D. Cunningham, W. Atkin, H. J. Lenz, H. T. Lynch, B. Minsky et al., Colorectal cancer, vol.375, issue.9719, pp.1030-1047, 2010.

T. S. Stappenbeck, M. H. Wong, J. R. Saam, I. U. Mysorekar, and J. I. Gordon, Notes from some crypt watchers: Regulation of renewal in the mouse intestinal epithelium, Current Opinion in Cell Biology, vol.10, issue.6, pp.702-709, 1998.

H. Clevers, The intestinal crypt, a prototype stem cell compartment, Cell, vol.154, issue.2, pp.274-284, 2013.

A. Merlos-suarez, F. M. Barriga, P. Jung, M. Iglesias, M. V. Cespedes et al., The intestinal stem cell signature identifies colorectal cancer stem cells and predicts disease relapse, Cell Stem Cell, vol.8, issue.5, pp.511-524, 2011.

N. Barker, R. A. Ridgway, J. H. Van-es, M. Van-de-wetering, H. Begthel et al., Crypt stem cells as the cells-of-origin of intestinal cancer, Nature, vol.457, issue.7229, pp.608-611, 2009.

N. Barker, J. H. Van-es, J. Kuipers, P. Kujala, M. Van-den-born et al., Identification of stem cells in small intestine and colon by marker gene Lgr5, Nature, vol.449, issue.7165, pp.1003-1007, 2007.

N. Barker, Adult intestinal stem cells: Critical drivers of epithelial homeostasis and regeneration, Nature Reviews Molecular Cell Biology, vol.15, issue.1, pp.19-33, 2014.

T. K. Noah, B. Donahue, and N. F. Shroyer, Intestinal development and differentiation, Experimental Cell Research, vol.317, pp.2702-2710, 2011.

H. J. Snippert, L. G. Van-der-flier, T. Sato, J. H. Van-es, M. Van-den-born et al., Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells, Cell, vol.143, issue.1, pp.134-144, 2010.

C. S. Potten, Extreme sensitivity of some intestinal crypt cells to X and gamma irradiation, Nature, vol.269, issue.5628, pp.518-521, 1977.

, Transcriptional Regulation of the Intestinal Cancer Stem Cell Phenotype

L. Vermeulen and H. J. Snippert, Stem cell dynamics in homeostasis and cancer of the intestine, Nature Reviews Cancer, vol.14, issue.7, pp.468-480, 2014.

R. G. Vries, M. Huch, and H. Clevers, Stem cells and cancer of the stomach and intestine, Molecular Oncology, vol.4, issue.5, pp.373-384, 2010.

D. Hanahan and R. A. Weinberg, The hallmarks of cancer, Cell, vol.100, issue.1, pp.57-70, 2000.

M. F. Clarke and M. Fuller, Stem cells and cancer: Two faces of eve, Cell, vol.124, issue.6, pp.1111-1115, 2006.

M. S. Wicha, S. Liu, and G. Dontu, Cancer stem cells: An old idea-A paradigm shift, Cancer Research, vol.66, issue.4, pp.1883-1890, 2006.

T. Fevr, S. Robine, D. Louvard, and J. Huelsken, Wnt/beta-catenin is essential for intestinal homeostasis and maintenance of intestinal stem cells, Molecular and Cellular Biology, vol.27, issue.21, pp.7551-7559, 2007.

T. Vanuytsel, S. Senger, A. Fasano, and T. Shea-donohue, Major signaling pathways in intestinal stem cells, Biochimica et Biophysica Acta, vol.1830, issue.2, pp.2410-2426, 2013.

J. Schneikert and J. Behrens, The canonical Wnt signalling pathway and its APC partner in colon cancer development, Gut, vol.56, issue.3, pp.417-425, 2007.

E. Sangiorgi and M. R. Capecchi, Bmi1 is expressed in vivo in intestinal stem cells, Nature Genetics, vol.40, issue.7, pp.915-920, 2008.

L. Vermeulen, D. Sousa, E. Van-der-heijden, M. , C. K. De-jong et al., Wnt activity defines colon cancer stem cells and is regulated by the microenvironment, Nature Cell Biology, vol.12, issue.5, pp.468-476, 2010.

