal-
anced way. Relying on artificial intelligence and
operational research, reserve selection and design
models can be of assistance. This paper introduces
a partitioning approach based on Constraint Pro-
gramming (CP) for the reserve selection and de-
sign problem, dealing with both coverage and com-
plex spatial constraints. Moreover, it introduces the
first CP formulation of the buffer zone constraint,
which can be reused to compose more complex spa-
tial constraints. This approach has been evaluated
in a real-world dataset addressing the problem of
forest fragmentation in New Caledonia, a biodiver-
sity hotspot where managers are gaining interest in
integrating these methods into their decisional pro-
cesses. Through several scenarios, it showed ex-
pressiveness, flexibility, and ability to quickly find
solutions to complex questions.

1 Introduction
In the context of the global biodiversity crisis, it is urgent
to strengthen the conservation of natural habitats through the
establishment of nature reserves [Prendergast et al., 1993;
Haddad et al., 2015]. Accordingly, two of the United Na-
tions Sustainable goals have been focused on the conservation
of marine and terrestrial habitats. However, to be efficient
the selection and the design of reserves must be based on a
systematic approach [Margules and Pressey, 2000], and sus-
tainable land use policies must promote socioeconomic de-
velopment and nature conservation in a balanced way. On
top of that, the design of protected buffer zones surrounding
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sensitive areas is an important aspect, as it can mitigate nega-
tive edge-effects and contribute to reducing fragmentation, by
fostering recolonization and habitat restoration [Harris, 1988;
Fahrig, 2003]. Buffer zones are, for instance, an important
element of UNESCO World Heritage Sites [Feilden and Jok-
ilehto, 1998] and Man and the Biosphere reserves [Batisse,
1982]. More recently, the IUCN protected areas manage-
ment categories provided a more comprehensive framework
by promoting the partitioning of the space into several levels
of protection, which can be nested [Dudley, 2008].
In conservation biology, this concern lies in the frame-

work of systematic conservation planning and formalizes as
the reserve selection and design problem, which also lies in
the more recent framework of computational sustainability
[Gomes, 2009]. The reserve selection and design problem
aims at partitioning the geographical space into at least two
regions: one dedicated to habitats and biodiversity conser-
vation, the other for socioeconomic development. However,
effective strategies usually involve more regions with several
nested levels of protection. Each region is defined by a com-
bination of coverage and spatial constraints, and some other
constraints such as the buffer zone, that can involve several
regions. Finally, optimization objectives can be defined, such
as minimizing the cost of a region or maximizing the cover-
age of certain features. Figure 1 depicts an example with a
grid partitioned into three regions.
Many reserve selection and design models have been de-

vised, e.g. [ReVelle et al., 2002; Williams et al., 2005;
Sarkar, 2012; Dilkina et al., 2017]. Usually, these meth-

Figure 1: Grid partition with a core area (dark gray), a buffer (light
gray), and an out-reserve area (white). The core and the buffer are
both composed of two connected components.
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ods rely on ad-hoc heuristics, metaheuristics, or mixed-
integer linear programming (MILP). More recently, CP mod-
els for and reserve selection and design has been published
[Bessière et al., 2015; Justeau-Allaire et al., 2018]. While
the first is focused on wildlife corridor design, the second
is, to the best of our knowledge, the only generic CP model
for this problem which combines both covering and spa-
tial aspects. Sadly, in this model the search is focused on
a single region, the reserve. As a consequence, socioeco-
nomic constraints cannot be expressed on the out-reserve
area. In addition, no more than two regions can be de-
fined, and the buffer zone constraint is lacking. As a mat-
ter of fact, this constraint has, to our knowledge, only been
modeled by some MILP approaches [Williams et al., 2005;
Billionnet, 2013] in a local fashion for three-regions config-
urations (core area, buffer zone and out-reserve area). This
approach has some limitations since it does not account for
the reciprocity between the regions (e.g. a buffer zone can
exist without a core area).
The current models are limited in their flexibility, as each

