. Absorbance,

, Wavenumber (cm -1 )

. Absorbance,

. Wavenumber,

, DUT-49 (n-butane) 1613 1569 1499 1286 1229 n, p.1128

, Attributing each methane molecule to each of the pores was achieved via a python script using the pymatgen structure object

J. Schindelin, Fiji: an open-source platform for biological-image analysis, Nat. Methods, vol.9, pp.676-682, 2012.

S. Krause, Adsorption Contraction Mechanics: Understanding Breathing Energetics in Isoreticular Metal-Organic Frameworks, J. Phys. Chem. C, vol.122, pp.19171-19179, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01865713

C. A. Rowland, Methane Storage in Paddlewheel-Based Porous Coordination Cages, J. Am. Chem. Soc, vol.140, pp.11153-11157, 2018.

W. Lu, Highly porous metal-organic framework sustained with 12-connected nanoscopic octahedra, Dalton Trans, vol.42, pp.1708-1714, 2013.

?. J. Weseli?ski, R. Luebke, and M. Eddaoudi, A Convenient Preparation of 9H-Carbazole-3,6-dicarbonitrile and 9H-Carbazole-3,6-dicarboxylic Acid, Synthesis, vol.46, pp.596-599, 2014.

U. Stoeck, Assembly of metal-organic polyhedra into highly porous frameworks for ethene delivery, Chem. Commun, vol.51, pp.1046-1049, 2015.

S. Krause, The effect of crystallite size on pressure amplification in switchable porous solids, Nat. Commun, vol.9, p.1573, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01789873

S. Krause, A pressure-amplifying framework material with negative gas adsorption transitions, Nature, vol.532, pp.348-352, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02118754

. Helmholtz-zentrum-berlin-für-materialien-und-energie, The MX beamlines BL14.1-3 at BESSY II, Journal of large-scale research facilities, vol.2, pp.1-6, 2016.

T. G. Battye, iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM, Acta Cryst. D, vol.67, pp.271-281, 2011.

M. D. Winn, Overview of the CCP4 suite and current developments, Acta Cryst. D, vol.67, pp.235-242, 2011.

K. M. Sparta, J. Appl. Crystallogr, vol.49, pp.1085-1092, 2016.

G. Sheldrick, A short history of SHELX, Acta Cryst. A, vol.64, pp.112-122, 2008.

G. Sheldrick, Crystal structure refinement with SHELXL, Acta Cryst. C, vol.71, pp.3-8, 2015.

A. Spek, Structure validation in chemical crystallography, Acta Cryst. D, vol.65, pp.148-155, 2009.

T. F. Willems, Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials, Microporous Mesoporous Mater, vol.149, pp.134-141, 2012.

D. A. Gómez-gualdrón, Application of Consistency Criteria To Calculate BET Areas of Micro-And Mesoporous Metal-Organic Frameworks, J. Am. Chem. Soc, vol.138, pp.215-224, 2016.

O. K. Farha, Metal-Organic Framework Materials with Ultrahigh Surface Areas: Is the Sky the Limit?, J. Am. Chem. Soc, vol.134, pp.15016-15021, 2012.

I. Hönicke, Balancing Mechanical Stability and Ultrahigh Porosity in Crystalline Framework Materials, Angew. Chem. Int. Ed, vol.57, pp.13780-13783, 2018.

P. L. Llewellyn and G. Maurin, Gas adsorption microcalorimetry and modelling to characterise zeolites and related materials, C. R. Chimie, vol.8, pp.283-302, 2004.

. Nist-refprop, , 2018.

I. Beurroies, Using Pressure to Provoke the Structural Transition of Metal-Organic Frameworks, Angew. Chem. Int. Ed, vol.49, pp.7526-7529, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01465940

P. Ramaswamy, Mechanical properties of a gallium fumarate metal-organic framework: a joint experimental-modelling exploration, J. Mater. Chem. A, vol.5, pp.11047-11054, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01538006

P. G. Yot, Metal-organic frameworks as potential shock absorbers: the case of the highly flexible MIL-53(Al), Chem. Commun, vol.50, pp.9462-9464, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01020025

P. G. Yot, Exploration of the mechanical behavior of metal organic frameworks UiO-66(Zr) and MIL-125(Ti) and their NH2 functionalized versions, Dalton Trans, vol.45, pp.4283-4288, 2016.

P. G. Yot, Impact of the Metal Centre and Functionalization on the Mechanical Behaviour of MIL-53 Metal-Organic Frameworks, Eur. J. Inorg. Chem, pp.4424-4429, 2016.

S. Henke, Pore closure in zeolitic imidazolate frameworks under mechanical pressure, Chem. Sci, 2018.

. Helmholtz-zentrum-berlin-für-materialien-und-energie, KMC-2: an X-ray beamline with dedicated diffraction and XAS endstations at BESSY II, Journal of large-scale research facilities, vol.2, p.49, 2016.

V. Bon, In situ monitoring of structural changes during the adsorption on flexible porous coordination polymers by X-ray powder diffraction: Instrumentation and experimental results, Microporous Mesoporous Mater, vol.188, pp.190-195, 2014.

, Datasqueeze 2.2.9 Graphical Tool for X-ray Data Analysis v. 2.2, p.9, 2012.

M. Wojdyr, Fityk: a general-purpose peak fitting program, J. Appl. Crystallogr, vol.43, pp.1126-1128, 2010.

A. L. Bail, Whole powder pattern decomposition methods and applications: A retrospection, Powder Diffr, vol.4, pp.316-326, 2005.

. Helmholtz-zentrum-berlin-für-materialien-und-energie, E9: The Fine Resolution Powder Diffractometer (FIREPOD) at BER II, Journal of large-scale research facilities, vol.3, p.103, 2017.

T. Roisnel and J. Rodríquez-carvajal, WinPLOTR: A Windows Tool for Powder Diffraction Pattern Analysis, Mater. Sci. Forum, vol.378, issue.381, pp.118-123, 2001.

J. Getzschmann, Methane storage mechanism in the metal-organic framework Cu3(btc)2: An in situ neutron diffraction study, Microporous Mesoporous Mater, vol.136, pp.50-58, 2010.

H. Wu, Metal-Organic Frameworks with Exceptionally High Methane Uptake: Where and How is Methane Stored?, Chem. Eur. J, vol.16, pp.5205-5214, 2010.

H. Wu, W. Zhou, and T. Yildirim, Methane Sorption in Nanoporous Metal?Organic Frameworks and First-Order Phase Transition of Confined Methane, J. Phys. Chem. C, vol.113, pp.3029-3035, 2009.

K. Bogdan, Adsorption-Induced Structural Phase Transformation in Nanopores, Angew. Chem. Int. Ed, vol.56, pp.16243-16246, 2017.

E. J. Carrington, I. J. Vitorica-yrezabal, and L. Brammer, Crystallographic studies of gas sorption in metal-organic frameworks, Acta Cryst. B, vol.70, pp.404-422, 2014.

T. Glaser, Infrared study of the MoO3 doping efficiency in 4,4?-bis(N-carbazolyl)-1,1?-biphenyl (CBP), Org. Electron, vol.14, pp.575-583, 2013.

U. Stoeck, A highly porous metal-organic framework, constructed from a cuboctahedral super-molecular building block, with exceptionally high methane uptake, Chem. Commun, vol.48, pp.10841-10843, 2012.

S. Bureekaew, MOF-FF -A flexible first-principles derived force field for metal-organic frameworks, Phys. Status Solidi B, vol.250, pp.1128-1141, 2013.