S. S. Kanwar, Y. Yu, J. Nautiyal, B. B. Patel, and A. P. Majumdar, The Wnt/beta-catenin pathway regulates growth and maintenance of colonospheres, Molecular Cancer, vol.9, p.212, 2010.

A. Lugli, I. Zlobec, P. Minoo, K. Baker, L. Tornillo et al., Prognostic significance of the wnt signalling pathway molecules APC, beta-catenin and E-cadherin in colorectal cancer: A tissue microarray-based analysis, Histopathology, vol.50, issue.4, pp.453-464, 2007.

A. Symon and V. Harley, SOX9: A genomic view of tissue specific expression and action, The International Journal of Biochemistry & Cell Biology, vol.87, pp.18-22, 2017.

P. Blache, M. Van-de-wetering, I. Duluc, C. Domon, P. Berta et al., SOX9 is an intestine crypt transcription factor, is regulated by the Wnt pathway, and represses the CDX2 and MUC2 genes, The Journal of Cell Biology, vol.166, issue.1, pp.37-47, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00266987

P. Bastide, C. Darido, J. Pannequin, R. Kist, S. Robine et al., Sox9 regulates cell proliferation and is required for Paneth cell differentiation in the intestinal epithelium, The Journal of Cell Biology, vol.178, issue.4, pp.635-648, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00267010

A. Matheu, M. Collado, C. Wise, L. Manterola, L. Cekaite et al., Oncogenicity of the developmental transcription factor Sox9, Cancer Research, vol.72, issue.5, pp.1301-1315, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00768487

S. Ramalingam, G. W. Daughtridge, M. J. Johnston, A. D. Gracz, and S. T. Magness, Distinct levels of Sox9 expression mark colon epithelial stem cells that form colonoids in culture, American Journal of Physiology Gastrointestinal and Liver Physiology, vol.302, issue.1, pp.10-20, 2012.

C. Prevostel, C. Rammah-bouazza, H. Trauchessec, L. Canterel-thouennon, M. Busson et al., SOX9 is an atypical intestinal tumor suppressor controlling the oncogenic Wnt/ss-catenin signaling, Oncotarget, vol.7, issue.50, pp.82228-82243, 2016.

B. M. Javier, R. Yaeger, L. Wang, F. Sanchez-vega, A. Zehir et al., Recurrent, truncating SOX9 mutations are associated with SOX9 overexpression, KRAS mutation, and TP53 wild type status in colorectal carcinoma, Oncotarget, vol.7, issue.32, pp.50875-50882, 2016.

A. Zalzali, H. Rammah, C. , G. J. Naudin, C. Dupasquier et al., MiniSOX9, a dominant-negative variant in colon cancer cells, Oncogene, vol.30, issue.22, pp.2493-2503, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02267381

M. L. Espersen, J. Olsen, D. Linnemann, E. Hogdall, and J. T. Troelsen, Clinical implications of intestinal stem cell markers in colorectal cancer, Clinical Colorectal Cancer, vol.14, issue.2, pp.63-71, 2015.

A. M. Ghaleb and V. W. Yang, The pathobiology of Kruppel-like factors in colorectal cancer, Current Colorectal Cancer Reports, vol.4, issue.2, pp.59-64, 2008.

D. Wei, M. Kanai, S. Huang, and K. Xie, Emerging role of KLF4 in human gastrointestinal cancer, Carcinogenesis, vol.27, issue.1, pp.23-31, 2006.

D. T. Dang, X. Chen, J. Feng, M. Torbenson, L. H. Dang et al., Overexpression of Kruppellike factor 4 in the human colon cancer cell line RKO leads to reduced tumorigenecity, Oncogene, vol.22, issue.22, pp.3424-3430, 2003.

T. Yu, X. Chen, W. Zhang, D. Colon, J. Shi et al., Regulation of the potential marker for intestinal cells, Bmi1, by beta-catenin and the zinc finger protein KLF4: Implications for colon cancer, The Journal of Biological Chemistry, vol.287, issue.6, pp.3760-3768, 2012.