address a specific subset of variants of the general problem.
Because these subsets are usually different, it is also difficult
to provide systematic model comparisons. For instance, to
the best of our knowledge no existing MILP model is able to
tackle problems with more than three regions. Some heuris-
tics and metaheuristics are able to, e.g. Marxan with zones
[Watts et al., 2009], but they don’t provide strict and explicit
control over spatial attributes. Finally, no existing model im-
plements a complete buffer zone constraint. However, it is of
great interest for managers to have the possibility of seam-
lessly considering those aspects.
Although rarely used in this context, CP is a good candi-

date for devising a more generic model for reserve selection
and design. In fact, CP provides both flexibility and expres-
siveness, as it allows seamless integration of complex and het-
erogeneous constraints into a single model. Moreover, CP is
a complete approach that is able to provide satisfiability and
optimality proofs. In this paper, we show how to encode a CP
model that allows the definition of an arbitrary number of re-
gions, on which any constraint can be seamlessly applied. On
top of that, we provide a complete and generic formulation of
the buffer zone constraint, which can be reused to compose
more complex spatial constraints. Finally, we experiment our
model on a real-world dataset addressing the problem of for-
est fragmentation in the south of New Caledonia, a biodiver-
sity hotspot located in the South Pacific (this dataset was al-
ready used in [Justeau-Allaire et al., 2018]). Through this
use case, we show that the genericity provided by our model
allows addressing problems that were not possible to tackle
until now.

2 Problem Description
2.1 The Grid
The problem applies in a discretized geographical space. Sev-
eral types of tessellation are possible (e.g. square grid, hexag-
onal grid, irregular grid). In accordance to available data, we
only consider the regular square grid. However, the methods
described in this paper can easily be transposed to other types

x

(a) Γ4(x)

x

(b) ΓD(x)

x

(c) Γ8(x)

Figure 2: Some neighborhood definitions (in light gray).

of tessellation. In the context of reserve selection and design,
a grid cell is called a site (the terms parcel and planning unit
are also used in the literature).
Definition 1 (2D regular square grid). A M × N regular
square grid S is a tessellation of the 2-dimensional space into
|S| = M×N unit squares (called sites in our context),M and
N are respectively the number of rows and columns. A site
is uniquely identified by its zero-based matrix coordinates xi

(row) and xj (column) or by its flattened index x = Nxi+xj

(this indexing is independent of the tessellation).
Let S be a regular square grid.

Definition 2 (ω-connected neighborhood). We denote by ω-
connected neighborhood any function Γω : S 7→ P(S) (with
P the power set) that associates to x ∈ S a set Γω(x) ⊆ S
representing the neighbors of x, according to the label ω.
Given that, we derive some specific neighborhoods that

will be useful in the rest of the paper (some of them are il-
lustrated in Figure 2), ∀x ∈ S , with x ≡ (xi, xj):

ΓH(x) = {(xi, xj ± 1)} ∩ S;
ΓV (x) = {(xi ± 1, xj)} ∩ S;
ΓD(x) = {(xi ± 1, xj ± 1)} ∩ S;
Γ4(x) = ΓH(x) ∪ ΓV (x);

Γ8(x) = Γ4(x) ∪ ΓD(x).

Definition 3 (Connected component). A set cc ⊆ S of con-
nected sites (according to a neighborhood definition) is called
a connected component (abbreviated CC). Note: This is an
extension of the classical graph definition of connected com-
ponent. If the neighborhood is not symmetric (e.g. represent-
ing environmental flows), the definition of strongly connected
component must be used.
Definition 4 (Region). A set R ⊆ S associated to a single
land-use policy is called a region. A non-empty region is
composed of one or several CCs. The set of CCs associated
to a region R is denoted by cc(R).