J. L. Shie, Z. Y. Chen, M. J. O'brien, R. G. Pestell, M. E. Lee et al., Role of gut-enriched Kruppel-like factor in colonic cell growth and differentiation, American Journal of Physiology Gastrointestinal and Liver Physiology, vol.279, issue.4, pp.806-814, 2000.

Z. Leng, K. Tao, Q. Xia, J. Tan, Z. Yue et al., Kruppel-like factor 4 acts as an oncogene in colon cancer stem cell-enriched spheroid cells, PLoS One, vol.8, issue.2, p.56082, 2013.

K. Takahashi and S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors, Cell, vol.126, issue.4, pp.663-676, 2006.

H. Y. Lee, J. B. Ahn, S. Y. Rha, H. C. Chung, K. H. Park et al., High KLF4 level in normal tissue predicts poor survival in colorectal cancer patients, World Journal of Surgical Oncology, vol.12, p.232, 2014.

Y. Gao, Y. Ding, H. Chen, H. Chen, and J. Zhou, Targeting Kruppel-like factor 5 (KLF5) for cancer therapy, Current Topics in Medicinal Chemistry, vol.15, issue.8, pp.699-713, 2015.

, Transcriptional Regulation of the Intestinal Cancer Stem Cell Phenotype

T. Nakaya, S. Ogawa, I. Manabe, M. Tanaka, M. Sanada et al., KLF5 regulates the integrity and oncogenicity of intestinal stem cells, Cancer Research, vol.74, issue.10, pp.2882-2891, 2014.

M. O. Nandan, B. B. Mcconnell, A. M. Ghaleb, A. B. Bialkowska, H. Sheng et al., Kruppellike factor 5 mediates cellular transformation during oncogenic KRAS-induced intestinal tumorigenesis, Gastroenterology, vol.134, issue.1, pp.120-130, 2008.

S. Chiba, Notch signaling in stem cell systems, Stem Cells, vol.24, issue.11, pp.2437-2447, 2006.

M. Vooijs, Z. Liu, and R. Kopan, Notch: Architect, landscaper, and guardian of the intestine, Gastroenterology, vol.141, issue.2, pp.448-459, 2011.

S. Miyamoto and D. W. Rosenberg, Role of Notch signaling in colon homeostasis and carcinogenesis, Cancer Science, vol.102, issue.11, pp.1938-1942, 2011.

S. S. Sikandar, K. T. Pate, S. Anderson, D. Dizon, R. A. Edwards et al., NOTCH signaling is required for formation and self-renewal of tumor-initiating cells and for repression of secretory cell differentiation in colon cancer, Cancer Research, vol.70, issue.4, pp.1469-1478, 2010.

T. Srinivasan, J. Walters, P. Bu, E. B. Than, K. L. Tung et al., NOTCH signaling regulates asymmetric cell fate of fast-and slow-cycling colon cancer-initiating cells, Cancer Research, vol.76, issue.11, pp.3411-3421, 2016.

D. Chu, Y. Li, W. Wang, Q. Zhao, J. Li et al., High level of Notch1 protein is associated with poor overall survival in colorectal cancer, Annals of Surgical Oncology, vol.17, issue.5, pp.1337-1342, 2010.

E. Lopez-arribillaga, V. Rodilla, L. Pellegrinet, J. Guiu, M. Iglesias et al., Bmi1 regulates murine intestinal stem cell proliferation and self-renewal downstream of Notch, Development, vol.142, issue.1, pp.41-50, 2015.

Z. Zhang, X. Bu, H. Chen, Q. Wang, and W. Sha, Bmi-1 promotes the invasion and migration of colon cancer stem cells through the downregulation of E-cadherin, International Journal of Molecular Medicine, vol.38, issue.4, pp.1199-1207, 2016.

A. Kreso, P. Van-galen, N. M. Pedley, E. Lima-fernandes, C. Frelin et al., Self-renewal as a therapeutic target in human colorectal cancer, Nature Medicine, vol.20, issue.1, pp.29-36, 2014.

H. R. Siddique and M. Saleem, Role of BMI1, a stem cell factor, in cancer recurrence and chemoresistance: Preclinical and clinical evidences, Stem Cells, vol.30, issue.3, pp.372-378, 2012.

M. Sanchez-beato, E. Sanchez, J. Gonzalez-carrero, M. Morente, A. Diez et al., Variability in the expression of polycomb proteins in different normal and tumoral tissues. A pilot study using tissue microarrays, Modern Pathology: An Official Journal of the United States and Canadian Academy of Pathology, Inc, vol.19, issue.5, pp.684-694, 2006.

D. W. Li, H. M. Tang, J. W. Fan, D. W. Yan, C. Z. Zhou et al., Expression level of Bmi-1 oncoprotein is associated with progression and prognosis in colon cancer, Journal of Cancer Research and Clinical Oncology, vol.136, issue.7, pp.997-1006, 2010.

J. Du, Y. Li, J. Li, and J. Zheng, Polycomb group protein Bmi1 expression in colon cancers predicts the survival, Medical Oncology, vol.27, issue.4, pp.1273-1276, 2010.

C. Wu, X. Zhu, W. Liu, T. Ruan, and K. Tao, Hedgehog signaling pathway in colorectal cancer: Function, mechanism, and therapy, OncoTargets and Therapy, vol.10, pp.3249-3259, 2017.

C. Kosinski, D. E. Stange, C. Xu, A. S. Chan, C. Ho et al., Indian hedgehog regulates intestinal stem cell fate through epithelial-mesenchymal interactions during development, Gastroenterology, vol.139, issue.3, pp.893-903, 2010.

M. Gerling, N. V. Buller, L. M. Kirn, S. Joost, O. Frings et al., Stromal Hedgehog signalling is downregulated in colon cancer and its restoration restrains tumour growth, Nature Communications, vol.7, p.12321, 2016.

V. Papadopoulos, K. Tsapakidis, R. Del-galdo, N. A. Papandreou, C. N. et al., The prognostic significance of the hedgehog Signaling pathway in colorectal cancer, Clinical Colorectal Cancer, vol.15, issue.2, pp.116-127, 2016.

J. Berlin, J. C. Bendell, L. L. Hart, I. Firdaus, I. Gore et al., A randomized phase II trial of vismodegib versus placebo with FOLFOX or FOLFIRI and bevacizumab in patients with previously untreated metastatic colorectal cancer, Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, vol.19, issue.1, pp.258-267, 2013.

J. M. Allaire, S. A. Roy, C. Ouellet, E. Lemieux, C. Jones et al., Bmp signaling in colonic mesenchyme regulates stromal microenvironment and protects from polyposis initiation, International Journal of Cancer, vol.138, issue.11, pp.2700-2712, 2016.

N. Ashley, Regulation of intestinal cancer stem cells, Cancer Letters, vol.338, issue.1, pp.120-126, 2013.

Z. Qi, Y. Li, B. Zhao, C. Xu, Y. Liu et al., BMP restricts stemness of intestinal Lgr5+ stem cells by directly suppressing their signature genes, Nature Communications, vol.8, p.13824, 2017.

Y. Lombardo, A. Scopelliti, P. Cammareri, M. Todaro, F. Iovino et al., Bone morphogenetic protein 4 induces differentiation of colorectal cancer stem cells and increases their response to chemotherapy in mice, Gastroenterology, vol.140, issue.1, pp.297-309, 2011.

G. Whissell, E. Montagni, P. Martinelli, X. Hernando-momblona, M. Sevillano et al., The transcription factor GATA6 enables self-renewal of colon adenoma stem cells by repressing BMP gene expression, Nature Cell Biology, vol.16, issue.7, pp.695-707, 2014.

P. W. Voorneveld, R. J. Jacobs, L. L. Kodach, and J. C. Hardwick, A meta-analysis of SMAD4 immunohistochemistry as a prognostic marker in colorectal cancer, Translational Oncology, 2015.