2.2 The Features
In the context of reserve selection and design, a feature corre-
sponds to a characteristic of the geographical space that can
be spatially represented with a numerical value for each site.
A feature can represent biodiversity (e.g. species, habitats),
or socioeconomic values (e.g. exploitable land, customary
area). Three data types can describe a feature: binary data
(e.g. presence of exploitable land), quantitative data (e.g.
species abundance) and probabilistic data (e.g. species dis-
tribution model, SDM, representing either a probability of
presence or a habitat suitability index). We denote the value
associated to a feature f in the site x by vf (x).
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2.3 Towards a Partitioning Formulation
In [Justeau-Allaire et al., 2018], the problem is stated as fol-
lows: given a M × N grid S , find R ⊆ S such that a set
of constraints C are satisfied by R. In this formulation, the
constraints are organized into two categories, coverage and
spatial constraint. They can be formalized as follows.

Coverage Constraints
Let R be a region and F a set of features:
Constraint A (Covered features). R is a cover of F if every
feature ofF is present in at least one site ofR. In this context,
a feature f is considered to be covered by a site x if and only
if vf (x) ≥ 1 that is ∀f ∈ F , ∃x ∈ R, vf (x) ≥ 1.
Constraint B (α-covered features). The constraint holds if
and only if every feature of F has a probability of at least α
to lie in R: ∀f ∈ F ,

∏
x∈S(1− vf (x)) ≤ 1− α.

Constraint C (k-redundant features). The constraint holds if
and only if every feature of F is present in at least k site of
R: ∀f ∈ F , ∃X ⊆ R, |X | ≥ k ∧ ∀x ∈ X , vf (x) ≥ 1.

Spatial Constraints
Let R be a region:
Constraint D (Number of CCs, aka Number of reserves).
The constraint holds if and only if the number of CCs of R is
bounded: minNbCC ≤ |cc(R)| ≤ maxNbCC .
Constraint E (Region size, aka Reserve System Area). The
constraint holds if and only if the size of the region is
bounded: minSize ≤ |R| ≤ maxSize .
Constraint F (CCs size, aka Reserve areas). The constraint
holds if and only if the smallest (respectively largest) CC of
R contains at least minSizeCC (respectively maxSizeCC )
sites: ∀C ∈ cc(R),minSizeCC ≤ |C| ≤ maxSizeCC .
We suggest here a more generic formulation of the prob-

lem: given a M × N grid S , find a partitioning of S into n
regions {R0, ..., Rn−1} such that each region Ru satisfies a
given set of constraints Cu ⊆ {A, . . . , F}. Using this for-
mulation, any constraint in the previous catalog can be seam-
lessly applied to any region.

3 A Generic CP Model
In this section we introduce a generic CP model associated
with the partitioning formulation of the reserve selection and
design problem.

3.1 The Base Model
Decision Variables
To each site x ∈ S we associate an integer variable ρx ∈
[0, n[. If x lies in Ru then ρx = u. An instantiation of these
variables defines de facto a partitioning of the grid into (at
most) n regions: ∀x ∈ S, ρx ∈ [0, n[.

Set Variables
Set variables are an abstraction providing an efficient, ex-
pressive and compact way to solve combinatorial problems
through set-based modeling. The domain of a set variable X
is a set interval [X,X], with X and X two sets (respectively
the lower and upper bounds). Given that, an instantiation of

(a) GS . (b) {G0, G1, G2}

Figure 3: GS associated with a 6 × 7 regular square grid (left) and
{G0, G1, G2} associated with a 3-regions partitioning of a 6 × 7
regular square grid (right).

X is a subset of X , such that X is a subset of X [Gervet,
1995]: X ∈ [X,X] ⇔ X ⊆ X ⊆ X .
Each region is represented by a set variable Ru ∈

[∅, P (S)] that is channeled with the decision variables such
that ρx = u if and only if x ∈ Ru. This channeling ensures
that the sets are all disjoint and that they form a partition of
S: ∀u ∈ [0, n[, Ru ∈ [∅,S], ρx = u ⇔ x ∈ Ru.