D. Pan, The hippo signaling pathway in development and cancer, Developmental Cell, vol.19, issue.4, pp.491-505, 2010.

J. S. Mo, H. W. Park, and K. L. Guan, The hippo signaling pathway in stem cell biology and cancer, EMBO Reports, vol.15, issue.6, pp.642-656, 2014.

W. M. Konsavage and G. S. Yochum, Intersection of Hippo/YAP and Wnt/beta-catenin signaling pathways, Acta Biochimica et Biophysica Sinica (Shanghai), vol.45, issue.2, pp.71-79, 2013.

A. Gregorieff and J. L. Wrana, Multiple roles for the hippo effector yap in gut regeneration and cancer initiation, Molecular & Cellular Oncology, vol.3, issue.3, p.1143992, 2016.

Y. Wang, C. Xie, Q. Li, K. Xu, and E. Wang, Clinical and prognostic significance of Yes-associated protein in colorectal cancer, Tumour Biology: The Journal of the International Society for Oncodevelopmental Biology and Medicine, vol.34, issue.4, pp.2169-2174, 2013.

Y. Touil, W. Igoudjil, M. Corvaisier, A. F. Dessein, J. Vandomme et al., Colon cancer cells escape 5FU chemotherapy-induced cell death by entering stemness and quiescence associated with the c-Yes/YAP axis, Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, vol.20, issue.4, pp.837-846, 2014.

P. Oladimeji, H. Cui, C. Zhang, and T. Chen, Regulation of PXR and CAR by protein-protein interaction and signaling crosstalk, Expert Opinion on Drug Metabolism & Toxicology, vol.12, issue.9, pp.997-1010, 2016.

M. Thomas, C. Bayha, S. Vetter, U. Hofmann, M. Schwarz et al., Activating and inhibitory functions of WNT/beta-catenin in the induction of cytochromes P450 by nuclear receptors in HepaRG cells, Molecular Pharmacology, vol.87, issue.6, pp.1013-1020, 2015.

C. Planque, F. Rajabi, F. Grillet, P. Finetti, F. Bertucci et al., Pregnane X-receptor promotes stem cell-mediated colon cancer relapse, Oncotarget, vol.7, issue.35, pp.56558-56573, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01431926

H. Wang, M. Venkatesh, H. Li, R. Goetz, S. Mukherjee et al., Pregnane X receptor activation induces FGF19-dependent tumor aggressiveness in humans and mice, The Journal of Clinical Investigation, vol.121, issue.8, pp.3220-3232, 2011.

Y. Dong, Z. Wang, G. F. Xie, C. Li, W. W. Zuo et al., Pregnane X receptor is associated with unfavorable survival and induces chemotherapeutic resistance by transcriptional activating multidrug resistance-related protein 3 in colorectal cancer, Molecular Cancer, vol.16, issue.1, p.71, 2017.

N. Takeda, R. Jain, M. R. Leboeuf, Q. Wang, L. Mm et al., Interconversion between intestinal stem cell populations in distinct niches, Science, vol.334, issue.6061, pp.1420-1424, 2011.

H. Katoh, K. Yamashita, M. Waraya, O. Margalit, A. Ooki et al., Epigenetic silencing of HOPX promotes cancer progression in colorectal cancer, Neoplasia, vol.14, issue.7, pp.559-571, 2012.

K. Yamashita, H. Katoh, and M. Watanabe, The homeobox only protein homeobox (HOPX) and colorectal cancer, International Journal of Molecular Sciences, vol.14, issue.12, pp.23231-23243, 2013.

L. O'connor, J. Gilmour, and C. Bonifer, The role of the ubiquitously expressed transcription factor Sp1 in tissue-specific transcriptional regulation and in disease, The Yale Journal of Biology and Medicine, vol.89, issue.4, pp.513-525, 2016.

Y. Zhao, W. Zhang, Z. Guo, F. Ma, Y. Wu et al., Inhibition of the transcription factor Sp1 suppresses colon cancer stem cell growth and induces apoptosis in vitro and in nude mouse xenografts, Oncology Reports, vol.30, issue.4, pp.1782-1792, 2013.

, Transcriptional Regulation of the Intestinal Cancer Stem Cell Phenotype