Graph Variables
Similarly to set variables, graph variables are an abstraction
providing an efficient and expressive way to model combina-
torial problems with graphs. A graph variable G is defined
by a graph interval [G,G] (with G and G two graphs, respec-
tively the lower and upper bounds), such that an instantiation
of G is a subgraph of G and G is a subgraph of G [Dooms,
2006; Fages, 2014]: G ∈ [G,G] ⇔ G ⊆ G ⊆ G.
First, we define the full spatial graphGS = (S, ES), where

a vertex is associated with each site of the grid S , and such
that there is an edge between two vertices if and only if they
are adjacent in the grid, ES = {(x, y) | y ∈ Γ4(x)}. In
the scope of this paper we represent adjacency with the four-
connected neighborhood Γ4, but any other definition could
be used. An illustration of GS is provided in Figure 3.
Then, similarly to the model defined in [Justeau-Allaire et
al., 2018], to each region Ru we associate a graph variable
Gu = (Ru, Eu). Gu is the subgraph of GS induced by
Ru. These variables will be used to define connectivity and
size constraints on the regions and their CCs. Each graph
Gu has the empty graph as lower bound, and the full spa-
tial graph GS as upper bound. Formally, for all u ∈ [0, n[,
Gu = (Ru, Eu) ⊆ GS , such that Eu = {(x, y) | (x, y) ∈
Ru

2 ∧ y ∈ Γ4(x)}. An illustration of {G0, G1, G2} for a
3-regions partitioning is provided in Figure 3.

User Constraints
Finally, any constraint defined in 2.3 can be seamlessly ap-
plied to any region. For more details on how to apply them,
refer to [Justeau-Allaire et al., 2018]. On top of that, the
genericity provided by the partitioning perspective as well as
the expressiveness provided by set and graph variables allows
the modeling of more complex constraints. We detail, in the
following, the buffer zone constraint.

3.2 The Buffer Zone Constraint
As mentioned in the introduction, the buffer zone constraint
is of great interest for managers. Here, we provide a set-based
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generic formulation of the constraint. A buffer zone is an area
separating the periphery of two areas. We first introduce the
notion of generalized neighborhood.
Definition 5 (Generalized neighborhood). Let R be a region,
and Γω a neighborhood definition. The generalized neighbor-
hood Γω(R) of R is the union of the neighborhood of every
site in R: Γω(R) =

∪
x∈R Γω(x).

Constraint G (Buffer zone constraint). Let Γω be a neigh-
borhood definition, Ru and Rv be two regions, and B a third
region intended to be a buffer zone between Ru and Rv . The
buffer zone constraint buffer [Γω](Ru, Rv, B) holds if and
only if:

Γω(Ru) ∩Rv = ∅;

Ru ∩ Γω(Rv) = ∅;

B = Γω(Ru) ∩ Γω(Rv).

(1)

Consistency of the Buffer Zone Constraint
We now study the consistency of the buffer zone constraint.
To this end, we rely on the definitions and results introduced
by [Walsh, 2003] on set/multiset constraints. In particular, we
rely on the definition of bound consistency (BC) and on the
following one: a constraint decomposition is a normal form
if and only if decomposing constraints are at most ternary
and of the form X ⊆ Y,X = Y ∪ Z,X = Y ∩ Z,X =
Y − Z,X ̸= Y, |X| = I, occ(I,X) = m or occ(m,X) = I ,
where X , Y and Z are set/multiset variables, I an integer
variable andm an integer. The constraint occ(m,X) = I (re-
spectively occ(I,X) = m) holds if and only if I (respectively
m) equals the number of occurrences ofm (respectively I) in
X .
Proposition 1. The constraint N = Γω(R) (with N and R
set variables) can be decomposed into a normal form.

Proof. The decomposition is based on additional variables
NR

x , for each site x:

N = Γω(R) ⇔ N =
∪
x∈S

NR
x with NR

x =

{
Γω(x) if x ∈ R

∅ otherwise
(2)

These additional variablesNR
x are constrained by the follow-

ing decomposition:

∀x ∈ S, NR
x ∈ {∅,Γω(x)}

Bx = occ(x,R)

Ix = |Γω(x)|Bx

|NR
x | = Ix

(3)

Then,
∪

x∈S NR
x can be decomposed into a normal form with

|S|− 1 ternary union constraints and |S|− 2 intermediary set
variables: M1 = NR

0 ∪NR
1 ∧M2 = M1 ∪NR

2 ∧ ... ∧N =
M|S|−2 ∪NR

|S|−1.

Corollary 1. BC on N = Γω(R) is equivalent to BC on the
decomposed normal form.

Proof. It is straightforward to decompose N = Γω(R) into a
normal form by Proposition 1. Moreover, N = Γω(R) does
not contain a repeated occurrence of variables, thus, BC on
N = Γω(R) is equivalent to BC on the decomposed normal
form (see [Walsh, 2003]).

Corollary 2. The constraint buffer [Γω](Ru, Rv, B) can be
decomposed into a normal form. Consequently, BC on
buffer [Γω](Ru, Rv, B) is equivalent to BC on the decom-
posed normal form.

Proof. The buffer constraint as defined in (1) can be decom-
posed as following:

Nu = Γω(Ru); Nv = Γω(Rv);

Nu ∩Rv = ∅; Ru ∩Nv = ∅;

B = Nu ∩Nv.

(4)

Then, Corollary 1’s exact same reasoning applies.

Time Complexity of the Buffer Zone Constraint
Finally, we study the time complexity of the buffer zone con-
straint filtering. Once more, we rely on [Walsh, 2003] which
provides both filtering rules to enforce BC on the decomposed
normal form of the constraint, and the worst-case time com-
plexity associated with such a filtering: it is at mostO(enm2)
where e is the number of constraints, n the number of vari-
ables andm the maximum cardinality of the set variables.
Proposition 2. Enforcing Bound Consistency on
buffer [Γω](Ru, Rv, B) can be done in O(|S|4).

Proof. According to the proofs of Proposition 1 and Corol-
lary 2, the number of constraints and the number of additional
variables in the normal form are in O(|S|). Since the cardi-
nality of all the set variables is bounded by |S|, the complex-
ity is in O(|S|4).

3.3 Extending the Model
We now consider a set of operational scenarios to demonstrate
how expressive our CP model is, and how it can be extended
and adapted to complex requirements.

Width of the Buffer Zone
The buffer constraint allows great control over the spatial at-
tributes of the buffer zone through the neighborhood defini-
tion. A good example consists in controlling the width of the
buffer zone. To do so, we introduce an alternative version
of any neighborhood which integrates the notion of width, as
illustrated in Figure 4.
Definition 6 (k-wide neighborhood). Let S be a regular
square grid and Γω a neighborhood definition. The k-wide
neighborhood of a site x ∈ S , denoted by Γk

ω(x), is defined
by the following recursion:

Γ1
ω(x) = Γω(x);

Γk
ω(x) =

(
Γk−1
ω (x) ∪ Γω

(
Γk−1
ω (x)

))
\ {x}.

x

(a) Γ2
4(x)

x

(b) Γ2
8(x) (c) 2-wide buffer zone

Figure 4: k-wide neighborhood examples (in light gray). Example
of a 2-wide buffer zone.
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Figure 5: Nested regions example, 4 nested regions, Γα = Γ8.

Nesting Several Protection Levels
Another interesting application of the buffer zone constraint
is the spatial nesting of regions representing several levels of
protection. Such a configuration, thereby, can be desired to
design a landscape where the level of protection increases
gradually as the habitat gets more sensitive, as illustrated in
Figure 5. The IUCN protected area management categories
provide good guidelines to define the policies associated with
such configurations [Dudley, 2008]. In our CP model, ex-
pressing a nesting is easy. Let Γω be a neighborhood defini-
tion, {R0, ..., Rn−1} a partition, and {R0, ..., Rm−1} be the
regions to be nested. We assume thatR0 is the core region and
Rm−1 the periphery region. The nesting can be expressed as
follows: ∀i ∈ [0,m[, buffer [Γω](Ri,S \ (Ri ∪Ri+1), Ri+1).
The term S \ (Ri ∪Ri+1) represents the area outside Ri and
Ri+1, the latter thus being a buffer separating Ri from this
outside area, as Russian nested dolls.

4 Use Case
New Caledonia is a large archipelago located in the South
Pacific and the smallest biodiversity hotspot in the world.
New Caledonian terrestrial flora, notably, is distinguished by
a high rate of endemism (one of the highest in the world),
and the presence of a large number of ancient lineages. How-
ever, New Caledonian forests are, as are most tropical forests,
endangered with surface loss and fragmentation. Regarding
this, Ibanez et al. [2017] conducted a study in a 60km2 sen-
sitive area located in the South of the main Island, “Grande
Terre”. In this section, we rely on the dataset from this study
and the Species Distribution Models (SDMs) produced from
[Pouteau et al., 2015; Schmitt et al., 2017]. The area is tes-
sellated into a 46× 75 square grid (a site is 1.7ha) were 5431
trees were identified among 97 communities, over 88 forest
fragments. This area harbors 223 tree species for which 173
SDMs were produced. The 50 species without SDM were
arbitrarily considered as endangered. According to the re-
cent literature, this problem can be considered as a large one
[Wang et al., 2018]. Our model was implemented1 and ran
with Choco-solver and its Choco-graph extension (for graph
variables) [Prud’homme et al., 2017], on a Linux laptop with
(Intel Core i5-5200U CPU 2.20GHz×4, 8GB RAM). We ran
optimization scenarios under a time limit of 4h, focusing on
the ability to find solutions for many constraint configurations
rather than optimality proof. Numbers of solutions found and
solving times for the first and best solutions found are pro-
vided in Table 1 (none were proven optimal).

1The source code is available on GitHub as an open source
project: https://github.com/dimitri-justeau/choco-reserve.

(a) Mapping of SC1’s best solution.

(b) Mapping of SC2’s best solution.

(c) Mapping of SC3’s best solution.

(d) Mapping of SC4’s best solution.

Figure 6: Use case scenarios best solutions mappings.
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4.1 Original Scenario (SC1)

First, we show that our model is able to tackle the use case
as defined by Justeau-Allaire et al.. This use case consists in
highlighting a partitioning of the study area into two regions:
R0 the reserve and R1 the out-reserve area. The reserve is
the only constrained region: it must be composed of at most
two CCs (Constraint D) with a surface area of at least 300ha
(Constraint F). The total area of the reserve must not exceed
1000ha (Constraint E). Moreover, each endangered species
must have at least one known occurrence in the reserve (Con-
straint A), every other species must be covered with a mini-
mum probability of 0.8 (Constraint B), and at least 340ha of
forest area must be covered (Constraint C). Finally, a set of
sites that are lakes or mining areas cannot belong to the re-
serve. This constraint was added by restricting the domain of
R0. We tried to minimize the total size of the reserve (SC1,
Figure 6a). The solving time of our approach is comparable to
[Justeau-Allaire et al., 2018], the best solution found within
the time limit is even slightly better. If such a scenario pro-
vides useful insights, the produced delineation suffers from a
major limitation: 99.3% of the selected sites are on the edge
(i.e. adjacent to the out-reserve area).

4.2 Extended Scenarios (SC2 and SC3)

We show how the previous use case can be extended to
a more realistic one including buffer zone constraints. To
this end, we rely on Ibanez et al. conclusions on edge-
effects and their conservation implications in the studied area:
“[...] the surrounding vegetation including secondary forest
at the edge and the vegetation matrix should also be pro-
tected to promote the long process of forest extension and
subsequently reduce edge-effects [...]”. Accordingly, we re-
fined the use case by defining three regions: R0 the core, R1

the buffer zone and R2 the out-reserve area, the protected
area being R0 ∪ R1. Pursuant with Ibanez et al. results
which suggest that the spatial extent of the edge-effect applies
within the first 100m to 300m, two scenarios were consid-
ered: an optimistic one (SC2, Figure 6b) with a 130–180 m
wide buffer zone buffer [Γ8](R0, R2, R1), and a pessimistic
one (SC3, Figure 6c) with a 260–360 m wide buffer zone
buffer [Γ2

8](R0, R2, R1)
2. In these scenarios, the region size

constraint was applied to the protected area and became con-
flicting with the number of CCs constraint. Relying on con-
servation scientists’ recommendations, we relaxed it and de-
fined another optimization objective: minimize |cc(R1)|, that
is minimize the fragmentation.
In SC2, we could satisfy the constraints with 14 CCs and

37% of the protected area located in the core (R0). In SC3,
the constraints could not be satisfied, as the core cannot cover
200 sites of forest without exceeding the total area constraint.
We thus relaxed the forest covering constraint to the protected
area. This relaxation lead to a 10 CCs solution with only
10.6% of the protected area located in the core.

2Width is variable because of the square grid: diagonal is
√
2

larger than horizontal/vertical.

SC1 SC2 SC3 SC4
Nb. solutions 4 3 1 47
Solving time - First found 16s 7s 9s 4s
Solving time - Best found 220s 20s 9s 1385s
Nb. sites core 277 216 51 135
Nb. sites buffer - 370 429 192 R1 + 262 R2

Nb. sites total 277 586 480 589
Nb. CCs 1 14 10 9
Ratio core/total (%) 0.7% 37% 10.6% 22.6%

Table 1: Use case results characteristics.

4.3 Final Scenario (SC4)
Finally, we suggest a trade-off between SC2 and SC3 with
SC4 (Figure 6d). In this final scenario we defined four
regions: R0 the core, R1 the inner buffer, R2 the outer
buffer and R3 the out-reserve area, the protected area being
R0 ∪ R1 ∪ R2. These three regions were defined as nested:
buffer [Γ8](R0, R2∪R3, R1)∧buffer [Γ8](R1, R0∪R3, R2).
The species coverage constraints were still restricted to the
core, however, the forest coverage constraint was only relaxed
to the core and the inner buffer (R0 ∪R1). According to con-
servation scientists’ feedbacks on SC3 results, we changed
the optimization objective to: maximize the core area. The
best solution found is composed of 9 CCs with 22.6% of the
protected area located in the core, which is significantly better
than SC3.

5 Conclusion
In this paper, we introduced a generic CP model that is able to
tackle a high variety of reserve selection and design problems
by providing high levels of flexibility and expressiveness. It is
the first approach to allow the definition of an arbitrary num-
ber of regions on top of which any coverage or spatial con-
straint can be explicitly expressed. In addition, we provided
the first CP formulation of the buffer zone constraint, which
is compatible with any neighborhood definition in the tessel-
lated geographical space and can be reused to compose more
complex spatial constraints. Moreover, we provided insights
on the consistency associated with the constraint, as well as
on its worst-time complexity. Relying on a use case based on
a real-world dataset, we showed how our model is able to sup-
port systematic conservation planning through a progressive
and exploratory process. Through diverse scenarios, we high-
lighted useful insights for managers and conservation scien-
tists. In particular, we showed how the buffer zone constraint
can be composed to prospect more complex conservation sce-
narios. On top of that, our implementation showed its ability
to quickly find solutions to the decision problem (cf. Table 1),
demonstrating its potential for exploring many scenarios.
To conclude, our constrained partitioning approach for re-

serve selection and design provides the basis of a generic and
exploratory decision support tool for systematic conservation
planning and computational sustainability. It now remains
to work closely with conservation scientists and managers to
refine it and integrate it in decisional processes, in order to
move towards more sustainable land-use policies. Providing
proofs of optimality is, on the other hand, a prospect for tech-
nical future work.
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